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ABSTRACT 

Global logistics networks face increasing volatility driven by geopolitical tensions, climate disruptions, demand 

variability, and operational uncertainty. Although artificial intelligence has improved predictive capabilities in 

logistics, classical and standalone learning models remain limited by data sparsity, non-stationarity, and 

scalability constraints. This study proposes a hybrid logistics intelligence framework that integrates time-series 

forecasting, synthetic data generation, and AI-based optimization. The framework is designed to enhance 

forecasting robustness and translate predictions into actionable operational decisions. A FedEx case study 

demonstrates how historical shipment data, real-time telemetry, and synthetically generated disruption scenarios 

can be jointly leveraged to improve demand forecasting, routing efficiency, and service reliability. Performance 

is evaluated across real, simulated, and hybrid datasets. Results show that the proposed approach consistently 

outperforms traditional statistical and machine-learning methods in accuracy, robustness, and operational 

scalability.  

Keywords: Logistics Optimization, Time Series Forecasting, Synthetic Data, Hybrid AI Algorithms, Supply 

Chain Intelligence, FedEx  

INTRODUCTION  

Modern logistics and supply chain systems operate amid pronounced uncertainty arising from demand volatility, 

capacity constraints, adverse weather, and evolving geopolitical and regulatory pressures. Large-scale logistics 

providers generate massive volumes of heterogeneous data from daily shipment operations, encompassing 

structured records, semi-structured transactions, and unstructured sensors, textual, and geospatial sources. 

Effectively leveraging this data for decision support is essential to achieving operational efficiency, resilience, 

and sustained competitiveness.  

Despite advances in artificial intelligence–driven logistics platforms, persistent challenges remain in anticipating 

sudden demand surges, optimizing routing decisions under uncertainty, and maintaining service-level 

agreements during rare but high-impact disruptions. Events such as pandemics, extreme weather, labour 

shortages, and policy shifts frequently invalidate assumptions underlying conventional decision-support 

systems. Traditional time-series forecasting methods, while effective in stable environments, are limited by 

assumptions of stationarity and are ill-suited to capturing nonlinear dynamics and rare “black-swan” events. 

Conversely, data-driven AI models, though expressive, often suffer from data sparsity, distributional bias, and 

limited generalization when disruptive events are underrepresented.  

Problem Statement  

This research addresses the absence of robust forecasting and optimization frameworks capable of supporting 

large-scale logistics operations under data scarcity and extreme uncertainty. The central research question is: 
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“How can logistics operators improve forecasting accuracy, operational robustness, and prescriptive 

optimization performance when historical data alone is insufficient to represent rare disruptions and complex 

demand dynamics?”  

To answer this question, the study examines the limitations of standalone forecasting models, evaluates the role 

of synthetic data generation in enhancing generalization, and assesses hybrid AI frameworks that integrate 

statistical forecasting, deep learning, and optimization heuristics. The objective is to develop a scalable and 

resilient logistics intelligence framework that supports predictive and prescriptive decision-making while 

maintaining service reliability under uncertainty.  

Related Work  

Logistics Forecasting under Uncertainty and Non-Stationarity  

Demand forecasting is a central component of logistics and supply chain management, yet it remains challenging 

due to non-stationarity, seasonality, and exogenous disruptions. Early studies primarily relied on statistical time 

series models such as ARIMA and exponential smoothing, which demonstrated effectiveness under stable 

demand patterns but degraded significantly in volatile environments and during regime shifts (Hyndman et al., 

2015; Carbonneau et al., 2008). As logistics networks expanded in scale and complexity, machine learning 

approaches gained attention for their ability to capture nonlinear dependencies across multiple time series 

(Carbonneau et al., 2008; Bandara et al., 2019).  

Deep learning models, including recurrent neural networks (RNNs) and long short-term memory (LSTM) 

networks, further improved forecasting accuracy by learning temporal dependencies directly from data (Sezer 

et al., 2020). Probabilistic deep forecasting approaches, such as DeepAR, introduce uncertainty-aware 

predictions, enabling logistics planners to reason about risk rather than relying solely on point estimates (Salinas 

et al., 2020). Nevertheless, recent evaluations indicate that these models remain sensitive to distributional shifts 

and often underperform when exposed to rare or extreme events not present in the training data (Benidis et al., 

2022).  

