

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue X October 2025

Assessment of Soil Quality of Automobile Mechanic Workshops in Obio/ Akpor Local Government Area of Rivers State, Nigeria

Nwagwu, Apollos Chuks and Ogbodo, Ogomegbunam Immaculate

Department of Environmental Resource Management, Faculty of Environmental Studies Abia state University, Uturu

DOI: https://dx.doi.org/10.47772/IJRISS.2025.910000031

Received: 02 October 2025; Accepted: 07 October 2025; Published: 03 November 2025

ABSTRACT

Scientists wanted to find out if the soil around car repair shops in some neighborhoods in Nigeria has dirty metals in it. These metals can come from things like car parts and oils used at the workshops. To do this, they took small samples of dirt from four different areas where cars are fixed. They also took some samples from nearby places that weren't car workshops to see what normal soil looks like. The scientists used special tools to measure how dirty the soil is and found that, overall, the soil is somewhat polluted, especially in one area called Rumuosi. Because of this, they think it's important to make rules and take action to clean up the soil and keep the environment safe. They suggest that people who run the workshops should follow better practices to prevent more pollution and that cleaning the dirty soil would help make the environment healthier. They tested the soil to see how much of certain metals like lead, cadmium, manganese, iron, and copper were there. They found that these metals were in the soil, especially iron and manganese, and sometimes the levels were higher than in the clean areas. This means the soil near the workshops is getting polluted with these metals, likely because of the work done there.

Keywords: soil quality, automobile mechanic workshops operation and activities.

INTRODUCTION

Pollution is a big problem around the world. Many people get sick because of harmful chemicals and waste that humans produce. The soil, which is the ground we walk on, also collects this waste from people and factories. When humans and factories don't control their waste, more dangerous metals, called heavy metals, end up in our environment. These metals are very heavy and include things like mercury, lead, manganese, arsenic, and copper. Heavy metals are elements that are much denser than water. Some of these metals occur naturally in the earth, in rocks and soil, but when humans do certain activities, like working on cars, they cause more of these metals to build up in the environment. For example, in Nigeria, activities like fixing cars at mechanic workshops can make the levels of heavy metals in the soil and water go up too high. This is dangerous because too many heavy metals can harm plants, animals, and even people.

For example, car emissions often include chemicals from paints, oils, and fluids, which add more heavy metals to the environment. Waste from car repairs can also leak into rivers, lakes, and underground water because land, air, water, and soil are all connected. Studies have shown that areas with many car repair activities have higher levels of dangerous metals like cadmium, copper, lead, nickel, and zinc than normal. The main sources of these metals are lead in gasoline and zinc from tires.

There are many car repair shops all over Obio/Akpor, especially along busy roads and markets. These shops often throw their waste on the ground everywhere, which pollutes the environment. The waste from these shops contains harmful metals that can hurt plants and animals. It also kills helpful tiny microbes in the soil that clean up pollution. Since the water underground is very close to the surface in this area, these dangerous metals can also get into the water we drink. Because of this pollution, people are worried, and scientists want to study the soil around these workshops to see how clean or dirty it is.

MATERIALS AND METHOD

Study Area

Obio/Akpor is next to other areas: Ikwerre to the north, Port Harcourt city to the south, Oyibo to the east, and Emeoha to the west. The city of Port Harcourt, which is an important city in Nigeria, is made up of Obio/Akpor, Eleme, and Port Harcourt city areas. This city sits on solid ground and is about 66 kilometers from the Atlantic Ocean. Port Harcourt is a busy city with lots of business activities and is one of the biggest cities in Rivers State. This study is about four communities called Eliozu, Elelewon, Rumuosi, and Choba. These communities are in a place called Obio/Akpor, which is part of Rivers State in Nigeria. Rivers State is in a region called the Niger Delta, in Nigeria.

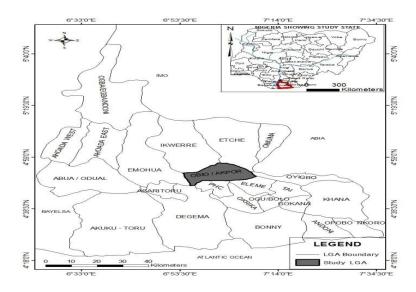


Figure 1. Rivers State Showing Obio/Akpor L.G.A.

Source: Rivers State ministry of land and survey 2024: updated.

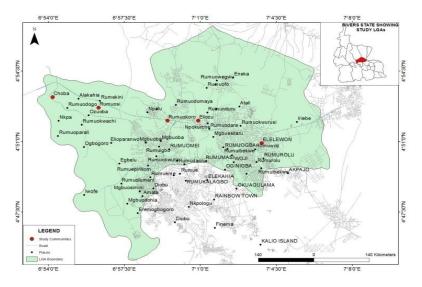


Figure 2: Obio/Akpor L.G.A showing the study area.

Source: Rivers State ministry of land and survey 2024: update

Population of the Study

This study is about the dirt and soil found near car repair shops in Obio/Akpor, a place in Rivers state. The study looks at all the spots in that area, including the exact locations marked by their map coordinates. Scientists took samples of the soil from these spots to learn more about them.

Sampling Techniques

Simple purposive sampling methods were used to determine the sample size of the study area.

The various strata of the study areas are; Eliozu, Rumuosi, Choba, and Elelewon communities in Obio/Akpor Local Government Area, and the control were also collected at Oginigba Opposite Next Cash and Carry Garden and Iriebe School to land by The Promise Glorious Ministry Garden.

There were inventories of all the automobile workshops in Obio/Akpor Local Government Area, a total of 48 mechanic workshops were identified as shown in

Table 1: Number of automobile workshops and the communities covered in the study area.

