

Rethinking Consumer Knowledge in Data-Driven Markets

Lukasz Bikowski^{1*} and Dominic Osborne²

¹The University of Newcastle, Newcastle, Australia

²Columbia University, United States

DOI: <https://dx.doi.org/10.47772/IJRISS.2026.1015EC00006>

Received: 28 December 2025; Accepted: 03 January 2026; Published: 19 January 2026

ABSTRACT

This paper examines how data-driven marketing restructures consumer knowledge in the digital economy. At the micro level, recommendation systems, personalization, and dynamic pricing alter how consumers perceive options, make decisions, and learn about markets. At the meso level, firms adopt algorithms as infrastructures of knowledge production, embedding predictive models into strategy and innovation. At the macro level, platforms and regulators define the rules of visibility, accountability, and access, shaping the distribution of knowledge across economies. Case illustrations of Netflix, Amazon, Alibaba, and fintech platforms show how these mechanisms operate in both developed and emerging markets, revealing tensions between efficiency and fairness, autonomy and personalization, and innovation and inequality. The paper argues that data-driven marketing should be seen not only as a set of commercial techniques but as an epistemic force that reshapes what can be known, who controls knowledge, and how markets evolve.

Keywords: data-driven marketing, consumer knowledge, personalization, digital economy, platform governance, information asymmetry

INTRODUCTION

Algorithms are now embedded in the everyday decisions of consumers and firms. What once depended on broad demographic data and intuition is now driven by data-driven systems such as recommendation engines and predictive models. Marketing is one of the most visible domains where these changes take place. Recommendation engines, dynamic pricing, and targeted ads are not just tools for selling more products. They are mechanisms that shape how consumers gain, process, and use knowledge when making decisions.

This shift matters because knowledge is the central resource of the digital economy. Firms that control algorithms hold an advantage in interpreting data and producing insights, while consumers often face uncertainty about how their choices are influenced. Research on persuasion knowledge shows that people are aware that algorithms affect what they see online, yet they rarely understand the mechanisms behind these processes (Voorveld et al., 2024). The result is a new form of asymmetry: companies accumulate increasingly detailed knowledge about consumer preferences, while consumers rely on filtered information that can both inform and constrain their decisions.

At the organizational level, data-driven marketing has become a foundation for knowledge creation. Firms integrate data from consumer interactions into machine learning models that continuously update and refine predictions. This is not just analytics. It is a form of adaptive learning where the organization becomes dependent on algorithmic insights to guide strategic action. Recent work shows that firms gain measurable performance advantages when they combine human judgment with machine learning outputs, particularly in areas such as product recommendations and demand forecasting (Ma & Sun, 2020). Yet reliance on algorithmic systems also creates challenges of transparency, accountability, and fairness.

The systemic impact is hard to ignore. Digital platforms now sit between consumers and the information they rely on. Algorithms decide which products rise to the top of a search, which posts or brands gain traction on

social media, and even what price a person sees. The logic behind these systems is rarely transparent, yet the outcomes shape competition across whole markets. Studies of algorithmic curation show that platform rules affect not only visibility but also how knowledge itself circulates, often giving an edge to firms that can afford to invest in data-driven capacity (Voorveld et al., 2024). These dynamics point to deeper questions about inequality, concentration of power, and the role of oversight in keeping knowledge flows open and fair.

This article examines how data-driven marketing restructures consumer knowledge in the digital economy. The focus is threefold. First, it investigates the micro level, where consumers interact with algorithmically curated information and develop new patterns of decision-making. Second, it explores the meso level, where firms adopt algorithms as knowledge infrastructures that shape their internal learning and external strategies. Third, it considers the macro level, where platform governance and societal debates influence how knowledge is distributed and contested across the economy.

The central argument is that data-driven marketing does more than optimize campaigns. It redefines what can be known, who controls knowledge, and how markets operate. By framing algorithmic systems as both technical tools and epistemic structures, the paper seeks to bridge perspectives from marketing, economics, and information studies. It contributes to ongoing debates about the opportunities and risks of algorithmic systems, highlighting both their capacity for innovation and the challenges they pose to transparency and autonomy.

This article argues that data-driven marketing does more than refine promotion techniques. It restructures how knowledge is produced and circulated, changing what consumers know, how firms learn, and how platforms govern access to information. By examining these shifts at the individual, organizational, and systemic levels, the paper highlights both the opportunities for innovation and the risks of growing asymmetry. The aim is to frame data-driven marketing not only as a commercial tool but as a force that reshapes the foundations of the knowledge economy.

Methods and approach

This article adopts a conceptual synthesis approach, drawing on established theories of the knowledge economy, information asymmetry, and behavioral decision making. Rather than testing hypotheses through primary data, it integrates recent scholarly work with illustrative case studies of leading platforms including Netflix, Amazon, Alibaba, and fintech services. These cases are selected to highlight variation across developed and emerging markets and to demonstrate how data-driven marketing restructures consumer knowledge at micro, meso, and macro levels. The aim is to build a theoretical argument grounded in evidence from practice, while identifying implications for research, managerial strategy, and policy.

LITERATURE REVIEW

Theories of the knowledge economy and information asymmetry

The knowledge economy rests on uneven access to data and the capacity to turn data into actionable insight. Large firms and platforms gather richer, wider, and more continuous data than most rivals. They also operate the models that make that data meaningful. Scholars describe these gaps as data and intelligence asymmetries. The ethical point is simple. When one side knows more and can act faster on that knowledge, power tilts toward that side. Recent work argues this should be treated as a first-order fairness problem, not a side effect of technology. It affects market competition, accountability, and autonomy (Verhulst, 2022).

Platforms add another layer. They rank, recommend, and remove. Those rules of visibility are a form of governance. What shows up first in a search or feed becomes the starting point for what people learn and buy. The policies behind these choices are often opaque but they shape knowledge flows across entire markets. This has been documented in work on platform responsibility and the idea of cooperative governance between public and private actors (Helberger et al., 2017).

Asymmetries do not sit still. They widen when firms combine unique data with learning systems that improve over time. Reviews of the data economy note that advantages stack up. Better data improves models, which

attract more users, which generates more data. Smaller firms and consumers rarely see the full picture or the logic behind the outputs. That is why information asymmetry today is dynamic, not static (Verhulst, 2022).

There is also a policy angle. Regulators have begun to treat online choice design and ranking schemes as market power issues and consumer protection issues. In the United Kingdom, the competition authority has flagged online choice architecture as a growing risk because design choices can narrow options, nudge in ways people do not expect, and tilt discovery toward payers rather than quality. That is a direct link between knowledge flows and market outcomes (Competition and Markets Authority, 2022).

Taken together, the theory and evidence push in one direction. Knowledge advantages are structural in digital markets. Platform rules act as gatekeepers. The practical result is a persistent gap between what firms can infer and what consumers can know.

Data-driven marketing personalization, predictive analytics, and recommendation systems

Algorithmic marketing turns those knowledge advantages into action. Three mechanisms do most of the work in practice.

Personalization tailors content, timing, and offers to the individual. Predictive analytics scores the likelihood of clicks, purchases, churn, or response to price. Recommender systems order and surface items so that choice sets feel manageable. A recent review in marketing shows how machine learning has moved from pilot projects to core workflow in these tasks. Models update with feedback, automate many small decisions, and learn patterns that humans miss. The benefits are clear for conversion and resource allocation. The risks are opacity, bias, and brittleness when the context shifts (Herhausen et al., 2024).

