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ABSTRACT

Global logistics networks face increasing volatility driven by geopolitical tensions, climate disruptions, demand
variability, and operational uncertainty. Although artificial intelligence has improved predictive capabilities in
logistics, classical and standalone learning models remain limited by data sparsity, non-stationarity, and
scalability constraints. This study proposes a hybrid logistics intelligence framework that integrates time-series
forecasting, synthetic data generation, and Al-based optimization. The framework is designed to enhance
forecasting robustness and translate predictions into actionable operational decisions. A FedEx case study
demonstrates how historical shipment data, real-time telemetry, and synthetically generated disruption scenarios
can be jointly leveraged to improve demand forecasting, routing efficiency, and service reliability. Performance
is evaluated across real, simulated, and hybrid datasets. Results show that the proposed approach consistently
outperforms traditional statistical and machine-learning methods in accuracy, robustness, and operational
scalability.

Keywords: Logistics Optimization, Time Series Forecasting, Synthetic Data, Hybrid Al Algorithms, Supply
Chain Intelligence, FedEx

INTRODUCTION

Modern logistics and supply chain systems operate amid pronounced uncertainty arising from demand volatility,
capacity constraints, adverse weather, and evolving geopolitical and regulatory pressures. Large-scale logistics
providers generate massive volumes of heterogeneous data from daily shipment operations, encompassing
structured records, semi-structured transactions, and unstructured sensors, textual, and geospatial sources.
Effectively leveraging this data for decision support is essential to achieving operational efficiency, resilience,
and sustained competitiveness.

Despite advances in artificial intelligence—driven logistics platforms, persistent challenges remain in anticipating
sudden demand surges, optimizing routing decisions under uncertainty, and maintaining service-level
agreements during rare but high-impact disruptions. Events such as pandemics, extreme weather, labour
shortages, and policy shifts frequently invalidate assumptions underlying conventional decision-support
systems. Traditional time-series forecasting methods, while effective in stable environments, are limited by
assumptions of stationarity and are ill-suited to capturing nonlinear dynamics and rare “black-swan” events.
Conversely, data-driven Al models, though expressive, often suffer from data sparsity, distributional bias, and
limited generalization when disruptive events are underrepresented.

Problem Statement

This research addresses the absence of robust forecasting and optimization frameworks capable of supporting
large-scale logistics operations under data scarcity and extreme uncertainty. The central research question is:
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“How can logistics operators improve forecasting accuracy, operational robustness, and prescriptive
optimization performance when historical data alone is insufficient to represent rare disruptions and complex
demand dynamics?”

To answer this question, the study examines the limitations of standalone forecasting models, evaluates the role
of synthetic data generation in enhancing generalization, and assesses hybrid Al frameworks that integrate
statistical forecasting, deep learning, and optimization heuristics. The objective is to develop a scalable and
resilient logistics intelligence framework that supports predictive and prescriptive decision-making while
maintaining service reliability under uncertainty.

Related Work
Logistics Forecasting under Uncertainty and Non-Stationarity

Demand forecasting is a central component of logistics and supply chain management, yet it remains challenging
due to non-stationarity, seasonality, and exogenous disruptions. Early studies primarily relied on statistical time
series models such as ARIMA and exponential smoothing, which demonstrated effectiveness under stable
demand patterns but degraded significantly in volatile environments and during regime shifts (Hyndman et al.,
2015; Carbonneau et al., 2008). As logistics networks expanded in scale and complexity, machine learning
approaches gained attention for their ability to capture nonlinear dependencies across multiple time series
(Carbonneau et al., 2008; Bandara et al., 2019).

Deep learning models, including recurrent neural networks (RNNs) and long short-term memory (LSTM)
networks, further improved forecasting accuracy by learning temporal dependencies directly from data (Sezer
et al., 2020). Probabilistic deep forecasting approaches, such as DeepAR, introduce uncertainty-aware
predictions, enabling logistics planners to reason about risk rather than relying solely on point estimates (Salinas
et al., 2020). Nevertheless, recent evaluations indicate that these models remain sensitive to distributional shifts
and often underperform when exposed to rare or extreme events not present in the training data (Benidis et al.,
2022).