Communities in Obio/Akpor Local Government Area.	Number of mechanic workshops.
Eliozu	9
Rumosi	12
Choba	15
Elelwon	12
Total	48

Methods of Data Collection

The soil samples were collected from the automobile workshops locations using soil auger at about 0-20cm depth. The samples were collected along side with the geographical coordinate using Geographical Information System GPS (ARMIN GPS72H) as shown in table 3.2.

Twelve (12) samples were collected from four (4) different communities in the study areas and two samples were also collected from the Control sites. A total of fourteen (14) samples were collected.

The samples were thoroughly mixed and transferred into clean polythene bag and were labeled E1, E2, for Eliozu, R1, R2, R3 for Rumuosi, C1, C2, C3, C4, for Choba, EL1, EL2, and EL3 for Elelewon, and control 1 and 2 in line with the transect for the soils for onward laboratory analysis to determine their level of contaminations by heavy metals (Manganese Mn, Lead Pb, Iron Fe, and Cadmium Cd), and physicochemical parameters.

Table: 2 coordinate locations of the various samples collections GPS (ARMIN GPS 72H)

Name/ locations	Longitudes	Latitudes
Choba, sample 1	6092.2758	4º88.720
(Redeem church)		
Choba, sample 2	6092.225	4º 88.740
(East west road)		
Choba, sample 3	6º 91.516	40 89.365
(Helena heaven)		

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue X October 2025

Choba, sample 4	60 91.589	40 89.730	
(Institute of Petroleum)			
Elelewon, sample 1	70 06.360	40 85.138	
(opp. Mosque			
Elelewon, sample 2	70 06.587	40 82.557	
(old refinery road)			
Elelewon, sample 3	7º 06. 648	40 82.358	
(Worji road)			
Eliozu, sample 1	70 02.088	40 85.935	
(Skyfallmagaloung)			
Eliozu, sample 2	70 02.124	40 86.033	
(ABC Bus park)			
Rumuosi, sample 1	6º 95.410	40 87.888	
(East west road)			
Rumuosi, sample 2	60 95.324	40 87. 890	
(Abdul-quadri ventures)			
Rumuosi, sample 3	60 92.779	40 88.425	
Control -1 (Oginigba)	70 03.513	40 82.706	
Control -2 (Iriebe)	7º 11.298	40 87.015	
	1		

Method of Data Analysis

Sample analysis results are presented in mg/kg. Scientists have set safety levels to certain heavy metals to keep people safe. Some of these levels are also meant to protect fish, plants, and soil that get dirty water or waste from homes and farms.

In this study, we tested for the physicochemical and heavy metals parameters using apparatus and procedures as specified by AOAC (2005) described below.

Determination of Heavy Metals (Buck scientific VGP 2010/2011)..... (6)

Apparatus: Digestion bottles, Whatman No 9 filter paper, oven, and PerkinElmer Precise Analyst 200 atomic absorption spectrophotometer.

Reagent: 2 MHNO₃

Procedure: Approximately 1.0 gram of each soil sample was carefully weighed and transferred into individual 50-milliliter digestion tubes. To each tube, 10 milliliters of a 2 molar solution of nitric acid (HNO) were added

to facilitate the digestion process. The samples were then subjected to digestion for duration of 2 hours, during which they were gently shaken every 20 minutes to ensure thorough mixing and effective breakdown of the soil matrix. After completing the digestion period, the resulting solutions were carefully filtered into clean 25-milliliter volumetric flasks to remove any particulate matter. The filtrates were then carefully diluted to the marked volume with deionized water, ensuring consistent volume and concentration across all samples. These diluted solutions were subsequently stored in polyethylene bottles to prevent contamination and degradation until they were ready for analysis. The prepared samples were analyzed for the presence and concentration of several trace elements, including lead (Pb), nickel (Ni), zinc (Zn), cadmium (Cd), chromium (Cr), copper (Cu), arsenic (As), beryllium (Be), barium (Ba), cobalt (Co), and mercury (Hg). The analysis was performed using a Buck Scientific VGP 2010/2011 Atomic Absorption Spectrometer, a precise instrument suitable for detecting and quantifying trace metal concentrations. To ensure accuracy and reliability of the results, blank determinations were also conducted by processing samples without soil to account for any background signals or contamination.

Calculation

Heavy metal concentration $(mg/kg) = (M-B) \times V$

W

Where:

M = Concentration (mg/L) of metal in the sample solution from AAS reading.

B = Concentration (mg/L) of metal in the blank solution from AAS reading

W = Weight (g) of soil sample used for digestion

V = Final volume (mL) of the digestion.

RESULTS AND DISCUSSION

Results of analyzed soils collected in close proximity from 12 locations are presented alongside with the control experiment of the soil taken far way from automobile workshops. The heavy metals tested for are Lead (Pb), Cadmium (Cd), Iron (Fe), Manganese (Mn) and Copper (Cu) alongside with the physicochemical analysis.

Physicochemical Characteristics In Soil Of Mechanic Workshops In Obio/Akpor Lga.