Recommender systems deserve special attention because they silently define what people see first. A comprehensive survey in ACM Computing Surveys explains how modern recommenders now blend collaborative filtering, content features, and context, and how evaluation has moved beyond accuracy to include novelty, diversity, and user impact. That shift acknowledges that recommenders do not only predict clicks. They curate knowledge (Zangerle & Bauer, 2022).

Transparency and explanation quality are central to how these systems land. Work on platform governance shows that ranking rules act like hidden policy. Users experience the output but not the rationale. That is why explanation design matters. Research across services and finance finds that people use algorithmic advice more when explanations speak to purpose and process in plain terms, rather than dropping code or math. The goal is to help people decide what to do next, not to reverse engineer the model (Helberger et al., 2017).

Pricing is where trust can crack. Field and lab studies show that when people suspect the system sets different prices for similar buyers, perceived fairness drops and feelings of betrayal rise. Ease of use softens the hit, but it does not fix the fairness problem. New work on algorithmic dynamic pricing confirms the trade off. Volatile or opaque pricing can reduce trust and push users to search more, which then eats into the efficiency gains that the algorithm promised.

Regulators are watching these mechanisms through a practical lens. In the United States, the Federal Trade Commission's report *Bringing Dark Patterns to Light* shows how interface design and ranking can mislead consumers and has informed enforcement. Internationally, the OECD's dark commercial patterns report gathers evidence on prevalence, harm, and policy responses. The European Commission's behavioral study on dark patterns and manipulative personalization points in the same direction. For marketers, the message is straightforward. Mechanism design is not neutral. It has competitive and ethical consequences (Federal Trade Commission, 2022). The main analytical techniques used in data-driven marketing and their ethical implications are summarized in Table 1.

Table 1 Behavioral analytics techniques and their implications for personalization and privacy

Technique	Core function	Example application	Ethical or privacy implication
Segmentation and clustering	Groups consumers based on behavioral similarity	Customer personas in e-commerce	Risk of stereotyping and over-profiling
Predictive modeling	Forecasts future behavior using historical data	Credit scoring, churn prediction	Opaque algorithms and bias replication
Recommender systems	Suggests products or content based on user interactions	Streaming or retail platforms	Filter bubbles and reduced autonomy
A/B testing and adaptive learning	Continuously optimizes marketing messages	Website and email personalization	Continuous surveillance and consent fatigue
Sentiment and emotion analytics	Interprets affective cues from text or images	Social media monitoring and ad targeting	Intrusion into emotional privacy
Social graph analysis	Maps social connections and influence patterns	Influencer targeting and referral programs	Exposure of relational data and identity inference

Consumer knowledge bounded rationality, behavioral insights, digital literacy

Consumers use algorithms to cut through noise. They also face limits. Bounded rationality is a useful lens here. People have finite attention and time. They rely on shortcuts, especially in crowded digital environments. Recent modeling in platform contexts shows how differences in bounded rationality between customers and providers can be exploited by the platform and can change both welfare and profit. The point is not that people are irrational. It is that real decision making reflects constraints that platforms can foresee and build around (Chen et al., 2025).

Behavioral insights help explain how this plays out on the screen. Online choice architecture can steer clicks with defaults, salience, and timing. In the United States, the FTC's staff report shows how interface design can obscure, subvert, or impair consumer autonomy, and outlines patterns that mislead or pressure users. International reviews reach similar conclusions. The OECD documents prevalence, harms, and policy responses for dark commercial patterns, while the European Commission's behavioral study details how manipulative personalization and other designs shift choices against people's interests. The message is simple. Design choices teach consumers what to see and trust. Explanations and controls should match that reality (Federal Trade Commission, 2022).

Trust hinges on what people understand. When explanations feel clear and relevant, people are more likely to use algorithmic advice. When explanations feel performative or overly technical, trust falls. Experimental work shows that explainable AI can raise appropriate trust and improve decision quality, but only when the content matches the task and the user's needs. More recent studies even find a transparency dilemma. Disclosing that AI was used can lower trust in the user of AI if the disclosure is not paired with reasons that matter to the person making the choice. These findings put the burden on explanation design, not on disclosure alone (Leichtmann et al., 2023).

Awareness of algorithmic influence is uneven. A preregistered survey of social media users in the United States and Germany found that algorithmic awareness varies by age, education, and usage, and that awareness relates to attitudes and coping behaviors. Some users recognize curation and adjust their choices. Others do not, and they lean on whatever ranks first (Oeldorf-Hirsch & Neubaum, 2023).

Digital literacy is not enough in this context. People need algorithmic and AI literacy to read what a system is doing with their data and why a given result appears. A new systematic review in Computers and Education: Artificial Intelligence maps how AI literacy has been defined and measured since 2019 and highlights gaps in everyday skills, not just coding. An integrative review in New Media and Society makes a similar point for algorithm literacy. It argues for a shared framework that links people's mental models of algorithms with their actual media use. For marketing, that means the same design can have very different effects across audiences with different literacy levels (Almatrafi et al., 2024).

Fairness perceptions add one more layer. A recent systematic review in Big Data and Society pulls together evidence on how people judge algorithmic fairness. Context matters. People are more tolerant in entertainment than in credit or health. Explanations help in some cases and backfire in others. What carries across settings is the importance of procedural fairness. People want to know that similar users are treated similarly and that they have recourse if a decision looks wrong. That is a knowledge requirement as much as a moral one (Starke et al., 2022).

Finally, pricing again shows how these threads connect. Studies on algorithmic price discrimination and on dynamic pricing show clear reactions to perceived unfairness. If users cannot see the rules or the rationale, trust erodes and search increases. Those behaviors shape what they learn about the market and whether they return. Bounded rationality ensures most people will not audit prices across many sites. That makes clear and credible explanations even more important.

These strands point to a common thread. Data and intelligence advantages shape how knowledge moves through markets. Algorithmic tools turn those advantages into curated visibility, targeted offers, and shifting price signals. Consumers meet these systems with limited time, uneven literacy, and varied awareness. The next section examines what this means at the micro level of consumer knowledge and choice.

Data-driven marketing and micro-level knowledge

Consumer cognition, perception, and decision making

Consumers lean on algorithms to shrink big choice sets and to save time. That help is real, yet it also changes how judgments form and when people rely on automated advice. Studies show the same person can both appreciate and avoid algorithmic input depending on the stakes, the clarity of the task, and how the system explains itself. People defer more in low-stakes settings and scrutinize more when the outcome matters to them. [Oxford Academic](#)

Awareness is uneven. A preregistered survey of social media users in the United States and Germany found that algorithmic awareness varies with age, education, and intensity of use, and that awareness correlates with attitudes and coping behaviors such as diversifying sources or adjusting settings. In short, some users recognize curation and act on it, while others do not (Jones-Jang & Park, 2023).

Explanations help people decide when to trust algorithmic advice. Experiments in decision-support show that transparency boosts advice use when explanations make performance and process understandable, rather than exposing technical internals that people cannot use. Framed well, explanations increase trusting beliefs and raise adoption of algorithmic recommendations. Framed poorly, they do little (Govea et al., 2024).

The effect of transparency is context dependent. In public administration experiments, making the algorithm visible changed not only trust in the system, but also trust in the human who used it, and the pattern was not uniform across settings. That result matters for consumer contexts because trust can shift from the firm to the interface, or back, depending on how disclosure lands (Grimmelikhuijsen, 2022).

People also learn how to "steer" systems. Small actions such as clicking, saving, and short searches can shift what the recommender shows next. Field evidence on a mobile food-delivery platform found that adding a query recommender increased purchases by roughly one to two percent over thirty days and broadened consumption diversity, which means people discovered a wider set of options once the system nudged their starting query.