Transformer-based forecasting architectures have emerged as state-of-the-art for long-horizon and multivariate
time-series prediction. Models such as Informer, AutoFormer, and Temporal Fusion Transformers (TFT)
demonstrated substantial gains in capturing long-range dependencies and incorporating exogenous variables
(Lim et al., 2021; Zhou et al., 2021; Wu et al., 2021). Despite these advances, multiple studies note that
transformer-based models remain data-intensive and struggle to generalize under sparse, rare-event conditions
common in logistics systems (Benidis et al., 2022; Nie et al., 2022).

“Relevance to the problem statement: These works collectively highlight that even advanced forecasting models
rely heavily on representative historical data and fail to anticipate rare yet high-impact disruptions reliably.”

Rare Events, Data Sparsity, and Forecasting Robustness

Rare disruptions such as pandemics, extreme weather, labour shortages, and geopolitical shocks play a
disproportionate role in logistics performance yet occur infrequently, resulting in limited historical samples.
Studies on supply chain risk management emphasize that traditional forecasting pipelines are ill-suited for
modeling such low-frequency, high-impact events (Ivanov et al., 2019; Hosseini et al., 2019). During the
COVID-19 pandemic, multiple empirical analyses demonstrated that data-driven forecasting systems trained on
pre-pandemic data failed to adapt rapidly to unprecedented shifts in demand (Ivanov & Dolgui, 2020; Queiroz
et al., 2020).

Recent research identifies data sparsity and class imbalance as fundamental barriers to robust learning in logistics
forecasting. Benidis et al. (2022) and Seaman et al. (2022) show that even probabilistic and ensemble models
tend to underestimate tail risks when extreme events are underrepresented. These findings motivate exploring
data augmentation and scenario-based learning techniques to enhance robustness.

“Relevance to problem statement: This literature directly motivates the need for approaches that improve
forecasting accuracy and robustness when historical data alone is insufficient.”
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Synthetic Time-Series Data Generation for Logistics Applications

Synthetic data generation has gained increasing attention over the past decade as a strategy to address data
scarcity, imbalance, and privacy constraints. Early simulation-based approaches were used in supply chain
modeling to evaluate policies under hypothetical scenarios (Banks et al., 2014). More recently, generative
models, particularly Generative Adversarial Networks (GANSs), have enabled realistic synthesis of time-series
data while preserving temporal dependencies.

TimeGAN represents a seminal contribution, demonstrating that adversarially trained networks can generate
high-fidelity synthetic time series suitable for downstream forecasting tasks (Yoon et al., 2019). Subsequent
studies extended GAN-based and variational approaches for industrial and operational time series, showing
improved forecasting accuracy and generalization when synthetic samples are used for augmentation (Kannan
et al., 2022; Chatterjee et al., 2023; Klopries et al., 2024). In supply chain contexts, synthetic data has been
proposed as a mechanism for modeling extreme demand surges, stress-testing planning algorithms, and enabling
safer experimentation without exposing sensitive operational data (Long et al., 2025).

“Relevance to problem statement: These works support the role of synthetic data generation in enhancing model
generalization and representing rare disruption scenarios missing from historical records.”

Predictive—Prescriptive Integration and Hybrid AI Optimization

While forecasting provides anticipatory insight, logistics performance ultimately depends on prescriptive
decisions such as routing, scheduling, and capacity allocation. Classical optimization approaches for vehicle
routing and logistics planning are computationally expensive and struggle with dynamic uncertainty (Toth &
Vigo, 2014). Over the past decade, hybrid approaches combining machine learning with operations research
have gained traction.

Learning-assisted optimization and reinforcement learning methods have been applied to dynamic vehicle
routing problems, demonstrating improved adaptability to stochastic demand and real-time information (Nazari
et al., 2018; Bogyrbayeva et al., 2022). However, purely learning-based solvers often face feasibility and
scalability challenges in large logistics networks. Consequently, recent surveys advocate hybrid frameworks that
integrate forecasting models, synthetic scenario generation, and optimization heuristics to support robust
predictive—prescriptive decision-making (Bertsimas & Kallus, 2020; Xu et al., 2025).

“Relevance to problem statement: This body of work motivates hybrid Al architectures that combine statistical
forecasting, deep learning, synthetic data, and optimization heuristics to improve end-to-end logistics
performance.”

Overall Methodological Framework

This study adopts a hybrid predictive—prescriptive methodology that integrates time-series forecasting, synthetic
data generation, and Al-assisted optimization to address demand uncertainty, rare disruptions, and operational
decision-making challenges in large-scale logistics systems. The methodology is designed to (i) improve
forecasting accuracy under non-stationary conditions, (ii) enhance model robustness through data augmentation,
and (ii1) translate predictions into feasible operational decisions.

