

The Impact of Social Media Marketing Towards Malaysian Consumers' Purchasing Behavior on Apparel Products

Suzaini Abdul Ghani., Mohamad Faizul Yahya., Erni Farisha Muhammad Fadzulli

Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, MALAYSIA

DOI: <https://dx.doi.org/10.47772/IJRISS.2026.10100366>

Received: 19 January 2026; Accepted: 24 January 2026; Published: 06 February 2026

ABSTRACT

The aim of this study is to identify the most influential determinants of consumer purchasing behavior in Malaysia. The independent variables examined are User-Generated Content (UGC), Firm-Generated Content (FGC), and electronic Word of Mouth (eWOM). Data was collected from 250 respondents using a structured questionnaire. Both primary and secondary data were utilized to support the sampling technique and research design. Questionnaires were used to collect data to achieve the research objectives. The findings indicate that UGC, FGC, and eWOM significantly influence consumer purchasing behavior.

Keywords: User-Generated Content (UGC), Firm-Generated Content (FGC), Electronic Word of Mouth (eWOM)

INTRODUCTION

In Malaysia, because of the introduction of social media, the apparel industry has undergone significant transformation recently. Nawi et al. (2021) found that social media marketing activities had positively affected the customers' equity in fashion apparel brands. Over the past few decades, social media platforms have become critical channels for marketing. These tools can help the brands to get unprecedented opportunities to engage and reach the consumers. Therefore, the impact of social media marketing on Malaysian consumer purchasing behaviours will be explored in this study, focusing specifically on apparel products. The fundamental challenge is to understand how social media marketing influences consumer purchasing behaviour in the apparel sector. Social media use has become prevalent in daily life, especially with adolescents and young adults who are the most active users. Subsequently, social media platforms are integrated into businesses, and they need to comprehend the mechanisms by which platforms influence consumer purchasing behaviour. This insight can help businesses use social media more successfully and effectively to drive sales and enhance customer satisfaction.

The main goal of this research is to explore how consumer purchasing behaviour on apparel products is influenced by several types of social media marketing, including user-generated content (UGC), firm-generated content (FGC), and electronic word of mouth (eWOM). Furthermore, Rrustemi et al. (2021) also point out that social media has taken the place of traditional marketing by allowing consumers to access information more quickly and easily. With the proliferation of social media platforms over the last decade, a significant movement in the traditional marketing landscape towards digital and social media channels has shifted dramatically. This shift has been further accelerated by the COVID-19 pandemic, which social media positively impacted consumer purchasing behaviour, leading to increased online shopping and changes in shopping habits (Kuzmanovska & Przo, 2021).

The subject of this research is important for several reasons related to understanding the impact of social media marketing. Initially, it assists businesses in developing and creating effective strategies to maximise engagement and boost revenue. Social media platforms greatly influence consumer purchasing behaviour and preferences (Dhingra, 2023), but success and effectiveness are dependent on a deep understanding of consumer behaviour. Second, gaining insight into how consumers interact and engage with social media content. It helps businesses to plan and tailor the product and market advertisement to better meet consumer needs and preferences.

According to Lee et al. (2017), the inclusion of brand personality-related content, like emotion and humour, is associated and correlated with increased customer interaction on social media. Finally, in a highly competitive sector such as the garment business, efficient social media marketing can be a differentiator that distinguishes successful brands from competitors. Lastly, social media can significantly affect brands and businesses while influencing the purchasing decisions in Malaysia (Hassan et al., 2015). Besides that, the garment sector is a vital component of the Malaysian economy, by enhancing and improving marketing strategies. Needless to say, social media really can contribute to the sector's expansion and overall economic health.

This issue impacts numerous stakeholders. According to Budree et al. (2021), through social media influencers, brand loyalty, and spending habits, social media marketing affects impulsive purchases. Social media marketing directly influences consumers' opinions, perceptions and spending on apparel products. On the other hand, businesses particularly rely on social media as their primary marketing strategy for reaching and engaging with customers. This study suggests that understanding social media dynamics is crucial for marketers and professionals to gain market insights. Tafesse and Wien (2018) highlighted that the implementation of social media is positively related to overall performance, including marketing performance.

