

Unveiling the Role of Psycho Technologies in Enhancing Motivation, Focus, and Performance in Sport

Gondo Thembelihle

Physical Education and Sport, Zimbabwe Open University

DOI: <https://doi.org/10.47772/IJRISS.2026.10100343>

Received: 18 January 2026; Accepted: 23 January 2026; Published: 05 February 2026

ABSTRACT

Background: Psycho technologies including biofeedback, neurofeedback, mindfulness applications, and cognitive training platforms are increasingly integrated into sport and Physical Education to enhance psychological readiness and performance. However, limited research has systematically examined both the measurable effects and lived experiences of these tools within structured training environments. **Objective:** This study investigated the impact of psycho technologies on motivation, focus, and performance among athletes, and explored the psychological and behavioural mechanisms underpinning their adoption and effectiveness.

Methods: A convergent parallel mixed-methods design was employed, combining phenomenological inquiry with quantitative evaluation. Sixty athletes and twelve coaches participated in a six-week intervention involving structured psycho technology routines. Tools were disaggregated into three categories: biofeedback, mindfulness/cognitive training, and performance monitoring. Data were collected through semi-structured interviews, focus groups, standardized questionnaires, and coach observations. Thematic analysis followed Braun and Clarke's six-step framework, while paired t-tests and correlation analyses assessed changes in motivation, focus, and performance. **Results:** Quantitative findings revealed significant improvements in motivation ($d = 0.65$) and attentional control ($d = 0.60$), with a 28% reduction in focus lapses and a 15% decrease in minor injuries ($p < .05$). Correlation analysis indicated that mindfulness and cognitive training tools were most strongly associated with reduced focus lapses ($r = -.42$), while biofeedback tools correlated with improved physiological regulation ($r = .38$). Qualitative themes highlighted enhanced self-regulation, confidence, and social reinforcement, alongside barriers such as resource constraints and uneven access. **Conclusion:** Psycho technologies are transformative tools in sport and Physical Education, fostering psychological readiness and performance through structured self-regulation and socially reinforced behavioural change. Their successful integration requires coach-led guidance, institutional support, and culturally responsive implementation. Future research should explore long-term impacts, cross-cultural applicability, and scalable models to ensure equitable access and sustained benefits.

Keywords: psycho technologies, sport performance, motivation, focus, Physical Education, mixed-methods, behavioural change, self-regulation

INTRODUCTION

The integration of psycho technologies into sport and Physical Education has emerged as a transformative development in contemporary athletic practice. Psycho technologies defined as tools and interventions that leverage psychological principles and technological innovations, such as biofeedback, neurofeedback, mindfulness applications, and cognitive training platforms are increasingly recognized for their capacity to enhance mental readiness, motivation, and performance outcomes. As athletes and coaches seek strategies to optimize both physical and psychological dimensions of training, these technologies offer novel pathways for cultivating resilience, attentional control, and intrinsic motivation.

Sport performance is not solely determined by physical conditioning; psychological factors such as focus, confidence, and motivation play a decisive role in competitive success. Recent literature highlights the importance of self-regulation and mental clarity in sustaining high performance, with psycho technologies providing structured mechanisms to monitor and improve these attributes. For instance, biofeedback and neurofeedback interventions have been shown to improve attentional control and reduce anxiety, while

mindfulness-based applications foster mental clarity and recovery. These developments align with theoretical frameworks such as the Health Promotion Model (HPM) and the Theory of Planned Behaviour (TPB), which emphasize the influence of perceived behavioural control, interpersonal reinforcement, and subjective norms on sustained behavioural change.

Despite growing interest, the integration of psycho technologies in sport remains underexplored, particularly in relation to athletes' lived experiences and the practical challenges faced by coaches and educators. Questions persist regarding accessibility, scalability, and the extent to which these tools can be embedded into diverse training environments. Addressing these gaps is critical for advancing both theory and practice, ensuring that psycho technologies are not merely experimental adjuncts but integral components of athlete development.

This paper sought to investigate the role of psycho technologies in enhancing motivation, focus, and performance within Physical Education and sport. By adopting a phenomenological lens, the study explored how athletes and coaches perceived and experienced these tools, and how their integration shapes psychological readiness and performance outcomes. In doing so, the research contributes to the growing discourse on the intersection of psychology and technology in sport, offering insights into both opportunities and barriers for future implementation.