Table 3 shows a summary of the important soil properties, like how the soil feels and what it's made of, for samples collected from the mechanic workshop area. This also shows the average levels of soil properties, and comparison with controls that is, an area far away and not affected by the activities of automobile workshops.

pН

The soil samples exhibited alkaline characteristics, with pH values ranging from 6.44 to 8.91. Among the sites, Eliozu recorded the highest average pH level of 7.62, closely followed by Choba, which had an average pH of 7.60. Rumuosi's soil had an average pH of 7.02, while Elelewon experienced the lowest pH reading of 6.64, as detailed in Table 3. The control samples showed an average pH of 6.79, which was generally lower than the pH values observed across all the study locations, except for Elelewon, where the pH was comparable. It is important to note that soil pH plays a crucial role in influencing solute concentrations, as well as the processes of sorption and desorption of contaminants within the soil matrix. Additionally, the availability of heavy metals in soil is known to be pH-dependent (Iwegbue et al., 2006; Gonzalez-Fernandez et al., 2008). Most of the soils examined in this study fell within the pH range of 6.0 to 9.0, a range in which many metals tend not to exist in their free, soluble form. Consequently, within this pH interval, metals are less likely to be bioavailable for uptake by plants and microorganisms (Porteus, 1985).

Electrical conductivity

The measured electrical conductivity (EC) values across the sampled sites ranged from a minimum of 1090 μ S/cm to a maximum of 1320 μ S/cm. Among the locations, Choba exhibited the highest average electrical conductivity, registering a value of 1250 μ S/cm. This was followed by Elelewon, which had an average EC of 1170 μ S/cm, and Eliozu, with an average of 1130 μ S/cm. The site with the lowest average electrical conductivity was Rumuosi, where the EC was recorded at 1110 μ S/cm. When considering the control samples, the overall average electrical conductivity was observed to be 1100 μ S/cm. This value was notably lower than the average EC values obtained from soil samples collected from all the other sites, indicating a slight variation in soil properties across locations. It is important to note that none of the measured electrical

Conductivity values exceeded the critical threshold of $4000 \,\mu\text{S/cm}$, a level at which soils are typically classified as saline according to Donahue and Miller (1990). This suggests that, despite the variation in EC among the different sites, none of the soils were considered saline, which has implications for soil suitability and plant growth in these areas.

Soil Organic Matter

The soil organic matter ranged from 2.3 - 10.8 %. The Elelewon had the highest average soil organic matter of 7.63 %, followed by 6.67 % in Eliozu, 5.46 in Rumuosi and the

Table 3 Physicochemical characteristic of soil samples collected in Mechanic workshop in Obio/Akpor LGA.

SAMPLE NAME Ph Conduct		Conductivity,	TOC, %	Nitrate, mg/kg	Reg Phosphate, mg/kg		
Choba I	6.44	1130	2.42	4.74	0.31		
Choba 2	8.51	1300	2.76	5.54	0.09		
Choba 3	8.91	1320	2.76	8.96	0.09		
Choba 4	6.55	1250	2.3	9.44	0.07		
Mean	7.60	1250	2.56	7.17	0.14		
Range	6.44-8.91	1130-1320	2.30-2.76	4.74-9.44	0.07-0.31		
Elelewon I	6.57	1170	7.13	3.22	0.12		
Elelewon II	6.68	1170	10.8	5.72	0.16		
Elelewon III	6.67	1180	4.95	5.90	0.21		
Mean	6.64	1170	7.63	4.95	0.16		
Range	6.57-6.68	1170-1180	4.95-10.8	3.22-5.90	0.12- 0.21		
Eliozu I	8.22	1140	5.06	3.94	0.08		
Eliozu 2	7.02	1110	8.28	8.06	0.19		
Mean	7.62	1130	6.67 6.00		0.14		
Range	7.02-8.22	1110-1140	5.06-8.28 3.94-8.06		0.08-0.19		
Rumuosi I	iosi I 6.81 1090		4.83	4.22	0.15		

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue X October 2025

Rumuosi 2	6.96	1100	4.03	3.86	0.14		
Rumuosi 3	7.28	1140	7.48	10.3	0.26		
Mean	7.02	1110	5.45	6.13	0.18		
Range	6.81-7.28	1090-1140	4.03-7.48	3.86-10.3	0.14-0.26		
Control 1	6.76	1097	5.28	29.58	0.29		
Control 2	6.82	1095	3.24	27.34	0.25		
Mean	6.79	1100	4.26	28.5	0.27		
Range	6.76-6.82	1095-10.97	3.24-5.28	27.3-29.6	0.25-0.29		

Lowest, 2.56 were obtained in Choba (Table 3). The average soil organic matter content in the control samples was measured at 4.26, which was comparatively lower than the mean organic matter levels observed across all other sampled sites. However, it is noteworthy that the control sites still exhibited higher organic matter content than the site at Choba. The elevated levels of soil organic matter detected in the soils from the mechanic workshops suggest a likely accumulation of organic materials, which is commonly associated with the addition of carbon-rich substances. In this study, such an increase can be attributed to the presence of used oils and other carbonated fluids typically found in mechanic workshop environments. According to research by Osuji et al. (2006), these organic inputs may stimulate the proliferation of soil micro-organisms, which play a crucial role in decomposing organic compounds within the soil matrix. The amount of organic matter observed in these soils has been linked by Akoto et al. (2008) to its potential ability to bind toxic ions, thereby influencing soil contaminant dynamics. Furthermore, organic matter in soils can act as a key factor in the immobilization of heavy metals, especially under strongly acidic conditions, by forming insoluble complexes. Conversely, under weakly acidic to alkaline conditions, organic matter can facilitate the mobilization of metals by creating soluble organic-metal complexes. This dual role of organic matter in either sequestering or mobilizing metals is welldocumented, with Brümmer and Herms (1982) providing foundational insights into these processes. Overall, the presence and quantity of organic matter in the soils from these sites highlight the complex interactions between organic inputs, microbial activity, and metal mobility, which are critical for understanding soil health and contamination potential.