The picture is simple. Algorithms alter not only what consumers see, but how they allocate attention and when they defer to machine advice. Whether that helps or harms depends on the user's awareness, the clarity of the explanation, and the stakes of the decision (Mahmud et al., 2024).

Algorithms shaping choice architecture

Recommendation, personalization, and pricing are the levers that reshape the decision space. Recommender systems reorder options and set the starting line for discovery. In the food-delivery study just noted, a query recommender increased order volumes and widened both individual and market-level diversity, so the algorithm did not simply amplify the most popular items. Design choices mattered for exploration (Zheng et al., 2025).

Controlled experiments reach a similar conclusion. When recommenders increase scope and adjust how strongly they favor popular items, users search differently and the mix of products sold changes. In some settings diversity rises, in others it falls, which means designers cannot assume a single effect. Ranking strength, the ease of testing alternatives, and whether items are search or experience goods all interact (Yi et al., 2022).

Personalization narrows option sets further by matching content to predicted preferences. That can speed decisions and improve satisfaction when predictions are accurate. It can also hide useful alternatives when the system overfits recent clicks or when a person's tastes are in flux. These trade-offs sit in the details of the model and the interface, not just in the data source. Designers who surface a reason for a suggestion and a simple control to adjust it make it easier for people to course-correct.

Pricing is where trust often cracks. As more firms adopt algorithmic dynamic pricing, prices move more often and can differ across users or moments. A program of five studies, including a real-world encounter, showed that volatile, opaque pricing reduces trust and triggers more price search. That behavior change cuts directly into the efficiency gains the pricing algorithm promised (Vomberg et al., 2024).

When similar buyers see different prices with no visible rationale, perceived betrayal rises. Ease of use softens the blow, but it does not fix fairness concerns. Consumers update their expectations and may reassess a retailer's credibility after even a single encounter with price discrimination that feels unjustified.

These mechanisms interact. A search page that offers a helpful query hint, a transparent "why this" label, and a stable price rule teaches people how to work with the system. A page that hides ranking logic and shifts prices without a reason teaches the opposite. Over time those micro-lessons compound into habits of reliance or skepticism.

Risks of manipulation, filter bubbles, and over reliance

Three risks deserve attention. The first is perceived unfairness in pricing. The evidence above shows that algorithmic price discrimination can provoke feelings of betrayal and lower trust, especially when the logic is hidden. People respond by searching more or by switching providers, which can erase the short-term gains from fine-grained pricing. A small transparency gesture, such as stating a stable rule that people can understand, is more than a courtesy. It is a way to protect credibility.

The second risk is homogenization and self-reinforcing feeds. The term filter bubble is overused, yet the underlying concern remains. A series of experiments that manipulated recommendations to create bubble-like conditions found limited short-term effects on political opinions. That does not mean there is no risk. It means the effect depends on design, exposure time, and domain. In entertainment, narrower feeds reduce discovery. In news, narrow feeds can limit cross-cutting exposure, which may be acceptable to some users and harmful to others (Liu et al., 2025).

The third risk is over reliance on automation. Public administration experiments identify two patterns that appear in consumer settings as well. People sometimes accept algorithmic advice even when other cues warn against it, called automation bias. People also accept advice more readily when it confirms what they already believe, called selective adherence. Both patterns shift after an AI makes a visible mistake. Some users keep deferring.

Others swing hard to avoidance. The hinge is perceived controllability and a clear path to correction (Alon-Barkat & Busuioc, 2023).

These risks are not inevitable. Two practical safeguards show up across studies. First, explanations that map to a user's goal increase appropriate trust. Saying what the system did and why a person is seeing this result is more useful than technical detail. Second, simple controls that let people adjust a recommendation or review price rules reduce the feeling that the system is a black box. Both changes support learning and reduce the chance of manipulation, even when the underlying model is complex.

A final caution returns to literacy. Differences in algorithmic awareness change how people read the same screen. Users who know that a feed is curated tend to diversify inputs or look for source cues. Users who do not understand curation may treat rank as a proxy for quality. That split produces different learning curves even when people face the same interface. It is a reminder that design, disclosure, and education work together.

Meso level organizational dynamics

Firms as knowledge producers and brokers

Firms convert interaction data into predictions, segments, and next-best actions, but performance gains arrive only when analytics is paired with market orientation, cross-functional access, and routines that move signals into decisions (Mikko Vesterinen et al., 2025). Dynamic capability studies show why: analytics creates value when it fuels cycles of sensing, seizing, and reconfiguring rather than retrospective reporting (Hossain et al., 2023). Evidence on AI assimilation points the same way. When AI is embedded in processes and decision rights, its effects on performance are mediated by organizational and customer agility, which is the mechanism that turns models into action (Fosso Wamba, 2022).

Customer-journey management illustrates how knowledge travels inside the firm. A mixed-methods study in business markets shows that codifying journey roles and metrics improves performance but also raises coordination costs that must be managed to avoid a “dark side” of over-engineering (Homburg & Tischer, 2023).

Inside the marketing function, capability building depends on complements. New work separates “outside-in” resources such as partner data from “inside-out” assets such as platforms and data science, and shows that their complementarities differ by firm age (Mehrabi et al., 2024). Across studies, the practical point is stable. Treat marketing as a broker of knowledge across the organization and invest in the routines that connect analytics to changes in offers, journeys, and channels.

Algorithmic tools for segmentation, value co-creation, and journey orchestration

Segmentation is moving from static clusters to live profiles that refresh as signals arrive. In online retail and platform settings, a validated instrument maps the core elements of customer analytics capability, including identity resolution, real-time ingestion, and model refresh cadence, which are necessary to prevent drift and stale segments. Sustained application matters as much as tooling. Firms that apply customer analytics persistently-rather than episodically-translate data into market effectiveness through better targeting and learning.

Service research shows how AI can either amplify or erode value, depending on design. A systematic review synthesizes pathways by which AI supports or undermines co-creation across touchpoints and clarifies design choices that keep customers “in the loop” (Wen et al., 2022). Frontline conversational systems make the trade-offs concrete. Studies document when language style, anthropomorphic cues, and escalation policies increase satisfaction, forgiveness, or switching, underscoring the need for clean hand-offs to people when intent detection fails or risk is high (Lu et al., 2024).

Journey orchestration has matured into an organizational capability rather than a single tool. Firms that assign ownership, integrate data, and track journey outcomes see gains while keeping an eye on coordination costs that can offset benefits. Underneath these practices sits data governance. A 2024 systematic review links governance maturity-identity, lineage, access-to higher data quality and more reliable models, which in turn supports agility in analytics-driven functions (Bernardo et al., 2024). At the team level, longitudinal evidence shows that the

quality of marketing analytics and information is associated with greater customer agility and satisfaction, clarifying how analytics improves outcomes through capability building rather than only direct effects.

Implications for innovation and organizational learning

Algorithmic marketing changes how firms innovate by lowering the cost of learning. Large-scale evidence on startups shows that adopting A/B testing raises performance meaningfully after a year, which supports the idea that experimentation capability is a flywheel for discovery (Koning et al., 2022). Yet platform experiments can mislead if design and interpretation are weak, so organizations need shared testing standards, pre-analysis plans where feasible, and audit trails that make treatment delivery and measurement visible to stakeholders (method guidance across marketing and IS emphasizes these points).

Operational reliability now depends on lifecycle discipline. A recent systematic review catalogs MLOps practices, challenges, and maturity models, concluding that durable value arrives when development, deployment, monitoring, and retraining are run as a governed process with clear roles (Zarour et al., 2025). Complementary reviews and empirical studies track adoption challenges and contrast MLOps with DevOps, reinforcing the need for model monitoring, drift detection, and incident response in data-driven marketing (Amrit & Narayananappa, 2025).