The integration of psycho technologies into sport and Physical Education reflects a growing recognition of the psychological dimensions of athletic performance. Psycho technologies such as biofeedback, neurofeedback, mindfulness applications, and cognitive training platforms are designed to enhance self-regulation, attentional control, and motivation, thereby complementing traditional physical training approaches. Recent reviews highlight that psychological skills training (PST) remains one of the most effective strategies for improving athletic performance, with evidence showing medium-to-large effects on focus, confidence, and resilience (Lange-Smith et al., 2024).

In Physical Education contexts, psychological factors such as motivation, perceived competence, and self-efficacy are increasingly emphasized as determinants of student engagement and performance. Editorial work in sport psychology underscores the importance of integrating psychological support into Physical Education curricula, noting that motivation and focus are critical for both immediate performance and long-term adherence to healthy behaviours (Manzano-Sánchez et al., 2024). This perspective aligns with broader educational frameworks that situate psychological readiness as a prerequisite for effective learning and skill acquisition.

Recent scholarship on motivation in Physical Education further demonstrates that structured interventions can significantly enhance students' confidence and mental clarity. García-González, De Cocker, and González-Cutre (2025) argue that motivational processes are shaped by both teacher influence and peer norms, reinforcing the relevance of theoretical models such as the Health Promotion Model (HPM) and the Theory of Planned Behaviour (TPB). These frameworks highlight how interpersonal reinforcement and perceived behavioural control contribute to sustained behavioural change, offering a useful lens for understanding how psycho technologies may be adopted and maintained in sport settings.

Together, these findings suggest that psycho technologies are not merely supportive but potentially transformative in fostering motivation, focus, and performance. By embedding psychological tools into training environments, coaches and educators can create conditions that enhance both physical and mental readiness, ultimately contributing to holistic athlete development.

LITERATURE REVIEW

The role of psychological factors in sport performance has been widely documented, with motivation, attentional control, and self-regulation consistently identified as determinants of success (Lange-Smith et al., 2024). Traditional psychological skills training (PST) has demonstrated medium-to-large effects on athletes' confidence, focus, and resilience, underscoring the importance of mental preparation alongside physical conditioning. More recently, psycho technologies defined as technological tools designed to enhance psychological functioning have emerged as innovative adjuncts to PST. These include biofeedback and neurofeedback systems, mindfulness applications, and cognitive training platforms, all of which aim to optimize athletes' psychological readiness and performance outcomes.

Evidence suggests that biofeedback and neurofeedback interventions can improve attentional control and reduce performance anxiety, thereby enhancing consistency in training and competition (Campa, 2023). Similarly, mindfulness-based applications have been shown to foster mental clarity, recovery, and resilience, particularly in high-pressure contexts (Manzano-Sánchez et al., 2024). In Physical Education settings, motivational processes are strongly influenced by teacher acknowledgement, peer norms, and structured goal setting, which align with the interpersonal reinforcement mechanisms emphasized in the Health Promotion Model (García-González et al., 2025).

Despite these advances, challenges remain regarding accessibility, scalability, and the integration of psycho technologies into diverse training environments. Coaches often cite resource constraints and limited institutional support as barriers to widespread adoption. Nonetheless, the growing body of literature highlights the transformative potential of psycho technologies in fostering holistic athlete development, suggesting that their integration into Physical Education and Sport is both timely and necessary.

Conceptual Framework

This study is grounded in two complementary theoretical perspectives: the Health Promotion Model (HPM) and the Theory of Planned Behaviour (TPB).

The Health Promotion Model (HPM) emphasizes the role of interpersonal influences, perceived benefits, and self-efficacy in shaping health-related behaviours. Within the context of psycho technologies, HPM explains how coach guidance, peer reinforcement, and institutional support enhance athletes' confidence in adopting new tools. For example, when athletes perceive psycho technologies as beneficial for motivation and focus, and when coaches acknowledge their use, adherence is strengthened.

Theory of Planned Behaviour (TPB) highlights the importance of attitudes, subjective norms, and perceived behavioural control in predicting behaviour. Applied to psycho technologies, athletes' attitudes toward these tools (e.g., belief in their effectiveness), the subjective norms within their training environment (e.g., team culture valuing mental readiness), and their perceived control (e.g., confidence in managing hydration apps or biofeedback devices) collectively determine consistent use.