Transformer-based forecasting architectures have emerged as state-of-the-art for long-horizon and multivariate 

time-series prediction. Models such as Informer, AutoFormer, and Temporal Fusion Transformers (TFT) 

demonstrated substantial gains in capturing long-range dependencies and incorporating exogenous variables 

(Lim et al., 2021; Zhou et al., 2021; Wu et al., 2021). Despite these advances, multiple studies note that 

transformer-based models remain data-intensive and struggle to generalize under sparse, rare-event conditions 

common in logistics systems (Benidis et al., 2022; Nie et al., 2022).  

“Relevance to the problem statement: These works collectively highlight that even advanced forecasting models 

rely heavily on representative historical data and fail to anticipate rare yet high-impact disruptions reliably.”  

Rare Events, Data Sparsity, and Forecasting Robustness  

Rare disruptions such as pandemics, extreme weather, labour shortages, and geopolitical shocks play a 

disproportionate role in logistics performance yet occur infrequently, resulting in limited historical samples. 

Studies on supply chain risk management emphasize that traditional forecasting pipelines are ill-suited for 

modeling such low-frequency, high-impact events (Ivanov et al., 2019; Hosseini et al., 2019). During the 

COVID-19 pandemic, multiple empirical analyses demonstrated that data-driven forecasting systems trained on 

pre-pandemic data failed to adapt rapidly to unprecedented shifts in demand (Ivanov & Dolgui, 2020; Queiroz 

et al., 2020).  

Recent research identifies data sparsity and class imbalance as fundamental barriers to robust learning in logistics 

forecasting. Benidis et al. (2022) and Seaman et al. (2022) show that even probabilistic and ensemble models 

tend to underestimate tail risks when extreme events are underrepresented. These findings motivate exploring 

data augmentation and scenario-based learning techniques to enhance robustness.  

“Relevance to problem statement: This literature directly motivates the need for approaches that improve 

forecasting accuracy and robustness when historical data alone is insufficient.”  



Page 70 
www.rsisinternational.org 

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)  

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume X Issue XIV January 2026 | Special Issue on Management 

 

 

 

 

  

  

 

 

 

Synthetic Time-Series Data Generation for Logistics Applications  

Synthetic data generation has gained increasing attention over the past decade as a strategy to address data 

scarcity, imbalance, and privacy constraints. Early simulation-based approaches were used in supply chain 

modeling to evaluate policies under hypothetical scenarios (Banks et al., 2014). More recently, generative 

models, particularly Generative Adversarial Networks (GANs), have enabled realistic synthesis of time-series 

data while preserving temporal dependencies.  

TimeGAN represents a seminal contribution, demonstrating that adversarially trained networks can generate 

high-fidelity synthetic time series suitable for downstream forecasting tasks (Yoon et al., 2019). Subsequent 

studies extended GAN-based and variational approaches for industrial and operational time series, showing 

improved forecasting accuracy and generalization when synthetic samples are used for augmentation (Kannan 

et al., 2022; Chatterjee et al., 2023; Klopries et al., 2024). In supply chain contexts, synthetic data has been 

proposed as a mechanism for modeling extreme demand surges, stress-testing planning algorithms, and enabling 

safer experimentation without exposing sensitive operational data (Long et al., 2025).  

“Relevance to problem statement: These works support the role of synthetic data generation in enhancing model 

generalization and representing rare disruption scenarios missing from historical records.”  

Predictive–Prescriptive Integration and Hybrid AI Optimization  

While forecasting provides anticipatory insight, logistics performance ultimately depends on prescriptive 

decisions such as routing, scheduling, and capacity allocation. Classical optimization approaches for vehicle 

routing and logistics planning are computationally expensive and struggle with dynamic uncertainty (Toth & 

Vigo, 2014). Over the past decade, hybrid approaches combining machine learning with operations research 

have gained traction.  

Learning-assisted optimization and reinforcement learning methods have been applied to dynamic vehicle 

routing problems, demonstrating improved adaptability to stochastic demand and real-time information (Nazari 

et al., 2018; Bogyrbayeva et al., 2022). However, purely learning-based solvers often face feasibility and 

scalability challenges in large logistics networks. Consequently, recent surveys advocate hybrid frameworks that 

integrate forecasting models, synthetic scenario generation, and optimization heuristics to support robust 

predictive–prescriptive decision-making (Bertsimas & Kallus, 2020; Xu et al., 2025).  

“Relevance to problem statement: This body of work motivates hybrid AI architectures that combine statistical 

forecasting, deep learning, synthetic data, and optimization heuristics to improve end-to-end logistics 

performance.”  