Additionally, in a country with a rapidly growing digital economy and landscape, platforms such as Facebook, Instagram, Twitter, TikTok, and Threads play a major role in influencing consumer purchasing behaviour. Social media marketing impacts Malaysian consumers through a variety of mechanisms. Customers' opinions of brands and products are greatly influenced by UGC, while FGC has a direct impact on customer intention and purchasing decisions. This includes advertising and commercial videos created by companies. Huete-Alcocer (2017) found that eWOM is one of the influential informal media among users that will impact purchasing behaviour. Such effects can be seen by the comments and recommendations that are exchanged in the comment section.

Three sub-dimensions are used to analyse consumer purchasing behaviour, such as brand perception, product selection, and dynamic pricing. Based on Godey et al. (2016), they concluded there is a significant positive effect on brand equity, brand image, brand awareness and loyalty from social media marketing. Brand perception involves how social media material influences consumers' views and opinions of apparel brands. Meanwhile, product selection focuses on how social media influences consumer selections among various apparel options. Based on the observational study from Barrera-Verdugo and Villarroel-Villarroel (2022), product selection characteristics, such as quality, have a significant impact on sustainable clothing purchases and post-buy behaviours, with different effects on men and the elderly.

In a nutshell, this research offers a valuable insight into how social media marketing influences consumer purchasing behaviour in the Malaysian apparel industry. In short, by investigating the roles of UGC, FGC, and eWOM and the impact on brand perception, product selection, and pricing of the product. Lastly, this research aims to equip current or future business leaders with the knowledge to enhance their social media marketing strategies effectively. Garment costing is used for a variety of purposes.

METHODOLOGY

Theoretical Framework

Fig 1 identified the theoretical framework, which consists of three independent variables, which are UGC, FGC, and eWOM.

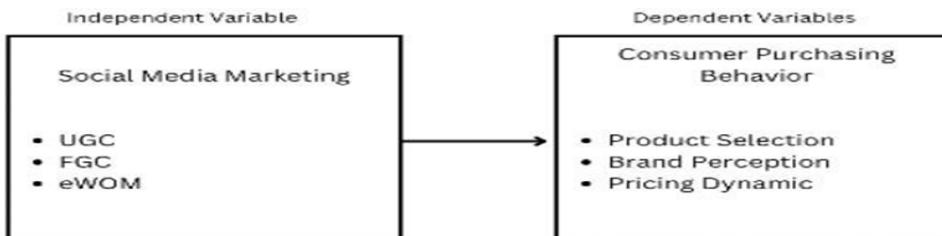


Fig 1 The Theoretical Framework

A theoretical framework is one of the structures that holds and supports research undertaken. It is known as a conceptual model that illustrates the creation of logical relationships between factors that have been identified as problematic factors. Besides that, this theory explains the relationship between the variables that are important to the dynamic of the situation being investigated. Additionally, Sekaran (2003) states that the dependent variable is the main interest of the variables in finding a way to solve the problem in this research. Last but not least, according to the theoretical framework, independent variables have a relationship with the impact of social media marketing on Malaysia's consumer purchasing behaviour.

Population

As the research aim is to identify the influence of social media marketing on Malaysian consumers' purchasing behaviour, this study set the target population to social media users in Malaysia. Nowadays, many social media users are exposed to the use of the internet; thus, many of them tend to experience buying online from various types of brands and companies. In addition, the users who are always buying online must have their perceptions and opinions about the products and the brands.

Sampling Techniques and size

First, this research used non-probability sampling. If the answer is taken inaccurately, the results are found useless and the consumers are selected from the population randomly. Sampling methods can be classified as either probability or non-probability. Meanwhile, in this study, researchers are using sampling due to the inexpensive cost and less time incurred in obtaining data. Finally, this research has been used for convenience sampling, as the information was gained from random social media users. The random social media users who give corporations will answer the questionnaire given through Google Forms. The questionnaire is used to explain the purpose of the research, and it allows researchers to obtain feedback from the sample in a short period of time. 'Sampling size' refers to the number of elements to be included in the study, while according to Krejcie and Morgan (1970), the 'sample size' is the number of respondents included in the research. However, 30 responses, or less than 50 responses, were categorised as adequate to be sampled. The survey was conducted by online platforms through Google Forms, and the respondents come from males and females who are students or working people from various institutions and organisations in either the government or the private sector. Furthermore, this study also collects data from every different age, as the experience from the consumers might be different. Thus, this is to ensure that the data performed have no biases.