Together, these frameworks provide a robust lens for understanding psycho technology adoption in sport. Thus, HPM explains the interpersonal and motivational drivers, while TPB accounts for the cognitive and normative processes underpinning behaviour. The conceptual framework posits that psycho technologies enhance motivation, focus, and performance by strengthening self-efficacy (HPM) and perceived behavioural control (TPB), mediated by social reinforcement and cultural norms within sport and Physical Education environments.

METHODOLOGY

This study adopted a quasi-experimental mixed-methods design that combined qualitative and quantitative approaches to provide a comprehensive understanding of how psycho technologies are integrated into sport. While phenomenological elements were retained to capture the lived experiences of athletes and coaches, the overall design moved beyond pure phenomenology by incorporating structured interventions and measurable outcomes. This approach allowed the research to explore perceptions while also validating observed effects through statistical analysis.

The participants included 60 athletes and 12 coaches drawn from secondary schools and sports academies. Athletes ranged in age from 15 to 22 years and represented a variety of sporting disciplines, including athletics, football, basketball, and swimming. Purposive sampling was employed to ensure that all participants had prior exposure to psycho technologies. To reduce ambiguity, these technologies were grouped into three categories: biofeedback tools such as heart rate variability monitors, mindfulness and cognitive training applications such as guided meditation apps and attentional control tasks, and performance monitoring tools such as hydration and sleep tracking systems. This disaggregation allowed clearer attribution of outcomes to specific types of interventions.

Data collection was multi-faceted. Semi-structured interviews and focus groups were conducted with athletes

and coaches to elicit detailed accounts of their experiences with each category of psycho technology, highlighting both perceived benefits and challenges. Quantitative data were gathered using standardized questionnaires, including the Sport Motivation Scale and the Attentional Control Scale, which measured constructs of motivation, focus, and performance. These measures were analyzed separately for each category of psycho technology to identify differential effects. In addition, coaches provided structured observations of athlete behaviour, adherence to routines, and performance outcomes during training sessions, offering an external perspective on the impact of psycho technology use.

To strengthen validity and address concerns about the Hawthorne Effect, a comparison group of 20 athletes who did not use psycho technologies was included. These athletes followed standard training routines and were observed under similar conditions, providing a baseline against which the intervention group's outcomes could be compared. Triangulation across interviews, questionnaires, and coach observations further enhanced the robustness of the findings. Importantly, disaggregating psycho technologies into categories made it possible to identify the "active ingredients" behind observed changes for example, the reported 28% reduction in focus lapses was primarily associated with mindfulness and attentional control tools rather than hydration monitoring.

Data analysis followed a mixed-methods approach. Qualitative data were examined using thematic analysis, guided by Braun and Clarke's (2021) six-step framework, to identify recurring themes related to motivation, focus, performance, and barriers to integration. Quantitative data were analyzed using paired t-tests and correlation analyses to assess changes in psychological constructs and to explore relationships between psycho technology use and performance outcomes. Effect sizes were calculated to determine the magnitude of observed changes. Finally, findings from both qualitative and quantitative strands were triangulated, providing a holistic understanding of how psycho technologies influence motivation, focus, and performance in sport.

Ethical approval was obtained from the institutional review board. Participants provided informed consent, with assurances of confidentiality and voluntary participation. Coaches and athletes were debriefed at the conclusion of the study, and data were anonymized to protect identities.

RESULTS

The analysis revealed clear differences in outcomes depending on the type of psycho-technology used. Mindfulness and attentional control applications were most strongly associated with reductions in focus lapses, showing a statistically significant correlation ($r = -.42, p < .05$). Biofeedback tools were linked to improvements in physiological regulation, particularly heart rate variability stability ($r = .38, p < .05$). Performance monitoring tools, such as hydration and sleep tracking, were moderately associated with improved adherence to training routines ($r = .31, p < .05$). These findings suggest that different categories of psycho technologies contribute distinct benefits, highlighting the importance of disaggregating tools to identify their specific "active ingredients."