Soil Phosphate

The concentration of phosphate in the soil samples varied between 0.07 mg/kg and 0.31 mg/kg across the different sites. Among these locations, Rumuosi exhibited the highest average soil phosphate level, measuring approximately 0.18 mg/kg. This was followed by Elelewon, which had an average of about 0.16 mg/kg. The lowest average soil phosphate concentrations were observed in Choba and Eliozu, both recording roughly 0.14 mg/kg. Notably, the control samples, which were not subjected to the same conditions as the test sites, showed a higher average soil phosphate concentration of 0.27 mg/kg. This value surpassed the mean concentrations observed across all the sampled sites. In soils, phosphorus exists in two primary forms: organic and inorganic (mineral). Its availability is generally limited because it tends to have low solubility in soil matrices. The decomposition of organic materials and crop residues significantly contributes to the pool of available phosphorus in the soil environment, enhancing its accessibility for plant uptake. This process plays an essential role in maintaining soil fertility and supporting plant growth, as detailed in resources such as www.smart-fertilizer.com/articles/phosphorus.

Soil Nitrate

The soil nitrate concentration ranged from 3.22 - 10.3 mg/kg. The Choba had the highest average soil nitrate of 7.17 mg/kg, followed by 6.13 mg/kg in Rumuosi, 6.00 mg/kg in Eliozu and the lowest, 4.95 mg/kg, and was

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue X October 2025

obtained in Elelewon (Table 3). The soil nitrate concentration of the control samples was 28.5 mg/kg, which was higher than the average concentration of the soil collected in all the sites.

Heavy Metals Concentration Of Various Soils Of Mechanic Workshops In Obio/Akpor Lga.

Table 4. Presented data on the concentrations of various heavy metals found in soil samples collected from different mechanic workshops within the study area. It also provided the mean index concentrations of these heavy metals in the soils of the mechanic workshop sites and comparisons with the control sites as well as with International and National regulatory established limits.

The measured concentrations of lead (Pb), cadmium (Cd), manganese (Mn), iron (Fe), and copper (Cu) across all the mechanic workshops ranged from 0.78 to 7.55 milligrams per kilogram (mg/kg), 0.02 to 0.09 mg/kg, 2.38 to 7.63 mg/kg, 25.8 to 29 mg/kg, and 0.59 to 4.03 mg/kg, respectively. These values indicate the variability in heavy metal contamination levels among different workshops within the study area. The analysis of the data revealed a pattern in the extent of pollution caused by these metals, with iron (Fe) exhibiting the highest concentrations, followed by manganese (Mn), lead (Pb), copper (Cu), and cadmium (Cd). This trend suggests that iron contamination was most prevalent in the soil samples, while cadmium exhibited the lowest levels among the metals assessed. Overall, the findings underscore the significance of iron and manganese as the dominant pollutants in the soils of the mechanic workshops, highlighting potential environmental and health risks associated with heavy metal accumulation in these areas.

Lead

The highest average concentrations of lead (Pb) recorded were found in Rumuosi, with a mean value of 5.05 mg/kg. This was followed by Elelewon, which had an average of 3.07 mg/kg. Choba exhibited a mean concentration of 2.43 mg/kg, while Eliozu displayed the lowest mean level at 1.88 mg/kg. These concentrations significantly exceeded the levels observed at the control site, where the average Pb concentration was only 0.79 mg/kg. However, despite being higher than the control, these values remained below the permissible limits set by regulations in various countries including WHO. In comparison, the Pb levels obtained in this study were considerably lower than the 1162 mg/kg reported by Nwachukwu et al. (2011) for an auto mechanic workshop area in Owerri, Southeast Nigeria. The relatively high mean concentrations observed in these locations highlight the widespread environmental contamination with lead, primarily attributable to human activities, especially those related to automobile maintenance and repair. It is well-documented that lead constitutes the highest proportion of heavy metals present in waste oils (Oguntimehin et al., 2008). Elevated lead levels in soils can adversely affect soil fertility and productivity, and even low concentrations can interfere with essential plant processes such as photosynthesis, cell division (mitosis), and water uptake. Such interference manifests through toxic symptoms including dark green leaves, wilting of older foliage, stunted growth, and brown, short roots (Singh et al., 2011). These elevated levels of lead are likely exacerbated by the improper disposal of waste oil, emissions from automobiles, and discarded expired motor batteries, often dumped indiscriminately by battery chargers and auto mechanics in the surrounding environments.

Cadmium

Scientists checked how much of metal called cadmium was in different places. The most cadmium was found in Rumuosi, with a tiny amount of 0.06 milligrams for every kilogram of soil. Next was Elelewon with 0.04, then Choba and Eliozu, both with 0.03. These amounts are a little higher than what is usually found in places that are not polluted, but they are still lower than the safety limits set by other countries and also lower than WHO standard limit. Another study found much higher amounts of cadmium, between 3 and 8 milligrams per kilogram, which is much more than what were found in this study. The amount of cadmium in this study is below the dangerous limit set by Europe, which is 3 milligrams per kilogram. The main cause of cadmium in the environment is from factories that make steel, but in the places we looked at, it probably comes from things like car oils, wheels, and metal parts used to make engines stronger.

Table 4. Heavy metal concentrations of soil samples collected in Mechanic workshop in four communities in Obio/Akpor local Government Area.