Standards translate governance into concrete checklists. ISO/IEC 42001 establishes a certifiable AI management system and provides a common language for risk, control, and continuous improvement that marketing and analytics teams can map to pipelines, model releases, and campaign approvals (ISO, 2023).

Finally, organizations learn faster when people learn with the system. Updating portfolios of AI applications and making explanations usable—not technical for their own sake—are associated with higher agility and improved performance, which ties human understanding back to model impact. Together, these organizational dynamics connect with the consumer and systemic levels described earlier. They show how data-driven marketing operates as a multi-layered knowledge structure that links individual behavior, firm learning, and market governance (see Fig. 1).

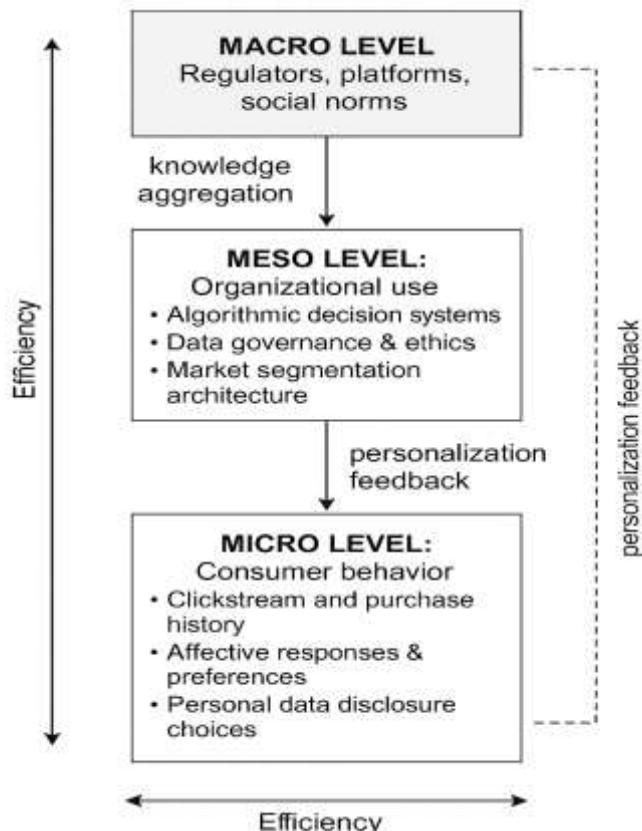


Fig. 1 Conceptual framework of consumer knowledge transformation in data-driven marketing

Macro level knowledge governance

Platforms as gatekeepers of knowledge and demand

At the system level, a small set of platforms now decides how information and offers are discovered, ranked, and priced, which makes their recommender and default settings a public concern rather than a private design choice (European Commission, 2023). EU enforcement has formalized this role. Six firms were designated as gatekeepers, with Apple's iPadOS later added, confirming that control over operating systems and app ecosystems affects knowledge access for both consumers and businesses. Active investigations under the DMA reinforce that ranking, default, and self-preferencing choices are subject to ongoing scrutiny, with potential penalties if firms do not change product and discovery rules that steer user attention (Coulter, 2024).

The DSA complements this by shifting platforms to an accountability model. Very large online platforms and search engines must perform annual risk assessments, undergo independent audits, and publish results, which places their curation and targeting choices on the record for regulators and researchers (European Commission, 2025). Article 27 requires platforms to explain, in plain language, the main parameters of recommender systems and the options users have to influence them, a disclosure that turns ranking from an opaque screen into an object of informed choice (Kempf & Seel, 2024).

Article 39 adds an advertising repository for VLOPs and VLOSEs, making targeting logic and sponsorship traceable through searchable libraries, and recent enforcement moves show the Commission testing the adequacy of these repositories in practice. The transparency database for content moderation decisions completes this shift by publishing statements of reasons that document why content was restricted, which helps outside observers study systemic effects on information flows (European Union, 2022).

Governance tools that rebalance information asymmetries

Comprehensive AI law now anchors obligations that matter for marketing. The EU AI Act is in force and uses a risk-based regime that bans certain practices, imposes strict duties on high-risk systems, and creates transparency requirements for specified AI interactions, all backed by official publication in the EU's Official Journal (European Union, 2024). Guidance on prohibited practices clarifies that harmful manipulation, social scoring, and certain biometric uses are out of bounds, which sets hard limits that intersect with marketing use cases for attention capture and profiling.

National rules are converging on similar ideas for consequential decisions. Colorado's 2024 law requires developers and deployers of high-risk AI to use reasonable care, complete impact assessments, notify consumers of consequential decisions, and provide human review channels, with enforcement starting in 2026 (Colorado General Assembly, 2024). In the United States, financial regulators have emphasized explainability obligations for algorithmic decisions. Creditors that deny applications using complex models must give specific reasons rather than generic codes, which removes any safe harbor for black-box adverse actions and pushes firms to maintain traceable decision logic (Consumer Financial Protection Bureau, 2023).

Cross-border data rules set the boundary conditions for analytics. The EU–U.S. Data Privacy Framework adequacy decision was upheld by the EU General Court on 3 September 2025, stabilizing a legal route for transatlantic transfers used in training, attribution, and measurement, subject to continued monitoring and potential appeal (Court of Justice of the European Union, 2025).

Interface design is also being treated as a policy lever. The U.S. Federal Trade Commission's staff report catalogs dark patterns that impair consumer autonomy and outlines enforcement theories for deceptive subscription flows, hidden fees, and consent friction, a body of work that aligns with international efforts to define manipulative designs and their remedies (Board of Governors of the Federal Reserve System, 2023).

Competition authorities are building tools for algorithmic pricing and ranking. OECD work synthesizes risks of algorithm-enabled collusion and proposes investigative approaches for authorities, which signals closer scrutiny of pricing systems that may reduce diversity or raise prices without explicit agreements (OECD, 2023).

Public interest, equity, and the knowledge dividend

Macro policy is being reframed around who benefits from algorithmic knowledge. UNESCO's global recommendation on AI ethics, adopted by all member states, sets a baseline of human rights, transparency, fairness, and meaningful human oversight that public bodies can invoke when auditing digital services used by citizens and consumers (UNESCO, 2021). The OECD AI Principles, updated in 2024, extend this baseline by aligning governments on values-based norms and practical recommendations, including information integrity and safety safeguards that apply across sectors that rely on recommendations and personalization (OECD, 2024). The G7 Hiroshima process adds voluntary guidance for advanced AI systems, which many organizations treat as a reference when operational standards are still evolving, especially for foundation models that influence ranking and targeting upstream from any single app (G7, 2023).

The DSA's researcher-access channel is a practical step toward turning ethics into infrastructure. Article 40 opens a vetted path for scholars to analyze platform data on systemic risks, with recent FAQs and policy analysis documenting how the system will handle eligibility, privacy, and security, and how outputs can inform enforcement and product design (European Commission, 2025). Early experience with risk assessments and audits suggests that common templates are still maturing, which is why additional guidance and standardization efforts matter for comparability across platforms and for usable evidence on impacts to consumer knowledge and welfare.

For marketers, the macro message is straightforward. Treat recommender design, advertising transparency, explainable pricing, data transfers, and model risk controls as part of the public record, because they increasingly are. Build documentation that can survive outside scrutiny and plan for audits, disclosures, and research collaborations that test real outcomes, not just inputs.