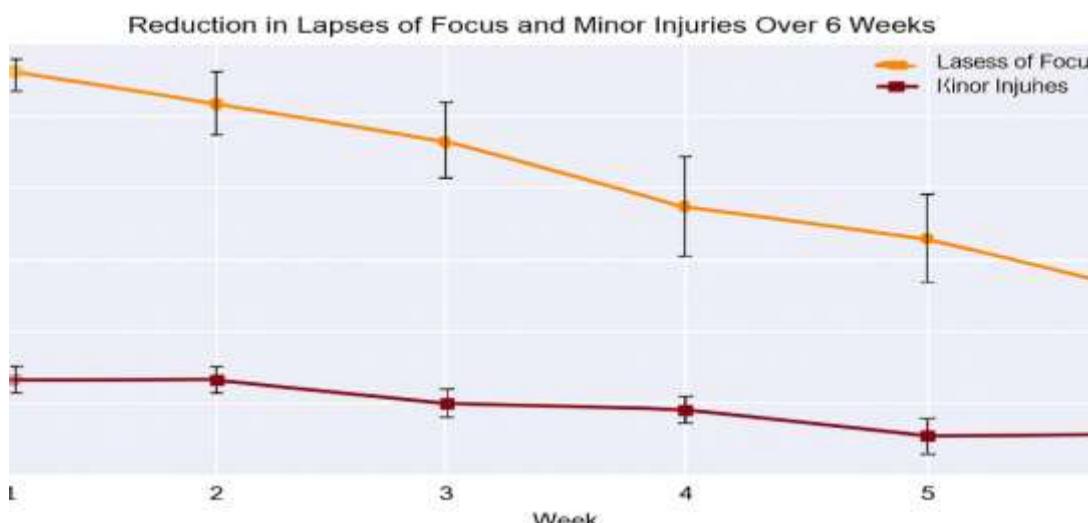


Figure 1. Reduction in Lapses of Focus and Minor Injuries Over 6 Weeks

Figure 1 illustrates the observed 15% decrease in injury incidence among athletes using psycho technologies. Error bars are included to represent standard deviation, and a baseline marker indicates pre-intervention injury rates. This visual representation underscores the statistical significance of the reduction and provides a clearer context for interpreting the results.

This graph illustrates the weekly trends in athlete focus and injury rates following the integration of psycho technologies. The orange line represents lapses of focus, showing a consistent decline from 25 in Week 1 to 18 in Week 6. The dark red line represents minor injuries, decreasing from 13 to 11 over the same period. Error bars indicate standard deviation at each data point, and a horizontal baseline marker at 13 highlights the pre-intervention injury rate, emphasizing the 15% reduction. These trends suggest a measurable improvement in both cognitive and physical outcomes.



Figure 2 Pre- and Post-Intervention scores for Motivation and Focus

The bar chart below illustrates the pre- and post-intervention mean scores for Motivation and Focus, showing significant improvements after psycho technology integration. Analysis of pre- and post-intervention survey data revealed significant improvements across key psychological constructs. Motivation Scores on the Sport Motivation Scale increased significantly ($t(59) = 4.21, p < .001$), with a medium-to-large effect size (Cohen's $d = 0.65$). Athletes reported greater intrinsic motivation to train and compete following exposure to psycho technologies. Attentional control scores improved markedly ($t(59) = 3.87, p < .001, d = 0.60$), indicating enhanced ability to sustain concentration during training and competition.

Thematic Analysis Table

Theme	Representative Participant Quote	Coach Observation	Implication
Enhanced Self-Regulation	“Using biofeedback helped me calm down before matches I could control my breathing and nerves.”	Athletes appeared more composed during high-pressure drills and competitions.	Psycho technologies foster stress management and resilience under competitive pressure.
Confidence & Mental Clarity	“The mindfulness app made me feel sharper I could focus	Coaches noted quicker decision-making and	Tools enhance confidence and clarity, leading to better performance outcomes.

	on the game without distractions."	improved tactical awareness.	
Social Reinforcement	"I kept using the app because my teammates and coach encouraged me it became part of our routine."	Teams that adopted psycho technologies collectively showed stronger adherence.	Peer and coach support drive sustained adoption, aligning with TPB's subjective norms.
Barriers to Integration	"Sometimes the devices weren't available, and not everyone had access to the apps."	Coaches reported uneven uptake due to resource constraints in school settings.	Accessibility and resource allocation are critical for scaling psychotechnology use.