Data Collection Method

The objective of data collection is to learn how to obtain and gain information about research. Sekaran and Bougie (2013) suggest that primary and secondary sources can provide valuable data collection methods. This study employs both primary and secondary data collection methods.

In this research, we collected primary data by distributing questionnaires to respondents who willingly provided answers. The questions are being asked to the responses regarding the issues, and the results are evaluated by researchers. Moreover, the data obtained is usually from the experiences and opinions of Malaysians who have experienced online shopping and who are actively using social media. The questionnaire conducted by the researcher has two languages that include Malay and English to facilitate respondents answering the questions. The primary source collected is by way of questionnaire. The questionnaire design covers the independent variables and dependent variables. The questionnaire was distributed to 250 respondents of a variety of ages using social media.

RESULTS AND ANALYSIS

Data Screening, Data preliminary Analysis, and Response Rate

Data screening is important in multivariate analysis because it allows the researchers to identify any potential assumption breaches in the data analysis procedures (Samuel, 2007). In this study, Malaysian consumers of different ages were sent questions by using a Google form. A total of 225 questionnaires were received, with

219 of them being usable, for a response rate of 87.6 per cent. This ratio is seen as a reasonable rate for moving on with the investigation (Sekaran, 2006). Table 1 displays the response rate.

Table 1 Response Rate in Percentage

Response	Frequency	Percentage
Number of distributed questionnaires	250	100%
Total returned questionnaires	225	90%
Useable and completed questionnaires	219	87.6%
Response rate		87.6%

Reliability Results

As per Table 2, Cronbach's alpha had reliability coefficients that were over the minimum recognised dependability of >0.60 . As a result, all the measures in this study have acceptable internal consistency and are regarded as very dependable. Other than that, the results indicate that the Cronbach's Alpha for the dependent and independent variables are in the range of 0.6 to more than 0.8, with the lowest at 0.622. On that note, the highest Cronbach's Alpha is Purchase Behaviour with 0.819, followed by FGC with a Cronbach's Alpha of 0.659. Lastly, the Cronbach's alpha value for eWOM is 0.657. These indicate that UGC, FGC, and eWOM in terms of reliability are acceptable. Therefore, based on the results above, all the items in the variables are appropriate and reliable for this research. As a result, all variables have met Sekaran's specified minimum acceptable level (2000).

Table 2 Cronbach' Alpha for Variables

Variables	No of items	Cronbach's Alpha	Interpretation
Purchase Behavior	6	0.819	Very Good
UGC	3	0.622	Acceptable
FGC	3	0.659	Acceptable
eWOM	3	0.657	Acceptable

Frequency Analysis

Frequency analysis is conducted in most studies to determine the respondents' demographic profile. Therefore, in this study, the researcher uses frequency analysis to determine the demographics of the respondents, such as gender, age, occupation, and income level, and also a few questions on social media experiences and how the variables (UGC, FGC, and eWOM) impact their purchasing behaviour. These data sets determine the respondents' identity and background as well. Understanding the background of data given by the respondents to the results and findings of this research is very crucial. Frequency analysis is a fundamental statistical method used to summarise and interpret the distribution of categorical variables, such as respondents' gender or age group, as shown in Tables 3 and 4.

Table 3 Percentage of Respondents' Gender

Gender	Frequency	Percentage (%)
Female	110	50.2
Male	109	49.8

In the context of gender distribution, for example, a frequency analysis reveals that the sample consists of 110 females, accounting for 50.2% of the total respondents, and 109 males, representing 49.8%. This indicates a nearly equal gender split among the respondents. Frequency analysis helps identify patterns or imbalances in demographic characteristics, providing a basis for further statistical testing or research. The importance of such analysis lies in its ability to provide a clear, easily interpretable overview of the data, which is crucial for making informed decisions or drawing conclusions based on empirical evidence (Green & Salkind, 2014).

