2. Bowker, L. (2020). Machine translation literacy: Helping students and teachers understand and use MT.
Language Learning & Technology, 24(3), 1–15. https://doi.org/10.10125/44739
3. Freitag, M., Grangier, D., & Caswell, I. (2023). Machine translation performance across domains.
Transactions of the Association for Computational Linguistics, 11, 1–15.
https://doi.org/10.1162/tacl_a_00474
4. Georgakopoulou, P., Gaspari, F., & Ramos Pinto, S. (2023). Idiomaticity and cultural references in neural
machine translation. Translation, Cognition & Behavior, 6(2), 197–220.
https://doi.org/10.1075/tcb.00065.geo
5. Jiao, W., Wang, W., Huang, J., Wang, X., Shi, S., & Tu, Z. (2023). Is ChatGPT a good translator? Yes
with GPT-4 as the engine. arXiv preprint arXiv:2301.08745. https://arxiv.org/abs/2301.08745
6. Klimova, B., & Pikhart, M. (2023). The use of AI translation tools in foreign language teaching: A case
study. Education Sciences, 13(2), 123. https://www.mdpi.com/2227-7102/13/2/123
7. Kocmi, T., Federmann, C., & others. (2024). Findings of the WMT 2024 shared tasks. In Proceedings of
the Seventh Conference on Machine Translation (WMT 2024). Association for Computational
Linguistics. https://aclanthology.org
8. Lai, V., Chen, C., & Li, J. (2024). Challenges of idiom translation in neural MT: A case study. iScience,
27(3), 108765. https://doi.org/10.1016/j.isci.2024.108765
9. Lee, J. (2021). Challenges in neural machine translation: A case study on handling idiomatic expressions.
Journal of Artificial Intelligence Research, 70, 135–150.
https://www.jair.org/index.php/jair/article/view/12182
10. Lee, J. (2021). Learner perceptions of machine translation in EFL writing. CALICO Journal, 38(1), 91–
111. https://doi.org/10.1558/cj.40415
11. Moneus, A. M., & Sahari, Y. (2024). Artificial intelligence and human translation: A contrastive study
based on legal texts. Heliyon, 10(6), e28106. https://doi.org/10.1016/j.heliyon.2024.e28106
12. Niño, A. (2020). Evaluating the use of machine translation in foreign language learning: A review of
literature. Computer Assisted Language Learning, 33(7), 789–812.
https://doi.org/10.1080/09588221.2019.1609570
13. Rico, C., & Torrejón, E. (2022). Machine translation post-editing competence: A key component in
translator education. The Interpreter and Translator Trainer, 16(1), 45–62.
https://doi.org/10.1080/1750399X.2021.1934709
14. Specia, L., Blain, F., & Scarton, C. (2021). Evaluating and estimating machine translation quality.
Natural Language Engineering, 27(1), 65–81. https://doi.org/10.1017/S1351324920000274
15. Ubhayawardhana, P., & Hansani, H. (2023). A study on the effectiveness of using Google Translate in
legal translation: With special reference to selected legal documents of the Registrar General's
Department. Journal of Language and Law, 12(1), 78–95.
https://www.researchgate.net/publication/372370077_A_Study_on_the_Effectiveness_of_Using_Goog
le_Translate_in_Legal_Translation_With_Special_Reference_to_Selected_Legal_Documents_of_the_
Registrar_General%27s_Department
16. Zeng, Z., Wang, S., & Sun, H. (2023). Accuracy and risks of AI translation in medical communication:
A comparative study. Journal of Medical Internet Research, 25, e43568. https://doi.org/10.2196/43568