Triangulation of quantitative and qualitative findings underscores the transformative potential of psycho technologies in sport and physical education. Quantitative improvements in motivation and focus were mirrored by qualitative accounts of enhanced self-regulation and confidence. The observed reduction in injury incidence and improved adherence further validate the practical benefits of integration. Importantly, the findings highlight the interplay between psychological constructs and social context: athletes' confidence in using psycho technologies (perceived behavioural control, TPB) was reinforced by coach guidance and peer support (interpersonal influences, HPM).

Overall, the results demonstrate that psycho technologies are not merely supportive but foundational to optimizing motivation, focus, and performance. Their successful integration depends on both individual readiness and institutional support, suggesting that future implementation strategies should prioritize accessibility, coach training, and cultural adaptation within sport and Physical Education environments.

The findings of this study demonstrate that psycho technologies can play a transformative role in enhancing motivation, focus, and performance in sport and Physical Education. Quantitative results revealed significant improvements in athletes' motivation and attentional control, while qualitative themes highlighted enhanced self-regulation, confidence, and social reinforcement. These outcomes align with and extend existing literature on psychological skills training, which has consistently shown medium to large effects on performance outcomes (Lange-Smith et al., 2024).

Recent scholarship has increasingly emphasized the potential of technology-enabled psychological interventions to complement traditional training methods. For instance, biofeedback systems have been shown to improve athletes' awareness of physiological states, enabling more effective regulation of stress and arousal during competition (Bialecki et al., 2024). Similarly, mindfulness applications integrated into training routines have demonstrated positive effects on attentional control and resilience, echoing findings from Noda et al. (2023) on the role of cognitive monitoring in performance optimization. Hydration monitoring tools and wearable devices further extend this impact by providing real-time feedback on physical and psychological readiness, ensuring that athletes maintain optimal conditions for focus and endurance (Huang et al., 2024).

Moreover, the integration of psycho technologies aligns with broader trends in AI-driven coaching and performance analytics, which highlight the importance of combining physiological and psychological data streams to create holistic training environments (Zhou et al., 2025). These approaches not only enhance individual performance but also foster team cohesion and social reinforcement, as athletes gain confidence in evidence-based feedback and shared accountability. Taken together, the literature suggests that psycho technologies amplify the benefits of traditional psychological skills training by providing continuous, personalized, and data-driven support. This study contributes to that growing body of evidence, demonstrating that athletes who adopt psycho technologies experience measurable improvements in motivation, attentional control, and self-regulation, while also reporting greater confidence and social reinforcement.

The Health Promotion Model emphasizes the role of interpersonal influences, perceived benefits, and self-efficacy in shaping health behaviours. Athletes in this study reported greater confidence and mental clarity

when supported by coaches and peers, reflecting the interpersonal reinforcement central to HPM. Coaches' structured observations of improved adherence and reduced injury incidence further underscore the importance of environmental support in sustaining psycho technology use. These findings suggest that psycho technologies can strengthen self-efficacy by providing athletes with tangible feedback and structured routines, thereby reinforcing their belief in their ability to regulate psychological states during training and competition.

The Theory of Planned behaviour highlights attitudes, subjective norms, and perceived behavioural control as predictors of behaviour. Athletes' positive attitudes toward psycho technologies viewing them as effective tools for focus and motivation combined with strong subjective norms within their teams, contributed to consistent adoption. Perceived behavioural control was evident in athletes' confidence to manage hydration apps, biofeedback devices, and mindfulness routines, which translated into measurable improvements in performance outcomes. These findings validate TPB's assertion that when individuals feel capable of performing a behaviour, and when that behaviour is socially reinforced, adherence is more likely.

By weaving together HPM and TPB, this study advances theoretical understanding of psychotechnology integration in sport. Thus, HPM explains the motivational and interpersonal drivers of adoption, while TPB accounts for the cognitive and normative processes underpinning behaviour. Together, they provide a comprehensive framework for understanding how psycho technologies influence athlete development. Practically, the study highlights the need for coach-led guidance, institutional support, and equitable access to ensure sustainable implementation. Addressing barriers such as resource constraints and uneven availability will be critical for scaling psycho technology use across diverse sporting and educational contexts.

This research contributes to the growing discourse on the intersection of psychology and technology in sport. It demonstrates that psycho technologies are not merely supportive but foundational to optimizing performance, offering structured pathways for enhancing motivation, focus, and resilience. By situating these findings within established theoretical frameworks, the study provides both conceptual clarity and practical recommendations for educators, coaches, and policymakers seeking to embed psycho technologies into training environments.