Overall Methodological Framework  

This study adopts a hybrid predictive–prescriptive methodology that integrates time-series forecasting, synthetic 

data generation, and AI-assisted optimization to address demand uncertainty, rare disruptions, and operational 

decision-making challenges in large-scale logistics systems. The methodology is designed to (i) improve 

forecasting accuracy under non-stationary conditions, (ii) enhance model robustness through data augmentation, 

and (iii) translate predictions into feasible operational decisions.  

Let the observed historical logistics dataset be defined as  

  𝒟𝑟 = {(𝑥𝑡, 𝑦𝑡)} 𝑇𝑡=1 (1)  

where 𝑥𝑡   denotes the vector of exogenous and operational covariates (e.g., time index, route attributes, weather 

indicators, hub status), and 𝑦𝑡 represents the target logistics variable, such as shipment volume or delivery lead 

time, at time 𝑡. The proposed hybrid framework integrates statistical forecasting, deep learning, synthetic data 

augmentation, and prescriptive optimization to address uncertainty and the sparsity of rare events.  

Hybrid Forecasting Model  

 a)  Statistical Time-Series Component  

A classical statistical forecasting model (e.g., SARIMA) is employed to extract baseline trend and seasonal  
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components:  

  𝑦 𝑡(𝑆) = 𝑓𝑆 (𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑝; 𝜃𝑆) (2)  

where 𝑓𝑆(⋅) denotes the statistical forecasting function and 𝜃𝑆represents model parameters.  

 b)  Deep Learning Forecasting Component  

A deep learning model (e.g., LSTM or Transformer-based architecture) is trained to capture nonlinear temporal 

dependencies and multivariate interactions:  

  𝑦 𝑡(𝐷) = 𝑓𝐷 (𝑥1: 𝑡; 𝜃𝐷) (3)  

where 𝑓𝐷 (⋅) denotes the deep forecasting function, and 𝜃𝐷its learned parameters.  

 c) Forecast Fusion  

To improve robustness and reduce model bias, the final forecast is obtained through weighted ensemble fusion:  

  𝑦 𝑡  (4)  

This fusion strategy balances interpretability and nonlinear expressiveness.  

Synthetic Data Generation for Rare Events  

To mitigate data sparsity associated with rare disruptions, synthetic time-series samples are generated using a 

generative model 𝐺(⋅), such as a conditional GAN:  

  𝑦 1:𝑇 = 𝐺(𝑧, 𝑐) (5)  

where 𝑧 ∼ 𝒩(0, 𝐼)is a latent noise vector and 𝑐denotes conditioning variables (e.g., disruption type, region, 

season).  

The augmented training dataset is defined as  

  𝒟𝑎 = 𝒟𝑟 ∪ 𝒟𝑠 (6)  

where 𝒟𝑠Contains synthetic disruption scenarios. Forecasting models are retrained on 𝒟𝑎to enhance 

generalization.  

Prescriptive Optimization Layer: Let    

• 𝑉 Denote the set of vehicles,   

• 𝑁the set of delivery nodes,  

• 𝑐𝑖𝑗The transportation cost from the node 𝑖 to node 𝑗,  
• 𝑞𝑖 The demand at the node 𝑖, and ▪ 𝐶𝑣the capacity of the vehicle 𝑣.  

Objective Function  

The logistics optimization objective is to minimize total transportation cost:  

                                          

where 𝑥𝑖𝑗𝑣 is a binary decision variable indicating whether the vehicle 𝑣 travels from node 𝑖to node 𝑗.  

Constraints  

Demand satisfaction constraint:  
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Vehicle capacity constraint:  

                                        

Service-level (time window) constraint:  

                                               𝑡𝑖𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ≤ 𝑡𝑖𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒, ∀𝑖 ∈ 𝑁        (10)  

  

Forecasts from Equation (4) serve as inputs to the optimization model, enabling dynamic routing and scheduling 

under uncertainty.  

A Case Study with FedEx-Specific Instantiation  

For the FedEx case study:  

FedEx operates one of the world’s largest express logistics networks, handling time-sensitive shipments across 

air, ground, and last-mile delivery channels. Peak seasons (e.g., holidays) and disruption events (e.g., weather 

or labour shortages) pose significant challenges for forecasting and routing.  