SAMPLE NAME	Pb, mg/kg	Cd, mg/kg	Mn, mg/kg	Fe, mg/kg	Cu, mg/kg	
Choba I	1.52	0.02	3.3	26.2	1.32	
Choba 2	3.47	0.04	4.44	27.23	4.03	
Choba 3	3.93	0.02	5.13	28.09	1.48	
Choba 4	0.78	0.02	5.43	27.18	0.61	
Mean	2.43	0.03	4.58	27.2	1.86	
Range	0.78-3.98	0.02-0.04	3.30-5.43	26.2-28.1	0.61-4.03	
EUROPE	300	3	N/A	N/A	140	
DUTCH	85	0.8	N/A	N/A	36	
WHO	85.0	0.8	NA	N/A	36.0	
SON	NA	3	NA	N/A	300	
Elelewon I	2.49	0.03	6.44	27.2	1.19	
Elelewon II	3.46	0.06	6.27	29.0	1.77	
Elelewn III	3.26	0.02	4.43	27.0	0.64	
Mean	3.07	0.04	5.71	27.7	1.20	
Range	2.49-3.46	0.02-0.06	4.43-6.44	27.0-29.0	0.64-1.77	
EUROPE	300	3	N/A	N/A	140	
DUTCH	85	0.8	N/A	N/A	36	
Eliozu I	2.6	0.03	4.79	26.8	0.59	
Eliozu 2	1.16	0.02	2.38	25.8	0.85	
Mean	1.88	0.03	3.59 26.3		0.72	
Range	2.60-1.16	0.02-0.03	2.38-4.79	25.8-26.8	0.59-0.85	
EUROPE	E 300 3 N/A		N/A	140		
DUTCH	85	0.8	N/A	N/A	36	
Rumuosi I	2.35	0.05	7.63	28.6	1.86	
Rumuosi 2	5.24	0.03	4.93	26.9	1.66	

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue X October 2025

Rumuosi 3	Rumuosi 3 7.55		5	28.8	2.5	
Mean	5.05	0.06	5.85	28.1	2.01	
Range	2.35-7.55	0.03-0.09	4.93-7.63	26.9-28.8	1.66-2.50	
EUROPE	300	3	N/A N/A		140	
DUTCH	85	0.8	N/A	N/A	36	
Control 1	0.80	0.03	4.67	28.4	0.67	
Control 2	0.78	0.03	4.65	28.0	0.63	
Mean	0.79	0.03	4.66	28.2	0.65	
Range	0.78-0.80	0.03	4.65-4.67	28.0-28.4	0.63-0.67	
EUROPE	300	3	N/A	N/A	140	
DUTCH	85	0.8	N/A	N/A	36	

Manganese

Scientists measured how much manganese, a type of metal, was in the soil in different places. They found the most manganese in Rumuosi, where there were about 5.85 units. The next highest was in Elelewon with about 5.71 units. Choba had about 4.58 units, and Eliozu had the least, with about 3.59 units. These amounts were usually higher than what they found in a special, clean area called the control site, which had about 4.66 units. Right now, there are no official rules about how much manganese is safe in the soil, but scientists are still studying it.

Iron

The highest mean concentrations of iron,28.1 mg/kg was found in Rumuosi, followed by 27.7mg/kg in Elelewon, 27.2mg/kg in Choba and the lowest mean concentration, 26.3mg/kg was found in Eliozu. These were lower than the concentration in control site with average of 28.2mg/kg. Iron supplementation is generally recommended only in cases where there is a confirmed deficiency, as excessive intake can be harmful. Elevated levels of iron in the bloodstream can lead to oxidative damage, affecting vital cellular components such as DNA, proteins, and lipids. This oxidative stress can contribute to tissue damage and has been linked to various health issues, including organ dysfunction and increased risk of certain chronic diseases. When excess iron is detected in the body, it can be effectively managed using specialized chelating agents, notably deferoxamine (C25H48N6O8). This compound functions by binding to free iron ions, forming stable complexes that are then excreted from the body, thereby reducing iron overload. The process of iron regulation and removal highlights the importance of maintaining optimal iron levels for health and the potential dangers associated with both deficiency and excess (Tenenbein, 1996).

Copper

The highest average levels of copper contamination, measuring 2.01 mg/kg, were observed in the Rumuosi area. Following this, the Choba region exhibited a mean copper concentration of 1.86 mg/kg. In comparison, Elelewon showed a lower average of 1.20 mg/kg, while Eliozu recorded the lowest mean concentration at 0.72 mg/kg among the sampled locations. These figures surpass the copper levels found in the control site, which had an average concentration of approximately 0.65 mg/kg. Nevertheless, they remain below the permissible safety thresholds established by regulatory standards in various countries, including WHO. The elevated copper levels

in these areas can be largely attributed to the presence of automobile wastes that contain electrical and electronic components, such as copper wiring, electrodes, and copper pipes. Additionally, corroding vehicle scrap metals, which have been discarded and accumulated over time in the vicinity of these communities, contribute significantly to this contamination. As these metal remnants undergo corrosion, they gradually release copper ions that leach into the surrounding soil environment, leading to increased concentrations. This process is supported by findings from Nwachukwu et al. (2011), who documented the contribution of vehicle-related waste and corrosion processes to soil metal contamination in similar settings.

Correlation of Soil Characteristics in Mechanic Workshop in Obio/Akpor.

Tables 5, shows the result of the statistical analysis of the correlation between soil characteristics in mechanic workshops in Obio/Akpor. The correlation was performed at 95% confidence level (α =0.05) and 99% confidence level (α =0.01). The results showed that at 95% confidence level, there is significant positive correlation between pH and conductivity with correlation value of (r= 0.617) and between Pb and Cu with correlation value of (r= 0.556) and between Cu and Cd with value of (r= 0.536). Also there was negative correlation between conductivity and phosphate with value of (r=-0.598). Furthermore at 95% confidence level, there was positive significant relationship between Pb and Cd with value of (r=0.676) and between Cd and Fe with value of (r= 0.684) and Mn and Fe with the value of (r= 0.680) in the soil samples collected from mechanic workshops in the study area. There were positive correlations of lead with copper and cadmium. There were positive correlations of cadmium with iron and copper. There were positive correlations of manganese with iron.