Table 4 Percentage of Respondents' Age

AGE (YEARS OLD)	FREQUENCY	PERCENTAGE (%)
BELOW 20	31	14.2
20 - 29	67	30.6
30 - 39	51	23.3
40 - 49	44	20.1
50 AND ABOVE	26	11.9
TOTAL	219	100.0

Table 5 Percentage of Respondents' Occupation

OCCUPATION	FREQUENCY	PERCENTAGE (%)
PUBLIC SECTOR	30	13.7
PRIVATE SECTOR	66	30.1
SELF-EMPLOYED	57	26.0
STUDENT	47	21.5
RETIRED/HOMEMAKER	19	8.7
TOTAL	219	100.0

Table 6 Percentage of Respondents' Income Level

Income Level	Frequency	Percentage (%)
Below RM1500	26	11.9
RM1501 - RM3500	54	24.7
RM3501 - RM6500	60	27.4
RM6501 - RM9500	59	26.9
Above RM9501	20	9.1
Total	219	100.0

Social Media Experiences: Frequency of Surfing

Table 7 shows that respondents were grouped according to their duration of social media usage. The largest group consists of 61 individuals (27.9%) who spend 11-15 hours per week on social media, followed by 53 respondents (24.2%) who spend 6-10 hours, and 49 respondents (22.4%) who spend 2-5 hours. A smaller portion of respondents, 36 individuals (16.4%), spend less than 1 hour per week on social media, and 20 respondents (9.1%) reported spending 16 or more hours.

Table 7 Duration on Surfing Social Media

Duration	Frequency	Percentage (%)
Less than 1 hour	36	16.4
2 - 5 hours	49	22.4
6 - 10 hours	53	24.2
11 - 15 hours	61	27.9
16 hours and above	20	9.1
Total	219	100.0

The results show that most respondents spend a significant amount of time on social media, with a notable proportion spending more than 6 hours weekly. Frequency analysis helps to identify patterns in behaviour and provides valuable insights into how different groups of people engage with social media. By presenting these data in terms of both frequency and percentage, researchers can more easily interpret the social media usage patterns within the sample, informing further research or decision-making (Creswell, 2014).

Social Media Experiences: Frequency of Time Surfing

Table 8 examines patterns and distributions in categorical data, such as the time frame in which respondents in Malaysia engage with social media. In this analysis, respondents were grouped based on the time of day they most frequently access social media. The largest group consists of 81 individuals (37.0%) who use social media during the evening (6:00 PM - 12:00 AM), followed by 71 respondents (32.4%) who access social media in the afternoon (12:00 PM - 6:00 PM). A smaller portion of respondents, 36 individuals (16.4%), reported using social media late at night (12:00 AM - 6:00 AM), and 31 respondents (14.2%) engage with social media in the morning (6:00 AM - 12:00 PM).

Table 8 Time frame of Malaysian Surfing Social Media

Time frame	Frequency	Percentage (%)
Morning (6:00 AM - 12:00 PM)	31	14.2
Afternoon (12:00PM - 6:00 PM)	71	32.4
Evening (6:00PM - 12:00 AM)	81	37.0
Late Night (12:00 AM - 6:00 AM)	36	16.4

These findings suggest that most respondents prefer to use social media during the evening and afternoon hours, possibly due to work or study schedules. Frequency analysis helps researchers identify trends in daily behaviours, offering valuable insights allowing them to understand active online. By presenting these data in terms of

frequencies and percentages, it becomes easier to draw meaningful conclusions and further investigate factors that influence social media usage patterns (Bryman, 2016).

Pearson's Correlation Testing

First and foremost, to analyse the relationship between dependent and independent variables, a Pearson correlation analysis was conducted. This statistical method evaluates whether the relationships between variables, as hypothesised in the previous chapter, are significant or not. In a study from Sweet and Grace-Martin (2008), correlation measures the “net strength” of the relationship between two continuous variables. The correlation coefficient (r) indicates the nature and strength of the relationship: an R -value of 1.0 signifies a perfect positive linear relationship, while an R -value of -1.0 indicates a perfect negative or inverse relationship. The magnitude of the R -value reflects the strength of the association, as noted by Coakes (2005), while the sign (+ or -) reveals its direction. Moreover, to interpret the results of the correlation analysis and understand the Pearson correlation relationship between the dependent and independent variables, the researcher referred to the guidelines provided by Sundram et al. (2016). Table 9 illustrates Pearson Correlation's relationship between Social Media Marketing (UGC, FGC, and eWOM) and consumer purchasing behaviour.