• 𝑦𝑡: daily shipment volume per hub or service zone  

• 𝑥𝑡: weather indicators, region, service class (Express/Ground), seasonality  

• 𝑉: FedEx fleet (aircraft, trucks, last-mile vans)  

• 𝑁: hubs, sort centres, delivery zones  

Key Performance Indicators (KPIs):  

• Mean Absolute Percentage Error (MAPE)  

• SLA compliance rate  

• On-time delivery ratio  

• Total transportation cost  

RESULTS AND DISCUSSION  

Experimental Setup in Brief  

The proposed hybrid framework was evaluated using three datasets:  

• D₁ (Historical only): Real logistics time-series data  

• D₂ (Historical + Deep Learning): Hybrid statistical + deep model without synthetic augmentation  

• D₃ (Proposed Hybrid): Historical + synthetic augmentation + hybrid forecasting + prescriptive 

optimization  
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Performance was evaluated across predictive accuracy, service reliability, operational efficiency, and 

sustainability metrics.  

Quantitative Results  

Forecast Accuracy (MAPE) :  Absolute Percentage Error (MAPE) was computed as:  

                                        

Table 1: Absolute Percentage Error  

Model  MAPE (%)  

Historical Baseline  12.5  

Deep Learning (LSTM/Transformer)  8.9  

Proposed Hybrid Framework  4.9  

  

The hybrid framework reduces MAPE by approximately 45% relative to deep learning alone and 64% relative 

to statistical baselines. Synthetic data augmentation improves robustness under demand spikes, validating its 

role in addressing rare-event sparsity.  

SLA Compliance Rate  

SLA compliance rate is defined as:  

                           

Table 2: SLA Compliance rate 

Model  SLA Compliance (%)  

Historical Baseline  91.2  

Deep Learning (LSTM/Transformer)  94.6  

Proposed Hybrid Framework  97.9  

 

The improvement in SLA compliance reflects the benefit of integrating predictive uncertainty into prescriptive 

decisions. The optimization layer proactively reallocates capacity during forecasted stress conditions, preventing 

SLA violations.  

On-Time Delivery Ratio  

On-time delivery ratio is defined as:  

                                     

Table 3: On-Time Delivery Ratio 

Model  On-Time Delivery (%)  

Historical Planning  92.4  
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Forecast-driven Planning  95.1  

Proposed Hybrid Framework  98.2  

   

The proposed framework achieves near-consistent on-time performance even during peak and disruption 

scenarios. This demonstrates the effectiveness of combining synthetic stress scenarios with optimization-aware 

forecasting.  

Total Transportation Cost  

Total transportation cost was computed using the objective in Equation (7):  

                                

Table 4: Transportation Cost Reduction 

Model  Relative Cost Reduction  

Baseline Routing  —  

Forecast-aware Routing  7.8%  

Proposed Hybrid Framework  14.6%  

 

Cost savings arise from improved route consolidation, reduced re-routing penalties, and better anticipation of 

capacity constraints. The hybrid model enables proactive rather than reactive logistics planning.  

Statistical Significance Tests  

The use of paired t-tests and Wilcoxon signed-rank tests in this study serves a critical methodological purpose. 

Table 4 rigorously assesses whether the observed performance improvements of the proposed hybrid framework 

are systematic, reproducible, and not attributable to random variation across evaluation periods.  

Table 4: Statistical Significance Tests  

Metric  Comparison  
Mean  

Improvement  t-stat  t-p: fmt  wilcoxon_p_fmt  Cohen_dz  

MAPE  Full vs Baseline  9.17  -40.101  1.60E-44  1.60E-11  -5.177  

MAPE  Full vs No Synthetic  2.245  -13.063  4.60E-19  5.40E-11  -1.686  

MAPE  Full vs No Optimization  0.841  -4.767  1.30E-05  3.90E-05  -0.615  

SLA  Full vs Baseline  6.717  29.72  3.40E-37  1.60E-11  3.837  

SLA  Full vs No Synthetic  1.747  10.108  1.70E-14  3.90E-10  1.305  

SLA  Full vs No Optimization  2.434  14.424  5.30E-21  3.60E-11  1.862  

OTD  Full vs Baseline  6.142  28.872  1.70E-36  1.60E-11  3.727  

OTD  Full vs No Synthetic  1.742  10.098  1.80E-14  3.20E-10  1.304  

OTD  Full vs No Optimization  2.433  14.511  4.00E-21  2.80E-11  1.873  
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T-Cost  Full vs Baseline  14.29  -21.344  2.00E-29  1.60E-11  -2.755  

T-Cost  Full vs No Synthetic  6.798  -12.815  1.10E-18  6.90E-11  -1.654  

T-Cost  Full vs No Optimization  10.918  -19.293  3.60E-27  1.60E-11  -2.491  

 

a) Paired t-test: The paired t-test assesses whether mean performance differences between model variants, 

evaluated over identical operational periods, differ significantly from zero. The consistently small p-values 