Case illustrations

Netflix demonstrates how algorithmic personalization reshapes consumer knowledge in entertainment markets. In North America and Europe, the company's recommendation engine is the main way viewers discover content. Studies of recommender systems show that the first items presented on a user's screen are disproportionately likely to be selected, effectively turning curation into knowledge framing. Subscribers often treat these suggestions as a guide to "what's worth watching," which reduces search costs but narrows exploration. In developed markets, this design sustains subscription retention by building habits of continuous engagement. In emerging markets such as India and Brazil, the same system encounters challenges. Algorithms trained predominantly on Western viewing histories sometimes misalign with local cultural tastes, leading to recommendations that feel less relevant. Netflix has invested in regional content and multilingual interfaces, but the lag in algorithmic adaptation illustrates how knowledge restructuring is uneven across contexts. For users in Mumbai or São Paulo, discovering new shows may depend less on algorithmic curation and more on external social networks, a contrast to the heavy reliance on in-platform recommendations in the United States.

Amazon provides another clear case of how algorithmic marketing alters consumer perceptions of fairness and trust. Its dynamic pricing models continuously adjust offers, often several times a day, based on demand, inventory, and user profiles. Research confirms that consumers react negatively when they sense hidden or discriminatory pricing rules, interpreting them as unfair (Wu et al., 2022). In developed markets, many buyers have grown accustomed to price shifts, especially during high-volume sales events like Prime Day. Transparency concerns remain, but familiarity tempers some of the distrust. In emerging markets, however, the picture differs. In India, for example, e-commerce competition is fierce, with Flipkart and Reliance JioMart relying on event-driven discounts rather than opaque price fluctuations. Local shoppers often expect visible, festival-linked promotions. Algorithmic price shifts that lack clear explanation can be read as exploitation rather than convenience. This suggests that the restructuring of consumer knowledge around pricing norms depends heavily on market maturity. Where users are seasoned in digital retail, they may internalize volatility as part of the shopping experience. Where expectations are grounded in visible discount traditions, hidden adjustments undermine trust.

Alibaba illustrates algorithmic marketing in an emerging market setting at an unparalleled scale. Its Singles' Day festival, now the largest online shopping event in the world, demonstrates how gamification, personalization, and real-time recommendations can channel consumer attention across millions of products. Research shows that users often accept algorithmic narrowing of options rather than attempt to evaluate the overwhelming catalog (Chen et al., 2025). In China, consumers treat these curated bundles and countdown timers as guides to the market, effectively outsourcing their evaluation to the platform. This restructures consumer knowledge so that awareness of products comes less from independent search and more from algorithmic staging. In developed markets, however, Alibaba has struggled to replicate this dominance. In the United States and Europe, existing giants such as Amazon and eBay already condition how shoppers understand online retail. Alibaba's interface and recommendation styles have sometimes felt cluttered or opaque to Western audiences, reducing adoption. The divergence underscores that algorithmic infrastructures succeed when deeply embedded in local digital cultures. They do not travel seamlessly, and consumer knowledge is restructured differently depending on cultural familiarity, regulatory frameworks, and competitive baselines.

Fintech platforms demonstrate how algorithmic mediation affects not just consumer choice but financial literacy and autonomy. In developed markets, robo-advisors such as Betterment or Nutmeg provide portfolio allocations based on algorithmic assessments of risk. Experiments show that when explanations are framed in accessible language, consumers are more likely to accept and act on algorithmic advice (Govea et al., 2024). When explanations appear overly technical, trust declines and users may revert to human advisors. In emerging markets, fintech platforms often serve populations new to formal banking. Mobile services in Africa, such as M-Pesa-linked lending apps, use credit scoring models to suggest microloans or savings products. In Southeast Asia, platforms like Grab Financial or Paytm in India guide millions of first-time users into digital payments and loans. The benefit is clear: broader access to finance. Yet risks are heightened when consumers have limited capacity to question the models. A rejection or approval may be interpreted as absolute truth rather than a probabilistic outcome. In this context, algorithms restructure knowledge not only by filtering options but by shaping basic financial literacy, potentially locking users into dependent relationships with opaque systems.

Spotify offers another case where algorithmic curation directly impacts cultural knowledge. In developed markets, playlists such as "Discover Weekly" have become central to how listeners find new music. This has shifted the discovery process away from radio, peers, or personal exploration and toward algorithmic suggestions. Studies show that younger listeners increasingly attribute their musical taste to Spotify's recommendations rather than personal searching. In emerging markets, Spotify's impact is less uniform. In regions like South Asia or Africa, local competitors such as Gaana, JioSaavn, or Boomplay integrate regional content more directly, sometimes with human curation as a complement. Here, algorithms compete not only with other platforms but with enduring offline traditions of music sharing. The result is that algorithmic marketing reshapes musical knowledge strongly in some contexts but remains partial in others.

MercadoLibre, Latin America's largest e-commerce platform, also illustrates regional contrasts. In Argentina and Brazil, its recommendation systems and financing tools guide consumers through fragmented markets with limited retail infrastructure. The platform effectively educates users on what is available and at what price, structuring their market knowledge around its catalog. In contrast, consumers in developed economies, accustomed to wider competition and more transparent regulation, may find such tight integration intrusive. MercadoLibre's strength in Latin America underscores how algorithmic systems can thrive by filling gaps in market infrastructure, while in developed settings, they must coexist with stronger institutional checks.

Taken together, these cases show that algorithmic marketing is not a single, universal force but a context-dependent mechanism that reshapes knowledge differently across industries and geographies. Entertainment platforms like Netflix and Spotify demonstrate how algorithms influence cultural discovery, sometimes narrowing exposure to global rather than local content. Retail giants such as Amazon, Alibaba, and MercadoLibre highlight the tension between efficiency and fairness in pricing and product exposure, with trust outcomes varying between mature and emerging markets. Fintech services illustrate the highest stakes, where algorithms do not just filter choices but structure financial understanding itself. Across all cases, the same trade-offs emerge: personalization delivers convenience but can restrict autonomy; efficiency creates gains but may erode fairness; innovation accelerates but can deepen inequality. The comparative lesson is that algorithms are

not neutral. The comparative overview in Table 2 highlights how different platforms apply similar algorithmic principles while producing varied knowledge effects across markets.

Table 2 Summary of case illustrations and their knowledge effects across markets

Platform	Algorithmic marketing type	Knowledge restructuring effect	Market context
Netflix	Recommendation engine	Narrows discovery, reinforces viewing habits	Developed
Amazon	Dynamic pricing and ranking	Balances efficiency and fairness, affects trust	Both
Alibaba	Personalized bundling, gamified promotions	Channels attention and defines discovery at scale	Emerging
Spotify	Playlist curation and recommendation	Reshapes cultural discovery and taste formation	Developed
Fintech apps (e.g., Betterment, M-Pesa)	Credit scoring, automated advice	Alters financial literacy and autonomy	Both
MercadoLibre	Algorithmic product matching and pricing	Fills gaps in fragmented markets, builds platform-based knowledge	Emerging

They restructure knowledge differently depending on the maturity of markets, the literacy of consumers, and the institutional frameworks that shape their use. Figure 2 outlines the institutional asymmetry between developed and emerging markets that shapes how algorithmic personalization unfolds. This framework also identifies shared implications for fairness and autonomy, linking the case findings to broader governance debates (see Fig. 2).