Let the observed historical logistics dataset be defined as
Dr = {(xt, yt)} Tt=1 (1

where x: denotes the vector of exogenous and operational covariates (e.g., time index, route attributes, weather
indicators, hub status), and y: represents the target logistics variable, such as shipment volume or delivery lead
time, at time t. The proposed hybrid framework integrates statistical forecasting, deep learning, synthetic data
augmentation, and prescriptive optimization to address uncertainty and the sparsity of rare events.

Hybrid Forecasting Model
a) Statistical Time-Series Component

A classical statistical forecasting model (e.g., SARIMA) is employed to extract baseline trend and seasonal
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components:

yes) = fs (yt-1, yt-2, ..., yt—p; 05) 2)
where fs(-) denotes the statistical forecasting function and fsrepresents model parameters.
b) Deep Learning Forecasting Component

A deep learning model (e.g., LSTM or Transformer-based architecture) is trained to capture nonlinear temporal
dependencies and multivariate interactions:

ye(p)= fp (x1:t; @D) 3)
where fp () denotes the deep forecasting function, and Opits learned parameters.
¢) Forecast Fusion
To improve robustness and reduce model bias, the final forecast is obtained through weighted ensemble fusion:
ye= a9 + (- )9, a € [0,1] @)
This fusion strategy balances interpretability and nonlinear expressiveness.

Synthetic Data Generation for Rare Events

To mitigate data sparsity associated with rare disruptions, synthetic time-series samples are generated using a
generative model G(), such as a conditional GAN:

yir=G(z c) (5)

where z ~ NV'(0, I)is a latent noise vector and cdenotes conditioning variables (e.g., disruption type, region,
season).

The augmented training dataset is defined as
Da=DrU Ds (6)

where DsContains synthetic disruption scenarios. Forecasting models are retrained on Dato enhance
generalization.

Prescriptive Optimization Layer: Let

e I/ Denote the set of vehicles,

e Nthe set of delivery nodes,

e cijThe transportation cost from the node i to node j,

e qi The demand at the node i, and U Cvthe capacity of the vehicle v.

Objective Function

The logistics optimization objective is to minimize total transportation cost:

1muZZZ(:,Jm}'j (7)

vcV iCN jEN
where xijV1s a binary decision variable indicating whether the vehicle v travels from node ito node j.
Constraints

Demand satisfaction constraint:
Page 71

www.rsisinternational.org



INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)
ISSN No. 2454-6186 | DOI: 10.47772/1JRISS | Volume X Issue XIV January 2026 | Special Issue on Management

V‘v z;; =1, YieN (8)
veV JEN

Vehicle capacity constraint:

Y a) z<6, wev (9)
N N

Service-level (time window) constraint:

tl.arrival < tideadline’ VieN (10)

Forecasts from Equation (4) serve as inputs to the optimization model, enabling dynamic routing and scheduling
under uncertainty.

A Case Study with FedEx-Specific Instantiation
For the FedEx case study:

FedEx operates one of the world’s largest express logistics networks, handling time-sensitive shipments across
air, ground, and last-mile delivery channels. Peak seasons (e.g., holidays) and disruption events (e.g., weather
or labour shortages) pose significant challenges for forecasting and routing.

. yt: daily shipment volume per hub or service zone

. x¢: weather indicators, region, service class (Express/Ground), seasonality
. V: FedEx fleet (aircraft, trucks, last-mile vans)

. N: hubs, sort centres, delivery zones

Key Performance Indicators (KPIs):

. Mean Absolute Percentage Error (MAPE)
. SLA compliance rate

. On-time delivery ratio

. Total transportation cost

RESULTS AND DISCUSSION

Experimental Setup in Brief

The proposed hybrid framework was evaluated using three datasets:

. D: (Historical only): Real logistics time-series data

. D. (Historical + Deep Learning): Hybrid statistical + deep model without synthetic augmentation

. Ds (Proposed Hybrid): Historical + synthetic augmentation + hybrid forecasting + prescriptive
optimization
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Performance was evaluated across predictive accuracy, service reliability, operational efficiency, and
sustainability metrics.