Table 5: Correlation of Heavy metals in soil samples collected from Mechanic workshops in Obio/Akpor LGA.

	pН	Conductivit y	TOC	Nitrat e	Phosphat e	Pb	Cd	Mn	Fe	Cu
Ph	1.00									
Conductivit y	.617*	1.00								
TOC	-0.26	-0.33	1.00							
Nitrate	-0.14	-0.27	-0.13	1.00						
Phosphate	-0.51	598*	0.12	0.52	1.00					
Pb	0.33	0.15	0.24	-0.38	-0.07	1.00				
Cd	0.01	-0.16	0.51	-0.04	0.17	.676* *	1.00			
Mn	-0.10	0.04	0.15	-0.16	-0.37	0.17	0.39	1.00		
Fe	0.04	0.01	0.28	0.35	0.09	0.33	.684*	.680* *	1.00	
Cu	0.43	0.39	-0.01	-0.32	-0.18	.556*	.536*	0.14	0.24	1.00

^{*.} Correlation is significant at the 0.05 level (2-tailed).

CONCLUSION

^{**.} Correlation is significant at the 0.01 level (2-tailed).

The environmental contamination with heavy metals often results from activities such as the spilling of automobile fluids—like motor oil, antifreeze, and other lubricants—onto the ground, as well as the corrosion and degradation of metal components in vehicles and infrastructure. Such activities gradually increase the levels of heavy metals in the soil, which can then be absorbed by plants or leach into groundwater, further spreading pollution. In the context of Rivers State, Nigeria, one notable source of automobile waste is the numerous motor servicing centers, commonly referred to as mechanic workshops. These facilities are prevalent in urban and suburban areas and are significant contributors to environmental pollution due to their handling of various automotive fluids and metals. The use and disposal of fossil fuel products in these workshops often lead to the accumulation of heavy metals in the surrounding environment. This contamination not only affects the immediate vicinity but also extends to nearby agricultural lands, where crops and soil quality may be compromised. Consequently, these activities create non-point sources of pollution—diffuse sources that are difficult to control and monitor—posing ongoing threats to local ecosystems, human health, and agricultural productivity.

Arising from the discussion of the findings, it is clear that the soil in the study areas is polluted. The Soil is polluted by some physicochemical and heavy metal parameters such as Pb, Cd, Fe, Mn, and Cu. The soil is ascertained to be polluted as a result of effluent discharge from automobile mechanic workshops that accumulates in the soil in close proximity. Most of the automobile wastes dumped on the soil apart from containing heavy metals also acidify the soil, exposure to this; pose serious health treats to the inhabitant of the study area. In order to avert this menace, there should bioremediation of the affected areas and workshops should be cited far away from residents.

REFERENCE

- 1. Abechi, E.S. Okuloma, O.J. Zubari, S.M,J. Usman, A. A.& Akpene, E. (2010). Evaluation of heavy metals in roadside soils of major streets in Jos metropolis, Nigeria, "Journal of environmental chemistry and ecotoxicology2 (6); 98-102.
- 2. Adewole, M.B & Uhegbu, L.U. (2010). Properties of soils and plants uptake within the vicinity of selected automobile workshops in ile-ifesouthern western Nigeria. Ethiopian "Journal of environmental studies and management. 3(3): 16-24
- 3. Adriano, D.C. (2001). Trace elements in terrestrial environment, 2nded. New York; springer-verlagcompany.
- 4. Alaminiokuma, G,I. & Ofuyah W, N. (2017). Water table regime in parts of Obio-Akpor Local Government area of Rivers State, Nigeria. International Research Journal of earth science. 5 (7): 9-16,
- 5. Adewolyin, O, A., Hassan, A.T., & Aladesida, A, A, (2013). The impacts of auto- mechanic workshops on soil and groundwater in Ibadan metropolis. African Journal of environmental science and technology. **4**(6), 13.
- 6. Adeyi AA, Torto N. (2017) Profiling heavy metal distribution and contamination in soil of old power generation station in Lagos, Nigeria. Am J SciTechnol 1(1):1-10. Available from: http://www.aascit.org/journal/archive2?journalId=902 & paperId=188
- 7. Adelekan, B, A, & Abegunde K, D. (2011) Heavy metals concentration of soil and groundwater at automobile mechanic villages in Ibadan, Nigeria. International Journal of Physical Sciences 6 (5) 1045-1058,
- 8. Agbenin, J.O. and Atin A.M. (2003). Copper sorption characteristics and activity in a savanna acid soil from Nigeria. Water, Air and Soil pollut.43-58. Agbenin, J.O., and Felix, H. (2001). The status and dynamic of some trace elements in some savannah soil under long term cultivation. Sci. TotalEnvir. 286:1-14.
- 9. Agunbiade, F.O; Fawale, A.T. (2009). Use of siam weed biomarker in assessing heavy metal contaminations in traffic and solid waste polluted areas. "International Journal of environmental science Technology 6(2), 267-276."
- 10. Alabaster, J.S. & Loiyd, R. (1980). Water quality criteria for fish (2nd Ed) London: Butterworths.
- 11. Allen, B. (1965). Drainage and location of Obioakpor in Niger Delta Terrain. Sedimentary evaluation of Niger Delta. 9 (2), 47-50.