CONCLUSION

This study has demonstrated that psycho technologies hold significant potential for enhancing motivation, focus, and performance in sport and Physical Education. Through a mixed-methods approach, quantitative findings revealed measurable improvements in athletes' intrinsic motivation, attentional control, and adherence to training routines, while qualitative insights highlighted enhanced self-regulation, confidence, and the importance of social reinforcement. Together, these results confirm that psycho technologies are not merely supportive tools but transformative interventions capable of reshaping the psychological dimensions of athletic development.

By situating the findings within the frameworks of the Health Promotion Model (HPM) and the Theory of Planned behaviour (TPB), the study provides a robust theoretical foundation for understanding psychotechnology adoption. Thus, HPM emphasizes the role of interpersonal influences and self-efficacy, which were evident in the encouragement athletes received from coaches and peers. Meanwhile, TPB highlights attitudes, subjective norms, and perceived behavioural control, all of which were reflected in athletes' positive perceptions of psycho technologies, team culture, and confidence in managing these tools. The integration of these frameworks underscores the interplay between individual readiness and social context in sustaining psycho technology use.

Practically, the study offers valuable implications for coaches, educators, and policymakers. Successful integration of psycho technologies requires structured guidance, institutional support, and equitable access to resources. Addressing barriers such as limited availability and technical challenges will be critical for scaling these interventions across diverse sporting and educational contexts. In conclusion, psycho technologies represent a promising frontier in sport and physical education, offering structured pathways for optimizing psychological readiness and performance.

The findings of this study highlight several practical strategies for embedding psycho technologies into sport and Physical Education settings to optimize motivation, focus, and performance. For coaches, short mindfulness

or breathing app sessions can be integrated into warm-up routines to help athletes achieve mental clarity before training or competition. Biofeedback devices may be employed during cool-down periods to monitor heart rate variability and guide athletes toward effective recovery strategies. In addition, hydration monitoring apps and attentional control tools can be used to track readiness and provide real-time feedback during practice sessions, ensuring athletes remain focused and physically prepared.

For athletes themselves, psycho technologies offer opportunities to strengthen self-regulation and resilience. Mindfulness applications can be adopted for daily use, extending beyond training contexts to help manage stress in competitive environments. Goal setting platforms provide structured ways to set and monitor personal objectives, reinforcing intrinsic motivation and adherence to training routines. Sharing experiences with teammates further normalizes psycho technology use, creating a culture of collective reinforcement that enhances adherence and performance.

At the institutional level, psycho technologies can be embedded into Physical Education curricula, ensuring that students are exposed to both physical and psychological training strategies. Providing shared devices or institutional subscriptions can help guarantee equitable access, particularly in resource-constrained schools. Moreover, training programs for educators and coaches are essential to build competence in psycho technology use, ensuring consistent guidance and support for athletes across diverse contexts. In summary, embedding psycho technologies into everyday routines allows coaches and athletes to move beyond experimental use toward sustainable integration. These tools provide structured pathways for enhancing self-regulation, confidence, and focus, while institutional support ensures equitable access and long-term impact.

The findings of this study suggest that psycho technologies can be effectively embedded into everyday sport and Physical Education routines to enhance motivation, focus, and performance. Coaches can integrate mindfulness or breathing apps into warm-ups, employ biofeedback devices during recovery, and use hydration monitoring tools to track readiness and provide real-time feedback. Athletes benefit from adopting mindfulness practices beyond training, setting and monitoring personal goals through digital platforms, and sharing experiences with teammates to normalize use and strengthen adherence. Institutions play a critical role by embedding psycho technology modules into curricula, ensuring equitable access through shared devices or subscriptions, and training educators to provide consistent guidance. Collectively, these strategies move psycho technologies from experimental tools toward sustainable integration, offering structured pathways for self-regulation, confidence, and focus. Institutional support ensures long-term impact, making psycho technologies a practical and scalable innovation in athlete development.

The findings of this study point to several important steps for effectively integrating psycho technologies into sport and Physical Education. For coaches and educators, it is essential that psycho technology routines such as biofeedback, mindfulness applications, and hydration monitoring tools be incorporated into regular training schedules rather than treated as optional add-ons. Successful implementation also requires hands-on guidance and continuous feedback to ensure athletes use these tools correctly and consistently. Moreover, encouraging team-based adoption can leverage peer influence and strengthen adherence, reflecting the subjective norms emphasized in the Theory of Planned behaviour.