Table 9 Pearson Correlations

		Purchase Behavior	UGC	FGC	eWOM
Purchase Behavior	Pearson Correlation	1	.719**	.742**	.743**
	Sig. (2-tailed)	.000	<.001	<.001	<.001

The Pearson correlation coefficient analysis presented in Table 9 provides insight into the relationships between different variables related to consumer behaviour. The analysis examines the correlation between purchase behaviour and three independent factors: user-generated content (UGC), firm-generated content (FGC), and electronic word-of-mouth (eWOM). The Pearson correlation coefficient values indicate the strength and direction of these relationships. First, the correlation between purchase behaviour and UGC is 0.719, which is considered a strong positive correlation. This suggests that as exposure to user-generated content increases, there is a significant tendency for purchase behaviour to also increase. This relationship is statistically significant, with a p -value of less than 0.001 (sig. $< .001$), meaning there is very strong evidence to suggest that the correlation is not due to random chance.

Similarly, the correlation between purchase behaviour and FGC is 0.742, indicating a strong positive relationship. As with the UGC variable, as FGC increases, there is a noticeable increase in purchase behaviour. The p -value for this correlation is also less than 0.001 (sig. $< .001$), further confirming the strength and reliability of this relationship.

Finally, the correlation between purchase behaviour and eWOM is 0.743, reflecting a similarly strong positive correlation. This means that the more respondents engage with electronic word-of-mouth, the more likely they are to make purchases. Again, the p -value of less than 0.001 indicates that this correlation is highly statistically significant.

In summary, the Pearson correlation coefficients suggest that all three independent variables—UGC, FGC, and eWOM—have strong positive correlations with purchase behaviour, indicating that as exposure to these factors increases, so does the likelihood of purchase behaviour. The high statistical significance (p -value $< .001$) of these relationships underscores the robustness of the findings, providing strong evidence for the influence of content type and online word-of-mouth on consumer purchasing decisions.

Coefficient of Determination (R^2) and Adjusted R^2

Table 10 presents the model summary for the multiple regression analysis, offering key statistical values that help assess the fit and accuracy of the regression model. The R value of 0.818 indicates a strong positive

correlation between the independent variables and the dependent variable. This suggests that there is a significant relationship between the predictors included in the model and the outcome, with a high proportion of the variance in the dependent variable being explained by the independent variables.

The R-squared value of 0.669 further reinforces this finding, showing that approximately 66.9% of the variance in the dependent variable is accounted for by the model. This is considered a good fit, as a higher R-squared value typically indicates that the model can explain a substantial portion of the variation in the outcome. In other words, the independent variables included in the model have a strong explanatory power with respect to the dependent variable, which is a positive outcome for predictive accuracy. The adjusted R-squared value of 0.665 is a slightly adjusted version of the R-squared value, accounting for the number of predictors in the model. This adjustment helps ensure that the model remains valid even when multiple independent variables are included by penalising the inclusion of non-contributing predictors. The small difference between the R-squared and adjusted R-squared values suggests that the model is well specified and that the added predictors are meaningful contributors to explaining the dependent variable.

Finally, the Standard Error of the Estimate (SEE) value of 2.96445 represents the average distance between the observed values and the predicted values from the regression model. A lower SEE indicates a better fit, as it shows that the predicted values are close to the actual values. While this value provides an indication of model accuracy, its interpretation should be considered in the context of the scale of the dependent variable. Overall, these statistical results suggest that the model provides a robust and reliable estimation of the relationship between the independent and dependent variables, with a high degree of predictive power and minimal error.

Table 10 Model Summary

Model	R	R Square	Adjusted R square	Std. Error of the Estimate
	.818 ^a	.669	.665	2.96445

F-test (ANOVA)

According to Table 11, the Sum of Squares values represent the variation in the dependent variable that is attributable to different sources. The Regression Sum of Squares (3822.293) quantifies the variation explained by the independent variables in the model, while the Residual Sum of Squares (1889.415) reflects the unexplained variation or error in the model.