Quantitative Results

Forecast Accuracy (MAPE) : Absolute Percentage Error (MAPE) was computed as:

100 — 3
MAPE = —— Ye e, (11)
T Ve

=1

Table 1: Absolute Percentage Error

Model MAPE (%)
Historical Baseline 12.5

Deep Learning (LSTM/Transformer) 8.9
Proposed Hybrid Framework 4.9

The hybrid framework reduces MAPE by approximately 45% relative to deep learning alone and 64% relative
to statistical baselines. Synthetic data augmentation improves robustness under demand spikes, validating its
role in addressing rare-event sparsity.

SLA Compliance Rate

SLA compliance rate is defined as:

Number of SLA-compliant deliveries
SLArqte = = (12)
Total deliveries

Table 2: SLA Compliance rate

Model SLA Compliance (%)
Historical Baseline 91.2
Deep Learning (LSTM/Transformer) 94.6
Proposed Hybrid Framework 97.9

The improvement in SLA compliance reflects the benefit of integrating predictive uncertainty into prescriptive
decisions. The optimization layer proactively reallocates capacity during forecasted stress conditions, preventing
SLA violations.

On-Time Delivery Ratio
On-time delivery ratio is defined as:

On-time deliveries
OTD = — (13)
Total deliveries

Table 3: On-Time Delivery Ratio

Model On-Time Delivery (%)

Historical Planning 92.4
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Forecast-driven Planning 95.1

Proposed Hybrid Framework 98.2

The proposed framework achieves near-consistent on-time performance even during peak and disruption
scenarios. This demonstrates the effectiveness of combining synthetic stress scenarios with optimization-aware
forecasting.

Total Transportation Cost

Total transportation cost was computed using the objective in Equation (7):

Costyual - v V‘ Cij 2, (14)

VijeN

Table 4: Transportation Cost Reduction

Model Relative Cost Reduction

Baseline Routing —

Forecast-aware Routing 7.8%

Proposed Hybrid Framework 14.6%

Cost savings arise from improved route consolidation, reduced re-routing penalties, and better anticipation of
capacity constraints. The hybrid model enables proactive rather than reactive logistics planning.

Statistical Significance Tests

The use of paired t-tests and Wilcoxon signed-rank tests in this study serves a critical methodological purpose.
Table 4 rigorously assesses whether the observed performance improvements of the proposed hybrid framework
are systematic, reproducible, and not attributable to random variation across evaluation periods.

Table 4: Statistical Significance Tests

Metric | Comparison Il\l/ifg:'lovement t-stat | t-p: fmt | wilcoxon p fmt | Cohen_dz
MAPE | Full vs Baseline 9.17 -40.101 | 1.60E-44 | 1.60E-11 -5.177
MAPE | Full vs No Synthetic 2.245 -13.063 | 4.60E-19 | 5.40E-11 -1.686
MAPE | Full vs No Optimization | 0.841 -4.767 | 1.30E-05 | 3.90E-05 -0.615
SLA Full vs Baseline 6.717 29.72 | 3.40E-37 | 1.60E-11 3.837
SLA Full vs No Synthetic 1.747 10.108 | 1.70E-14 | 3.90E-10 1.305
SLA Full vs No Optimization | 2.434 14.424 | 5.30E-21 | 3.60E-11 1.862
OTD Full vs Baseline 6.142 28.872 | 1.70E-36 | 1.60E-11 3.727
OTD Full vs No Synthetic 1.742 10.098 | 1.80E-14 | 3.20E-10 1.304
OTD Full vs No Optimization | 2.433 14.511 | 4.00E-21 | 2.80E-11 1.873
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T-Cost | Full vs Baseline 14.29 -21.344 | 2.00E-29 | 1.60E-11 -2.755
T-Cost | Full vs No Synthetic 6.798 -12.815 | 1.10E-18 | 6.90E-11 -1.654
T-Cost | Full vs No Optimization | 10.918 -19.293 | 3.60E-27 | 1.60E-11 -2.491

a) Paired t-test: The paired t-test assesses whether mean performance differences between model variants,
evaluated over identical operational periods, differ significantly from zero. The consistently small p-values
(often < 107'*) confirm that the Full hybrid framework outperforms baseline and ablated variants across
accuracy, reliability, cost, and emissions, indicating structural, not incidental, performance gains.

b) Wilcoxon signed-rank test: Given potential non-normality in logistics performance metrics, the Wilcoxon
signed-rank test provides a distribution-free validation. Its agreement with the paired t-test demonstrates
robustness of the results to outliers and distributional assumptions, strengthening the reliability of the
conclusions.

c) Effect sizes: The uniformly large Cohen’s dz values (frequently > 1.0) indicate that observed improvements
are not only statistically significant but also operationally meaningful, underscoring their practical relevance
in real-world logistics systems.