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue X October 2025

- 12. Ali, T.A. & Wainwright, T. (1995). Metal accumulation by phanerochaetechrysosporium. Journal of pharmacology, 12(2); 1.
- 13. Atuanya, E.I & Oseghe, E.O. (2005).Lead contamination and microbial tolerance in soil at Major Road Junction in Benin City; Journal of Applied science and environmental management. 10 (2): 99-104.
- 14. Ashraf. R and Ali. T. A., Effect of heavy metals on soil microbial community and Mung beans seed germination. Pakistan Journal of botany, 39 (2), 629-636 (2007).
- 15. AshutoshMaurya, LavKesharwani & Munish Kumar Mishrs (2018). Analysis of heavy metals in soil through atomic absorption spectroscopy for forensic consideration. International journal for research in applied science & engineering technology. 6 (5); 1.
- 16. Association of analytical chemistry 5th edition (2005) methods of soil analysis. Atuma, S.O. & Egborge, A.B.M. (1986). Insecticide and metals in surface water-Warri River. *International journal of environmental studies*, **27.** 131-142
- 17. Avery, S.V. (2001). Metal Toxicity in Yeasts and the Role of Oxidative Stress. Advance Applied microbiology; 49: 111-142.
- 18. Aweto, D. N & Oyabunwa, H.(2000). Metal Toxicity in the Environment. Degree of toxicity in organism, PP 15-16.
- 19. Ashraf R. & Ali T.A., (2007). Effect of heavy metals on soil microbial community and mung beans seed germination. Pakistan Journals of Botany, 39 (2), 629-636.
- 20. Ayandiran T.A., Fawole O.O., Adewoye, S.O. & Ogundiran M.A., (2009). Bioconcentration of metals in the body muscle and gut of Clariasgariepinus exposed to sublethal concentrations of soap and detergent effluent. Journal of Cell and Animal Biology, 3 (8), 113-118.
- 21. Argun M.E., Durson S., Ozdemir C., Karatas M., (2007). Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics. Journal of Hazardous Materials, 141, 77-85.
- 22. Ayesanmi, A.F. (2008) "Baseline heavy metals concentrations in river sediment within okilipupa, southeast belt of the Nigerian butimnous sand field, "Journal of Chemical Society of Nigeria 33, 29-41.
- **23.** Ayo V, Andrew & Oggoro (2017) mapping land cover determinates of malaria in Obio-Akpor local Government of Rivers state, Nigeria. IOSR Journal of Humanities and Social Sciences (IOSR-JHSS) **22,** Issue 6, ver.4.pp 29-40 e-ISSN: 0837, p-ISS: 227-0845.www.iosrjournals.org
- 24. Bhattacharyya P., Chakrabarti K., Chakraborty A., Tripathy S.& Powell M.A., (2008). Fractionation and bioavailability of Pb uptake in municipal solid waste compost and Pb uptake by rice straw grain under submerged condition in amended soil Geosciences Journal 12, (1), 41-45.
- 25. Barkay, T.S., Tripp C. & Oslon B.H. (1985). Effect of metals- Rich Sewage Sludge Application on the Bacterial Communities of Grassland. Applied Environmental Microbiology. 49: 333-337.
- 26. Batley, G.E. (1983). The current Status of Trace Element Speciation in Natural Water. In Trace Element speciation in surface water, (Ed) G.G Leppard. Plenum Press New York.17-36.
- 27. Bhuiyan MA, Parvez L, Islam MA, Dampare SB, Suzuki S. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh.J Hazard Mater. 2010 Jan 15 [cited 2017 Feb 25]; 173(1-3):384-92. Available from: http://www.sciencedirect.com/science/article/pii/S0304389409013909Subscription required viewing.
- 28. Bestemynov, G.P. & Krotov, J.G. (1985). Maximum Allowable Concentrations of Chemical in the Environment. Khimiya, Press, Russia. 98-101
- 29. Bryan, G.W (1976): Some Aspects of Heavy Metal Tolerance in Aquatic Organisms in A.P.M. Lockwood(Ed): Effects of pollutants on Aquatic Organisms. Cambridge University Press, Cambridge. 7-34.
- 30. Bloom, N.S. (1992). On the chemical form of Mercury in Edible Fish Marine Invertebrate Tissue. Canadian Journal Fishery Aquatic Science. 49:1010-1017.
- 31. Brookers, P.C. (1989). The use of Microbial parameters in Monitoring Soil Pollution by Heavy metal. Biology of Fertile Soil, 19:269-279.
- 32. Baldrian P., (2003), Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology, 32, 78-91.
- 33. Buck scientific (2010/2011) VGP, atomic absorption spectrometer
- 34. CAI Q.Y., Mob C.H., Wu Q.T., Zenga Q.Y. & Katsoyiannis A., (2007). Concentration and speciation of heavy metals in six different sewage sludge-composts. Journal of Hazardous Materials, 147, 1063-1072.