Table 11 Anova

Model		Sum of Squares	df	Mean Square	F	Sig.
	Regression	3822.293	3	1274.098	144.982	<.001b
	Residual	1889.415	215	8.788		
	Total	5711.708	218			

The total variation in the dependent variable is represented by the Total Sum of Squares (5711.708), which is the sum of the regression and residual sums of squares. The large proportion of the total variance explained by the regression model suggests that the independent variables are significantly related to the dependent variable.

The mean square values are calculated by dividing the sum of squares by the respective degrees of freedom (df). The df for the regression model is 3 (since there are three predictors: eWOM, FGC, and UGC), and for the residual, it is 215. The mean square for the regression is 1274.098, while the mean square for the residual is 8.788. These values are then used to calculate the F-statistics, which in this case is 144.982. The F-statistic tests whether the regression model provides a better fit to the data than a model with no predictors (i.e., a constant model). Higher F-statistics indicate a more significant model.

The p-value associated with the F-statistics is reported as $< .001$, which is well below the conventional significance level of 0.05. This indicates that the overall regression model is statistically significant, meaning that at least one of the independent variables (eWOM, FGC, or UGC) significantly contributes to explaining the variation in the dependent variable. In other words, the null hypothesis that all regression coefficients are equal to zero can be rejected, and we can confidently conclude that the model is a good fit for the data.

Hypothesis Testing

The main purpose of this study is to determine whether the developed hypotheses are supported or not supported. Hence, Table 12 summarises the findings of the analysis:

Table 12 Hypothesis Testing Results

Label	Hypothesis	Results
H1	There is a relationship between UGC and Malaysia's consumer purchasing behavior.	Supported
H2	There is a relationship between FGC and Malaysia's consumer purchasing behavior.	Supported
H3	There is a relationship between eWOM and Malaysia's consumer purchasing behavior.	Supported

The results of the hypothesis testing confirm the existence of significant relationships between UGC, FGC, eWOM, and Malaysia's consumer purchasing behaviour. All three hypotheses (H1, H2, and H3) were supported based on the statistical analysis.

First and foremost, H1 posited a relationship between UGC and consumer purchasing behaviour; the unstandardised coefficient was 0.414, and the p-value was 0.002, which is less than the commonly used significance threshold of 0.05. This indicates a positive relationship between UGC and consumer purchasing behaviour, meaning that as engagement with UGC increases, so does the likelihood of increased purchase behaviour. The result supports the hypothesis that UGC influences consumer decisions.

Moreover, H2 tested whether there is a relationship between FGC and consumer purchasing behaviour. The unstandardised coefficient for FGC was 0.672, with a highly significant p-value of < 0.001 , which is well below the threshold of 0.05. This result suggests a strong positive relationship between FGC and purchasing behaviour, with FGC being a major driver of consumer decisions. The p-value further supports the hypothesis, showing that FGC significantly influences consumer purchasing behaviour.

Last but not least, H3 examined the relationship between eWOM and consumer purchasing behaviour. With an unstandardised coefficient of 0.630 and a p-value of < 0.001 , the results indicate a significant positive relationship between eWOM and purchasing behaviour. As eWOM increases, it appears to positively influence consumer decisions, further validating the hypothesis.

CONCLUSIONS

This study underscores the significant impact of UGC, FGC, and eWOM on Malaysian consumers' purchasing behaviour, with brand trust serving as a critical moderator. The findings highlight the need for businesses to adopt a holistic approach to digital content and trust-building strategies. Addressing the limitations and pursuing the proposed research directions will advance both academic knowledge and practical applications in digital marketing. Ultimately, effective digital content utilisation benefits businesses while empowering consumers to make

ACKNOWLEDGMENT

The authors would like to express their sincere gratitude to all respondents who participated in this study for their valuable time and cooperation. Appreciation is also extended to Universiti Teknologi MARA for the

support and resources provided throughout the completion of this research.