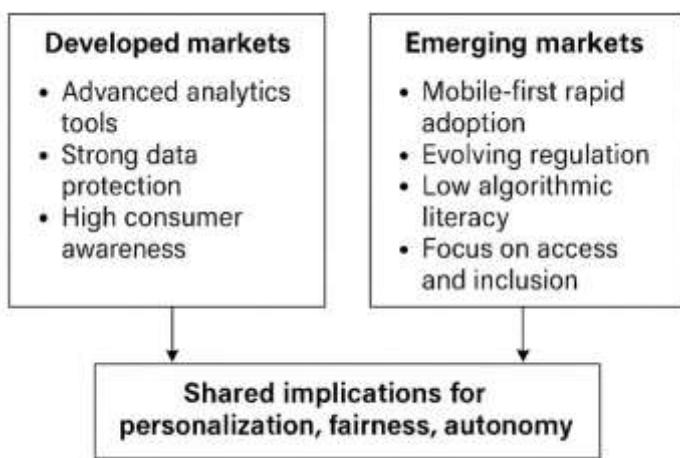


Fig. 2 Comparative framework showing structural and cultural differences between developed and emerging markets in data-driven marketing

DISCUSSION

Synthesis across levels

The analysis across micro, meso, and macro levels shows how data-driven marketing restructures knowledge in layered ways. At the micro level, consumers depend on algorithms to reduce complexity in decision making, yet

this reliance changes how they learn about markets. Recommendation systems, dynamic pricing, and personalization all teach users what to notice and what to ignore. Some gain efficiency, others feel manipulated, but in both cases the process of acquiring knowledge is reshaped.

At the meso level, firms use algorithms as knowledge infrastructures. Data from customer interactions becomes the foundation for new predictions, segments, and experiments. Organizations that integrate analytics into routines gain agility and innovation advantages. However, they also become dependent on models, with performance and fairness hinging on how those models are governed.

At the macro level, platforms and regulators define the boundaries of knowledge flows. Rules about ranking, transparency, and access to data determine what information circulates and who benefits. Global frameworks such as the EU Digital Services Act and AI Act illustrate how governance responds to asymmetries of power between platforms and users.

The case illustrations connect these levels. Netflix, Amazon, Alibaba, and fintech platforms show how micro behaviors, organizational choices, and systemic rules converge. Each platform demonstrates that data-driven marketing is not an isolated tool but part of a broader knowledge economy where control over information shapes both competition and consumer welfare.

Trade-offs

The evidence across domains highlights recurring trade-offs that marketers, regulators, and consumers cannot avoid. Personalization is often celebrated as a way to simplify decisions and improve satisfaction. Yet it also narrows the set of visible options, which can limit autonomy and reduce exposure to alternatives. The convenience of “just for you” recommendations must be weighed against the risk of reinforcing habits, preferences, or biases that the system has already detected.

Efficiency is another clear benefit. Algorithms process signals at a scale and speed that humans cannot match, allowing firms to allocate resources more effectively and capture demand in real time. However, efficiency gains often come at the expense of fairness. Dynamic pricing or targeted offers can feel discriminatory when consumers sense that similar users receive different treatment without explanation. Trust can erode quickly, and once lost, it is difficult for firms to rebuild.

Innovation, finally, is accelerated by algorithmic marketing. Firms experiment at lower cost, learn faster, and adapt offerings with greater precision. The trade-off lies in inequality. Large firms and dominant platforms can invest in data and models at levels that smaller rivals cannot match. This deepens asymmetries in knowledge and market power, raising questions about concentration and the diversity of consumer choice.

Framing knowledge

Central to these findings is the idea that data-driven marketing does more than refine tactics of promotion. It changes what counts as knowledge in markets. For consumers, the act of knowing a product, a price, or an alternative option increasingly depends on what an algorithm decides to reveal. This shifts learning from an open-ended process of search to a curated process of exposure. The line between discovery and design becomes blurred, with platforms effectively teaching users how to navigate markets.

For firms, algorithms turn data into actionable insight but also define which insights are even possible. Models frame problems in ways that emphasize prediction and optimization. Decisions about what to measure, which variables to prioritize, and how to score outcomes shape the organization’s understanding of customers. Knowledge becomes a product of model design as much as of human interpretation.

At the systemic level, platforms and regulators arbitrate whose knowledge matters. Rules about transparency, accountability, and access determine whether consumers can question algorithmic outcomes or whether firms can retain information advantages unchecked. In this sense, data-driven marketing is both a commercial tool and an epistemic structure. It decides not only how value is created but also who is able to learn and on what terms.

Implications for research and practice

The restructuring of consumer knowledge by algorithms carries several implications for both scholarship and managerial practice. For researchers, the evidence suggests that algorithmic marketing should be studied not only as a set of techniques but as part of a wider knowledge system. Questions of fairness, transparency, and accountability are inseparable from questions of efficiency or personalization. Future studies need to track how consumers interpret algorithmic cues across cultures and literacy levels, since awareness and coping strategies differ sharply between markets. Comparative research that links consumer psychology with regulatory design would be particularly valuable.

For practitioners, the lesson is that efficiency cannot be the only metric of success. Recommendation engines, dynamic pricing, and personalization may deliver immediate gains, but they also shape long-term perceptions of fairness and trust. Marketers must design explanations that ordinary users can understand and give them simple tools to adjust or challenge outcomes. Treating algorithmic marketing as a black box risks both reputational damage and regulatory pushback.

Policy makers and regulators, meanwhile, face the task of balancing innovation with safeguards. Data asymmetries and concentrated platform power make oversight unavoidable. Transparent rules about ranking, pricing, and targeting are not barriers to progress but conditions for sustaining legitimacy. The practice of marketing in the digital economy is now inseparable from these governance debates.

CONCLUSION AND FUTURE DIRECTIONS

This paper has argued that data-driven marketing is not simply a toolkit for improving promotional efficiency. It restructures the production and distribution of knowledge at the micro, meso, and macro levels of the digital economy. At the consumer level, algorithms filter and prioritize information, altering what people learn about markets. At the organizational level, firms integrate models into strategy and innovation, while becoming dependent on the assumptions embedded in those models. At the systemic level, platforms and regulators shape the flow of knowledge through governance rules and accountability mechanisms.

The case illustrations made these dynamics concrete. Netflix shows how personalization can simultaneously enhance and restrict discovery. Amazon highlights the efficiency–fairness trade-off in dynamic pricing. Alibaba demonstrates the power of algorithmic systems in one context but their limits in others. Fintech platforms reveal the stakes when algorithms guide financial literacy and decision-making. Spotify and MercadoLibre extend the evidence into cultural and regional domains. Taken together, the cases demonstrate that data-driven marketing operates differently across developed and emerging markets, but in every instance it structures what consumers know and how firms act.

Policy and managerial implications

For policymakers, the key issue is oversight of knowledge asymmetries. When platforms determine what consumers see, regulators must ensure transparency in ranking, recommendation, and pricing. Instruments such as the EU's Digital Services Act and forthcoming AI Act signal how transparency and accountability can be formalized. Similar frameworks could help emerging markets by ensuring that consumers with lower digital literacy are not disproportionately exposed to opaque systems. Policy needs to balance innovation with safeguards that protect autonomy and fairness.

For managers, data-driven marketing requires a shift in focus from short-term conversion to long-term trust. Dynamic pricing, recommendation engines, and personalization can boost immediate performance, but they also create expectations. If users feel misled or manipulated, credibility erodes quickly. Designing explanations that users can understand, offering opt-out or customization features, and monitoring fairness perceptions should be treated as core elements of marketing strategy. In fintech especially, where decisions shape financial well-being, managers must invest in clear communication and consumer education to avoid over-reliance on black-box models.