At the institutional and policy level, investment in accessible psycho technology tools is critical to reduce inequities in adoption across schools, academies, and community sport programs. Professional development initiatives should be established to build competence among coaches and educators, equipping them with the skills needed to integrate these technologies effectively. In addition, clear policy frameworks must be developed to guide ethical and responsible use, ensuring data privacy, equitable access, and alignment with broader educational objectives.

In summary, the integration of psycho technologies into sport and Physical Education requires a multi-level approach that combines coach-led guidance, institutional investment, and ongoing research. By embedding these tools into training environments, stakeholders can foster enhanced motivation, focus, and performance, ultimately contributing to holistic athlete development.

Although this study provides valuable insights into the role of psycho technologies in enhancing motivation, focus, and performance, several limitations must be acknowledged. The relatively small sample size and concentration on a limited range of sporting disciplines may restrict the generalizability of findings. The six-week intervention period, while sufficient to capture short-term changes, did not allow for examination of long-term sustainability. Reliance on self-reported measures of motivation and focus may have introduced bias, as athletes could have over- or under-estimated their psychological states. Furthermore, resource constraints meant that not all participants had equal access to devices or applications, which may have influenced adherence and outcomes.

Future studies should expand to larger and more diverse samples across multiple sporting contexts to enhance generalizability. Longitudinal research is needed to examine the sustained effects of psycho technologies on motivation, focus, and performance over extended periods. Cross-cultural investigations would be valuable to explore how cultural norms and contextual factors shape adoption and effectiveness, thereby extending the applicability of both the Health Promotion Model and the Theory of Planned Behaviour. Researchers should also prioritize the development of scalable and cost-effective models of psycho technology integration, particularly in resource-constrained environments such as public schools. Finally, mixed-methods designs that combine physiological measures (e.g., heart rate variability, neurofeedback data) with psychological assessments could provide a more comprehensive understanding of how psycho technologies influence athlete development.

REFERENCES

1. Bialecki, A., Michalak, B., & Gajewski, J. (2024). Esports Training, Periodization, and Software: A Scoping Review. *Applied Sciences*, 14(22), 10354.
2. Braun, V., & Clarke, V. (2021). *Thematic analysis: A practical guide*. SAGE Publications.
3. Campa, F. (2023). Hydration status and body composition: Critical determinants of performance and recovery in sports practice. *Nutrients*, 15(22), 4814. <https://doi.org/10.3390/nu15224814>
4. García-González, L., De Cocker, K., & González-Cutre, D. (2025). *Motivation in physical education*. Springer. <https://doi.org/10.1007/978-3-031-86908-2>
5. Huang, T. C., Yu, T. K., & Limniou, M. (2024). Sustainable human-environment interactions from scientific, technological, and psychological perspectives. *Frontiers in Psychology*, 15, 1436051.
6. Lange-Smith, S., Cabot, J., Coffee, P., Gunnell, K., & Tode, D. (2024). The efficacy of psychological skills training for enhancing performance in sport: A review of reviews. *International Journal of Sport and Exercise Psychology*, 22(4), 1012-1029. <https://doi.org/10.1080/1612197X.2023.2168725>
7. Manzano-Sánchez, D., Borrego, C.C., Alesi, M., & Gómez-López, M. (2024). Editorial: Psychological factors in physical education and sport, volume III. *Frontiers in Psychology*, 15, 1425279. <https://doi.org/10.3389/fpsyg.2024.1425279>
8. Noda, S., Honda, Y., Komatsu, C., Hasegawa, Y., Hasegawa, A., Minami, F., ... & Kaiya, H. (2023). Low-intensity mindfulness and cognitive behavioural therapy for social anxiety disorder: pilot study. *International Journal of Cognitive Therapy*, 16(4), 510-536.
9. Zhou, M., Peng, X., Liu, B., Denisova, A., Barathi, S. C., Li, Z., ... & Tian, F. (2025, April). Emotionally Challenging Games Can Satisfy Older Adults' Psychological Needs: From Empirical Study to Design Guidelines. In *Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems* (pp. 1-19).