REFERENCES

1. Barrera-Verdugo, C., & Villarroel-Villarroel, J. D. (2022). Product selection attributes influencing sustainable clothing purchase and post-purchase behavior. *Sustainability*, 14(3), 1–15. <https://doi.org/10.3390/su14031826>
2. Bryman, A. (2016). *Social research methods* (5th ed.). Oxford University Press.
3. Budree, A., Robertson, J., & Shum, M. (2021). Social media marketing, impulsive buying, and brand loyalty: The mediating role of social media influencers. *Journal of Retailing and Consumer Services*, 63, 102702. <https://doi.org/10.1016/j.jretconser.2021.102702>
4. Coakes, S. J. (2005). *SPSS: Analysis without anguish* (Version 12.0). John Wiley & Sons.
5. Creswell, J. W. (2014). *Research design: Qualitative, quantitative, and mixed methods approaches* (4th ed.). SAGE Publications.
6. Dhingra, S. (2023). The impact of social media marketing on consumer purchasing behavior. *International Journal of Marketing Studies*, 15(2), 45–58. <https://doi.org/10.5539/ijms.v15n2p45>
7. Godey, B., Manthiou, A., Pederzoli, D., Rokka, J., Aiello, G., Donvito, R., & Singh, R. (2016). Social media marketing efforts of luxury brands: Influence on brand equity and consumer behavior. *Journal of Business Research*, 69(12), 5833–5841. <https://doi.org/10.1016/j.jbusres.2016.04.181>
8. Green, S. B., & Salkind, N. J. (2014). *Using SPSS for Windows and Macintosh: Analyzing and understanding data* (7th ed.). Pearson.
9. Hassan, S., Nadzim, S. Z. A., & Shiratuddin, N. (2015). Strategic use of social media for small business based on the AIDA model. *Procedia – Social and Behavioral Sciences*, 172, 262–269. <https://doi.org/10.1016/j.sbspro.2015.01.363>
10. Huete-Alcocer, N. (2017). A literature review of word of mouth and electronic word of mouth: Implications for consumer behavior. *Frontiers in Psychology*, 8, 1256. <https://doi.org/10.3389/fpsyg.2017.01256>
11. Krejcie, R. V., & Morgan, D. W. (1970). Determining sample size for research activities. *Educational and Psychological Measurement*, 30(3), 607–610. <https://doi.org/10.1177/001316447003000308>
12. Kuzmanovska, A., & Pržo, L. (2021). The impact of COVID-19 on consumer purchasing behavior. *Economic Development*, 23(3), 89–102.
13. Lee, D., Hosanagar, K., & Nair, H. S. (2017). Advertising content and consumer engagement on social media: Evidence from Facebook. *Management Science*, 64(11), 5105–5131. <https://doi.org/10.1287/mnsc.2017.2902>
14. Nawi, N. C., Al Mamun, A., Nasir, N. A. M., & Muniady, R. (2021). Social media marketing activities and customer equity in fashion apparel brands. *Journal of Retailing and Consumer Services*, 63, 102689. <https://doi.org/10.1016/j.jretconser.2021.102689>
15. Rustemi, V., Baca, L., & Baca, A. (2021). Social media replacing traditional marketing: Impacts on consumer behavior. *Journal of Digital Marketing*, 5(1), 22–35.
16. Samuel, O. M. (2007). *Data screening and preliminary analysis in multivariate research*. McGraw-Hill.
17. Sekaran, U. (2000). *Research methods for business: A skill-building approach* (3rd ed.). John Wiley & Sons.
18. Sekaran, U. (2003). *Research methods for business: A skill-building approach* (4th ed.). John Wiley & Sons.
19. Sekaran, U. (2006). *Research methods for business* (5th ed.). John Wiley & Sons.
20. Sekaran, U., & Bougie, R. (2013). *Research methods for business: A skill-building approach* (6th ed.). John Wiley & Sons.
21. Sundram, V. P. K., Govindaraju, V. G. R. C., & Muthuveloo, R. (2016). Enterprise risk management and performance: Evidence from Malaysian firms. *International Journal of Business and Management*, 11(9), 227–241. <https://doi.org/10.5539/ijbm.v11n9p227>
22. Sweet, S. A., & Grace-Martin, K. (2008). *Data analysis with SPSS: A first course in applied statistics* (3rd ed.). Pearson.
23. Tafesse, W., & Wien, A. (2018). Implementing social media marketing strategically: An empirical

assessment. Journal of Marketing Management, 34(9–10), 732–749.
<https://doi.org/10.1080/0267257X.2018.1482367>