For researchers, the findings highlight the need for comparative and interdisciplinary work. Cultural and regulatory contexts strongly shape how algorithmic marketing restructures knowledge, yet most current research is concentrated in Western settings. More cross-national studies, combining consumer psychology, economics, and information systems, would add nuance to debates. There is also scope for methodological diversity. While econometric and experimental studies remain essential, conceptual synthesis and case-based approaches can illuminate structural dynamics that numbers alone may obscure.

Future research directions

Several areas warrant closer attention. Transparency remains central. Firms often disclose the presence of algorithms but rarely explain their rationale. Research could examine which forms of explanation improve comprehension without overwhelming users. Cross-cultural differences in algorithmic literacy also deserve further exploration. Evidence suggests that emerging market consumers may respond differently to personalization, which raises both opportunities for inclusion and risks of dependency. Regulation, too, remains a moving target. Scholars can contribute by evaluating how policies shape firm strategy and consumer outcomes across jurisdictions.

In sum, data-driven marketing is best understood as a restructuring force in the knowledge economy. It determines not only what consumers choose but also what they are able to know. Recognizing algorithms as epistemic structures helps clarify the stakes: the future of digital markets depends on how societies manage the trade-offs between personalization and autonomy, efficiency and fairness, innovation and inequality.

REFERENCES

1. Almatrafi, O., Johri, A., & Lee, H. (2024). A systematic review of AI literacy conceptualization, constructs, and implementation and assessment efforts (2019–2023). *Computers and Education Open*, 6, 100173. <https://doi.org/10.1016/j.caeo.2024.100173>
2. Alon-Barkat, S., & Busuioc, M. (2023). Human–AI interactions in public sector decision making: “Automation bias” and “selective adherence” to algorithmic advice. *Journal of Public Administration Research and Theory*, 33(1), 153–169. <https://doi.org/10.1093/jopart/muac007>
3. Amrit, C., & Narayananappa, A. K. (2025). An analysis of the challenges in the adoption of MLOps. *Journal of Innovation & Knowledge*, 10(1), 100637. <https://doi.org/10.1016/j.jik.2024.100637>
4. Bambauer-Sachse, S., & Young, A. (2023). Consumers’ intentions to spread negative word of mouth about dynamic pricing for services: Role of confusion and unfairness perceptions. *Journal of Service Research*, 27(3). <https://doi.org/10.1177/10946705231190871>
5. Bernardo, B. M., Mamede, H. S., Barroso, J. M., & Santos, V. M. (2024). Data governance & quality management-Innovation and breakthroughs across different fields. *Journal of Innovation & Knowledge*, 9(4), 100598. <https://doi.org/10.1016/j.jik.2024.100598>
6. Board of Governors of the Federal Reserve System. (2023). Federal Reserve Board issues guidance on supervisory expectations for banks using artificial intelligence in credit decisions (Press Release). Board of Governors of the Federal Reserve System.
7. Cao, X., De Zwaan, L., & Wong, V. (2025). Building trust in robo-advisory: Technology, firm-specific and system trust. *Qualitative Research in Financial Markets*. <https://doi.org/10.1108/QRFM-02-2024-0033>
8. Chen, D., Zhou, Y., Lin, X., & Jin, K. (2025). Customer and provider bounded rationality in on-demand service platforms. *European Journal of Operational Research*, 320(2), 389–401. <https://doi.org/10.1016/j.ejor.2024.08.013>
9. Colorado General Assembly. (2024, May 17). SB24-205 Consumer protections for artificial intelligence. Retrieved from Colorado General Assembly: <https://leg.colorado.gov/bills/sb24-205>
10. Competition and Markets Authority. (2022). Online choice architecture: How digital design can harm competition and consumers. (Discussion paper CMA155). Competition and Markets Authority.
11. Consumer Financial Protection Bureau. (2023, September 19). CFPB issues guidance on credit denials by lenders using artificial intelligence. Retrieved from Consumer Financial Protection Bureau: <https://www.consumerfinance.gov/about-us/newsroom/cfpb-issues-guidance-on-credit-denials-by-lenders-using-artificial-intelligence/>

12. Coulter, M. (2024, March 26). Why is the EU probing Big Tech under the Digital Markets Act? Retrieved from Reuters: <https://www.reuters.com/technology/why-is-eu-probing-big-tech-under-digital-markets-act-2024-03-25/>

13. Court of Justice of the European Union. (2025). Data protection: The General Court dismisses an action for annulment of the new framework for the transfer of personal data between the European Union and the United States (Press Release No. 106/25). Communications Directorate, Press and Information Unit.

14. Davenport, T., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. *Journal of the Academy of Marketing Science*, 48, 24–42. <https://doi.org/10.1007/s11747-019-00696-0>

15. European Commission. (2023). Gatekeepers under the Digital Markets Act. Retrieved from European Commission: https://digital-markets-act.ec.europa.eu/gatekeepers_en

16. European Commission. (2025, February 12). DSA Very large online platforms and search engines. Retrieved from Shaping Europe's digital future: <https://digital-strategy.ec.europa.eu/en/policies/dsa-vlops>

17. European Commission. (2025, July 3). FAQs: DSA data access for researchers. Retrieved from European Centre for Algorithmic Transparency: https://algorithmic-transparency.ec.europa.eu/news/faqs-dsa-data-access-researchers-2025-07-03_en

18. European Union. (2022, October 19). Regulation (EU) 2022/2065 of the European Parliament and of the Council of 19 October 2022 on a Single Market for Digital Services (Digital Services Act), Article 39. Retrieved from EUR-Lex: <https://eur-lex.europa.eu/eli/reg/2022/2065/oj/eng>

19. European Union. (2024, July 12). Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024 laying down harmonised rules on artificial intelligence (Artificial Intelligence Act). Retrieved from EUR-Lex: <https://eur-lex.europa.eu/eli/reg/2024/1689/oj/eng>

20. Federal Trade Commission. (2022). Bringing dark patterns to light. Federal Trade Commission.

21. Fosso Wamba, S. (2022). Impact of artificial intelligence assimilation on firm performance: The mediating effects of organizational agility and customer agility. *International Journal of Information Management*, 6, 102544. <https://doi.org/10.1016/j.ijinfomgt.2022.102544>

22. G7. (2023). Hiroshima Process International Code of Conduct for Organizations Developing Advanced AI. G7 Presidency of Japan.

23. Govea, J., Gutierrez, R., & Villegas-Ch, W. (2024). Transparency and precision in the age of AI: Evaluation of explainability-enhanced recommendation systems. *Frontiers in Artificial Intelligence*, 7, Article 1410790. <https://doi.org/10.3389/frai.2024.1410790>

24. Grimmelikhuijsen, S. (2022). Explaining why the computer says no: Algorithmic transparency affects the perceived trustworthiness of automated decision-making. *Public Administration Review*, 82(5). <https://doi.org/10.1111/puar.13483>

25. Helberger, N., Pierson, J., & Poell, T. (2017). Governing online platforms: From contested to cooperative responsibility. *The Information Society*, 34(9), 1–14. <https://doi.org/10.1080/01972243.2017.1391913>

26. Herhausen, D., Bernritter, S. F., Ngai, E. W., Kumar, A., & Delen, D. (2024). Machine learning in marketing: Recent progress and future research directionsEditorial for the Special Issue “Machine Learning in Marketing”. *Journal of Business Research*, 170, 114254. <https://doi.org/10.1016/j.jbusres.2023.114254>

27. Homburg, C., & Tischer, M. (2023). Customer journey management capability in business-to-business markets: Its bright and dark sides and overall impact on firm performance. *Journal of the Academy of Marketing Science*, 51, 1046–1074. <https://doi.org/10.1007/s11747-023-00923-9>

28. Hossain, M. A., Akter, S., Yanamandram, V., & Fosso Wamba, S. (2023). Data-driven market effectiveness: The role of a sustained customer analytics capability in business operations. *Technological Forecasting and Social Change*, 194, 122745. <https://doi.org/10.1016/j.techfore.2023.122745>

29. ISO. (2023). ISO/IEC 42001 Artificial intelligence management systems. International Organization for Standardization.