“Accordingly, statistical significance tests confirm that the proposed hybrid Al-time series—synthetic data
framework yields robust, non-random, and operationally meaningful improvements across accuracy, service
reliability, cost efficiency, and environmental impact. These results demonstrate that resilient logistics
intelligence requires the joint integration of synthetic data augmentation and prescriptive optimization,
validating the framework as a scalable solution for next-generation logistics systems.”

Unified Performance across Predictive and Prescriptive Metrics
The unified performance curve in Figure 1 presents a normalized comparison (1 = best) of four logistics KPIs:
forecast accuracy (MAPE), SLA compliance, on-time delivery, and transportation cost across successive model

variants.

Unified Performance Curve Across Predictive and Prescriptive Metrics

1.04

0.8 4

0.6 4

0.2 4

Normalized Performance Score (1 = Best)

@ MAPE (Accuracy)
SLA Compliance

=i~ On-Time Delivery

0.0 ~&— Transportation Cost

Baseline No-Synthetic No-Optimization Full Hybrid
Model Variant

Figure 1: Unified Performance across Predictive and Prescriptive Metrics

This normalization facilitates direct comparison of heterogeneous metrics within a single framework, clearly
illustrating performance gains attributable to architectural enhancements.

Key Observations: The Baseline model underperforms across all metrics, highlighting the limitations of
conventional forecasting and planning approaches. Hybrid forecasting without synthetic augmentation improves
service reliability and cost outcomes. Still, it exhibits reduced robustness to disruption in predictive accuracy,
while the No-Optimization variant achieves improved accuracy without corresponding economic efficiency
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gains. In contrast, the Full Hybrid framework consistently dominates across all dimensions, demonstrating
balanced and monotonic improvements from prediction to prescription. These results confirm that predictive
accuracy, service reliability, and cost efficiency improve jointly only under full integration, with synthetic data
enhancing forecast robustness and optimization translating predictions into tangible economic benefits.

Multi-Panel Performance Comparison

Figure 2 (a—d) compares forecasting accuracy, service reliability, operational timeliness, and cost efficiency
across ablated variants and the Full Hybrid framework.

Multi-Panel Performance Comparison with Error Bars (Mean + SD)

(a) Forecast Accuracy (MAPE §) (b) SLA Compliance (1)
16
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(c) On-Time Delivery (1) (d) Transportation Cost Index (4)

100 1
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Figure 2: Multi-Panel Performance Comparison

a) MAPE (]): Error bars show reduced variance and the lowest mean for the Full Hybrid model, indicating
superior and more stable forecast accuracy. This supports the hypothesis that synthetic augmentation
improves robustness under demand uncertainty.

b) SLA compliance (1) and c¢) On-time delivery (1): The Full Hybrid model achieves the highest means with
tighter dispersion, confirming that forecast robustness coupled with decision optimization translates into
consistent service reliability.

d) Transportation cost index (|): The most considerable mean reduction occurs only with the optimization
layer present, demonstrating that prescriptive optimization is the primary driver of economic gains,
beyond predictive accuracy alone.

Inference: The non-overlapping or minimally overlapping error bars between the Full Hybrid and ablated
variants across panels indicate statistically and operationally meaningful improvements. Figure 2 visually
corroborates the ablation and significance tests: synthetic data enhances predictive stability, while optimization
converts predictions into tangible cost and service benefits.

Future Scope of Work

Future work will extend the proposed framework by incorporating real-time adaptive learning, enabling
continuous model updates in response to streaming operational data and evolving disruption patterns. The
integration of probabilistic and robust optimization techniques will further enhance decision-making under
extreme uncertainty. Additionally, extending the framework to include multi-objective sustainability
optimization and evaluating its applicability across multi-modal and cross-border logistics networks will
strengthen its generalizability and practical impact.
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CONCLUSIONS

This study presented a hybrid Al-time-series—synthetic-data framework for predictive and prescriptive logistics
optimization and validated its effectiveness through comprehensive statistical and ablation analyses. Results
demonstrate that synthetic data augmentation improves forecasting robustness, while prescriptive optimization
is essential for achieving economic and service-level gains. Together, these components establish a scalable,
statistically validated solution for resilient, next-generation logistics intelligence.
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