(often < 10⁻¹⁴) confirm that the Full hybrid framework outperforms baseline and ablated variants across 

accuracy, reliability, cost, and emissions, indicating structural, not incidental, performance gains.  

b) Wilcoxon signed-rank test: Given potential non-normality in logistics performance metrics, the Wilcoxon 

signed-rank test provides a distribution-free validation. Its agreement with the paired t-test demonstrates 

robustness of the results to outliers and distributional assumptions, strengthening the reliability of the 

conclusions.  

c) Effect sizes: The uniformly large Cohen’s dz values (frequently > 1.0) indicate that observed improvements 

are not only statistically significant but also operationally meaningful, underscoring their practical relevance 

in real-world logistics systems.  

“Accordingly, statistical significance tests confirm that the proposed hybrid AI–time series–synthetic data 

framework yields robust, non-random, and operationally meaningful improvements across accuracy, service 

reliability, cost efficiency, and environmental impact. These results demonstrate that resilient logistics 

intelligence requires the joint integration of synthetic data augmentation and prescriptive optimization, 

validating the framework as a scalable solution for next-generation logistics systems.”  

Unified Performance across Predictive and Prescriptive Metrics  

The unified performance curve in Figure 1 presents a normalized comparison (1 = best) of four logistics KPIs: 

forecast accuracy (MAPE), SLA compliance, on-time delivery, and transportation cost across successive model 

variants.   

 

Figure 1: Unified Performance across Predictive and Prescriptive Metrics 

This normalization facilitates direct comparison of heterogeneous metrics within a single framework, clearly 

illustrating performance gains attributable to architectural enhancements.  

Key Observations: The Baseline model underperforms across all metrics, highlighting the limitations of 

conventional forecasting and planning approaches. Hybrid forecasting without synthetic augmentation improves 

service reliability and cost outcomes. Still, it exhibits reduced robustness to disruption in predictive accuracy, 

while the No-Optimization variant achieves improved accuracy without corresponding economic efficiency 
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gains. In contrast, the Full Hybrid framework consistently dominates across all dimensions, demonstrating 

balanced and monotonic improvements from prediction to prescription. These results confirm that predictive 

accuracy, service reliability, and cost efficiency improve jointly only under full integration, with synthetic data 

enhancing forecast robustness and optimization translating predictions into tangible economic benefits.  

Multi-Panel Performance Comparison  

Figure 2 (a–d) compares forecasting accuracy, service reliability, operational timeliness, and cost efficiency 

across ablated variants and the Full Hybrid framework. 

 

Figure 2: Multi-Panel Performance Comparison 

a) MAPE (↓): Error bars show reduced variance and the lowest mean for the Full Hybrid model, indicating 

superior and more stable forecast accuracy. This supports the hypothesis that synthetic augmentation 

improves robustness under demand uncertainty.  

b) SLA compliance (↑) and c) On-time delivery (↑): The Full Hybrid model achieves the highest means with 

tighter dispersion, confirming that forecast robustness coupled with decision optimization translates into 

consistent service reliability.  

d)    Transportation cost index (↓): The most considerable mean reduction occurs only with the optimization 

layer present, demonstrating that prescriptive optimization is the primary driver of economic gains, 

beyond predictive accuracy alone.  

Inference: The non-overlapping or minimally overlapping error bars between the Full Hybrid and ablated 

variants across panels indicate statistically and operationally meaningful improvements. Figure 2 visually 

corroborates the ablation and significance tests: synthetic data enhances predictive stability, while optimization 

converts predictions into tangible cost and service benefits.  

Future Scope of Work  

Future work will extend the proposed framework by incorporating real-time adaptive learning, enabling 

continuous model updates in response to streaming operational data and evolving disruption patterns. The 

integration of probabilistic and robust optimization techniques will further enhance decision-making under 

extreme uncertainty. Additionally, extending the framework to include multi-objective sustainability 

optimization and evaluating its applicability across multi-modal and cross-border logistics networks will 

strengthen its generalizability and practical impact.  
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CONCLUSIONS  

This study presented a hybrid AI–time-series–synthetic-data framework for predictive and prescriptive logistics 

optimization and validated its effectiveness through comprehensive statistical and ablation analyses. Results 

demonstrate that synthetic data augmentation improves forecasting robustness, while prescriptive optimization 

is essential for achieving economic and service-level gains. Together, these components establish a scalable, 

statistically validated solution for resilient, next-generation logistics intelligence.  
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