30. Jones-Jang, S. M., & Park, Y. J. (2023). How do people react to AI failure? Automation bias, algorithmic aversion, and perceived controllability. *Journal of Computer-Mediated Communication*, 28(1), zmac029. <https://doi.org/10.1093/jcmc/zmac029>

31. Kempf, A.-L., & Seel, M. (2024, February 20). Recommender systems: how the Digital Services Act changes things for platforms. Retrieved from Pinsent Masons: <https://www.pinsentmasons.com/out-law/analysis/how-the-digital-services-act-changes-things-for-platforms>

32. Koning, R., Hasan, S., & Chatterji, A. (2022). Experimentation and start-up performance Evidence from A/B testing. *Management Science*, 68(9). <https://doi.org/10.1287/mnsc.2021.4209>

33. Leichtmann, B., Humer, C., Hinterreiter, A., Streit, M., & Mara, M. (2023). Effects of explainable artificial intelligence on trust and human behavior in a high-risk decision task. *Computers in Human Behavior*, 139, 107539. <https://doi.org/10.1016/j.chb.2022.107539>

34. Liu, N., Hu, X. E., Savas, Y., Baum, M. A., Berinsky, A. J., Chaney, A. J., Lucas, C., Mariman, R., de Benedictis-Kessner, J., Guess, A. M., Knox, D., & Stewart, B. M. (2025). Short-term exposure to filter-bubble recommendation systems has limited polarization effects: Naturalistic experiments on YouTube. *Proceedings of the National Academy of Sciences*, 122(8), e2318127122. <https://doi.org/10.1073/pnas.2318127122>

35. Lu, Z., Min, Q., Jiang, L., & Chen, Q. (2024). The effect of the anthropomorphic design of chatbots on customer switching intention when the chatbot service fails: An expectation perspective. *International Journal of Information Management*, 76, 102767. <https://doi.org/10.1016/j.ijinfomgt.2024.102767>

36. Ma, L., & Sun, B. (2020). Machine learning and AI in marketing – Connecting computing power to human insights. *International Journal of Research in Marketing*, 37(3), 481–504. <https://doi.org/10.1016/j.ijresmar.2020.04.005>

37. Mahmud, H., Islam, A. N., Luo, X. (, & Mikaleff, P. (2024). Decoding algorithm appreciation: Unveiling the impact of familiarity with algorithms, tasks, and algorithm performance. *Decision Support Systems*, 179, 114168. <https://doi.org/10.1016/j.dss.2024.114168>

38. Mehrabi, H., Chen, Y. K., & Keramati, A. (2024). Developing customer analytics capability in firms of different ages: Examining the complementarity of outside-in and inside-out resources. *Industrial Marketing Management*, 119, 108–121. <https://doi.org/10.1016/j.indmarman.2024.04.009>

39. Mikko Vesterinen, Mero, J., & Skippari, M. (2025). Big data analytics capability, marketing agility, and firm performance: a conceptual framework. *Journal of Marketing Theory and Practice*, 33(2), 310-330. <https://doi.org/10.1080/10696679.2024.2322600>

40. Monem, S., & Youssef, C. (2020, October). How to prepare for a growing e-commerce moment: Singles' Day. Retrieved from Think with Google: <https://www.thinkwithgoogle.com/intl/en-emea/consumer-insights/consumer-trends/how-to-prepare-for-a-growing-e-commerce-moment-singles-day/>

41. Ning, X., Lu, Y., Li, W., & Gupta, S. (2024). How transparency affects algorithmic advice utilization: The mediating roles of trusting beliefs. *Decision Support Systems*, 114273. <https://doi.org/10.1016/j.dss.2024.114273>

42. Nizette, F., Hammedi, W., & Van Riel, A. (2024). Why should I trust you? Influence of explanation design on consumer behavior in AI-based services. *Journal of Service Management*. <https://doi.org/10.1108/JOSM-05-2024-0223>

43. OECD. (2023). Algorithmic competition - Background note (DAF/COMP(2023)3). OECD.

44. OECD. (2024, May). AI principles. Retrieved from OECD: <https://www.oecd.org/en/topics/ai-principles.html>

45. Oeldorf-Hirsch, A., & Neubaum, G. (2023). Attitudinal and behavioral correlates of algorithmic awareness among German and U.S. social media users. *Journal of Computer-Mediated Communication*, 28(5), zmad035. <https://doi.org/10.1093/jcmc/zmad035>

46. Starke, C., Baleis, J., Keller, B., & Marcinkowski, F. (2022). Fairness perceptions of algorithmic decision-making: A systematic review of the empirical literature. *Big Data & Society*, 1–16. <https://doi.org/10.1177/20539517221115189>

47. UNESCO. (2021). Recommendation on the ethics of artificial intelligence. UNESCO. Retrieved from <https://www.unesco.org/en/artificial-intelligence/recommendation-ethics>

48. Verhulst, S. G. (2022). The ethical imperative to identify and address data and intelligence asymmetries. *AI & Society*, 39(3), 1049–1057. <https://doi.org/10.1007/s00146-022-01410-5>

49. Vomberg, A., Homburg, C., & Sarantopoulos, P. (2024). Algorithmic pricing: Effects on consumer trust and price search. *International Journal of Research in Marketing*. <https://doi.org/10.1016/j.ijresmar.2024.10.006>

50. Voorveld, H. A., Meppelink, C. S., & Boerman, S. C. (2024). Consumers' persuasion knowledge of algorithms in social media advertising: Identifying consumer groups based on awareness, appropriateness, and coping ability. *International Journal of Advertising*, 43(6), 960–986. <https://doi.org/10.1080/02650487.2023.2264045>

51. Wen, H., Zhang, L., Sheng, A., Li, M., & Guo, B. (2022). From “Human-to-Human” to “Human-to-Non-human” – Influence factors of artificial intelligence-enabled consumer value co-creation behavior. *Frontiers in Psychology*, 13. <https://doi.org/10.3389/fpsyg.2022.863313>
52. Wu, Z., Yang, Y., Zhao, J., & Wu, Y. (2022). The impact of algorithmic price discrimination on consumers' perceived betrayal. *Frontiers in Psychology*, 13, Article 825420. <https://doi.org/10.3389/fpsyg.2022.825420>
53. Yi, S., Kim, D., & Ju, J. (2022). Recommendation technologies and consumption diversity: An experimental study on product recommendations, consumer search, and sales diversity. *Technological Forecasting and Social Change*, 178, 121486. <https://doi.org/10.1016/j.techfore.2022.121486>
54. Zangerle, E., & Bauer, C. (2022). Evaluating recommender systems: Survey and framework. *ACM Computing Surveys*, 55(8), 1–38. <https://doi.org/10.1145/3556536>
55. Zarour, M., Alzabut, H., & Al-Sarayreh, K. T. (2025). MLOps best practices, challenges and maturity models A systematic literature review. *Information and Software Technology*, 183, 107733. <https://doi.org/10.1016/j.infsof.2025.107733>
56. Zheng, S., Tong, S., Kwon, H. E., Burtch, G., & Li, X. (2025). Recommending what to search: Sales volume and consumption diversity effects of a query recommender system. *Marketing Science*, 44(3), 491–732. <https://doi.org/10.1287/mksc.2024.1121>