- 35. Chen G.Q., Chen Y., Zeng G.M., Zhang J.C., Chen Y.N., Wang L. & Zhang W.J., (2010). Speciation of Cadmium and Changes in Bacterial Communities in Red Soil Following Application of Cadmium-Polluted Compost. Environmental Engineering Science, 27 (12), 1019-1026.
- 36. Chiroma, T.M.; Ebewele, R.O.; Hymore, K. Comparative assessment of heavy metal levels in soil, vegetables and urban grey waste water used for irrigation in Yola and Kano. Int. Ref. J. Eng. Sci. **2014**, 3, 1–9.
- 37. Cristian, Valentin, & Alexandra-Dana (2013). Theoretical studies Concerning Residual soil pollution by heavy metals. Journal of Engineering studies and Research-19.
- 38. Clarkson W. (1989). Toxic Heavy Metals symptoms, sources and specific effects, www.womanshealth-naturalsolution.com.
- 39. De Vries, W & D.J. Bakker, (1998). Manual calculating critical loads of Heavy Metals for terrestrial ecosystems. Guidelines for critical limits calculation methods and input data. DLO Winand Staring Center, Wageningen, the Netherlands Report 166.
- 40. Dojlildo, J.R. & Best G.A.L. (1998). Chemistry of Water and Water Pollution. Ellis Horwood Ltd. Great Britain Isolation of Bacterial from Mechanic Workshops Soil Environment Contaminated with used Engine Oil.
- 41. Dasaran, B.M. Satyanaran, V. Sudarhan and Kehav, (2010). Assessment of soil contamination in patancherus industrial Area, Hyderabad, Andhra pradish, India-research journal of environmental and earth sciences, 2010, 3:214-220
- 42. Dabkowska-Naskret H (2004). The mobility of heavy metals in urban soils used for food production in Poland. Land Contamination and Reclamation, 12(3):205-212.
- 43. Donahue RL, Miller RW. Soil: an introduction to soil and plant growth. 6th ed. Upper Saddle River, NJ: Prentice Hall; 1990 Mar 1. 1431 p.
- 44. Duffus, M.I & Mohammed, S.Y. (2002). Analysis of heavy metals concentration in road side's soil in yauri, Nigeria, African journal of pure and applied Chemistry, 4(3); 22-30.
- 45. Dwaf, B.N (1996). South Africa water Quality Guidelines volume. 7: Aquatic Ecosystem, Department of water Affairs and Forestry.
- 46. Duirube J.O., Ogwuegbu M.O.C. & Egwurugwu J.N., (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2(5), 112-118.
- 47. Egborege, A.B.M. (1994). Water pollution in Nigeria (1) Biodiversity and Chemistry of Warri River.BillerPublisher, Warri.
- 48. Egborge, A.B.M. (2000). Government, oil companies the peoples of the Niger-Delta environment: 4th convocation lecture of Delta State University, Abraka. Nigeria.
- 49. European Commission on Environment. Heavy Metals in Wastes. 2002. Available online:http://c.ymcdn.com/sites/www.productstewardship.us/resource/resmgr/imported/Heavy%20Met als%20in%20Waste.pdf (accessed on 22 January 2016).
- 50. Elbassam, M. A & Verlagerung, V.(1977). Cadmium unBodemFurch Zn FnrKoMmunaler seed lung sab Falle Land Wirtsh.1977; 30:215-220.
- 51. Eludoyin O.S., Wokocha C.C & Ayolagha G. (2011). GIS Assessment of land use and land cover changes in Obio-Akpor LGA, Rivers State, Nigeria. Research journal of environmental and earth sciences, 3(4), 307-313.
- 52. Emoyan, O.O. Ogban, F.E. Akarah, E (2006). Evaluation of heavy metals loaing of River Ijana in Ekpan-Warri, Nigeria journal applied science environmental management, June 2006 **10**(2) 121-127.
- 53. FEPA (1991). Guidelines and standard for environmental pollution and control in Nigeria. Federal environmental protection Agency, Lagos.
- 54. Fischer, A.B (1987). Mutagenic effects of cadmium atom and in combination with Antimuangenic Scientific process. 6th international conference on Heavy Metal in the Environment. Neworlean, **2**, Cep Consultants Ltd. Edinburgh.112-114.
- 55. Friberg, L.E. Kjellstroem, T. & Nordberg, G.F (Eds). (1986). Cadmium and health. Toxicological and epidemiological appraisal vol.11.effecfs and response. Press bocaraton. Florida.
- 56. Gaspar, G.M., Mathe, L. Szabo, B. Orgovanyl, N. Uzinger & Anton. (2005). After-Effect of Heavy Metal pollution in Brown Forest Soils. Proceeding of the 8th Hungarian Congress on plant physiology and the 6thHuungarian Conference on photosynthesis. 49 (1-2): 7.1-72.

- 57. George, S.G. (1982). Subcellular Accumulation & Detoxication of metals in Aquatic Animals .In physiological mechanisms of marine pollution toxicity. Vernberg W.B, calabredi, A., Thurberg, F.P., and WerbergF. J. (Eds): Academic press New York. 3-52.
- 58. Gingell, S.M., R. Campbell and M. H. Martin. (1976). The Effect of Zinc, Lead and Cadmium on the leaf Surface. Microfloral Environmental Pollution. 11: 25-37.
- 59. Gupta, S. K. (1992). Mobilizable Metal in Anthropogenic Contaminated Soils and Its Ecological Significance.299-310.Impact of Heavy Metals on the Environment. (Ed.): J.P. Vernet. Elsevier; Amsterdam the Netherlands.
- 60. HarikumarPS, JishaTS. Distribution pattern of trace metal pollutants in the sediments of an urban wetland in the southwest coast of India. Int J EngSciTechnol [Internet]. 2010 [cited 2017 Feb 25]; 2(5); 840-50. Available from: http://agris.fao.org/agris-search/search.do?recordID=AV2012047548
- 61. Hendershot, W.H., Lalande, H. and Duquette, M. (1993). Soil reaction and Exchangeable acidity. In soil sampling and methods of analysis, carter, M.R. (Ed), can soc. Sci. Lewsis, Boca Raton, FL, PP41 1-145.
- 62. Gyorgy M. (1969). Pesticide Chemistry (1988) Volume 33 citing Alberg (1969). Gonzalez-Fernandez O, Hidalgo M, Margui E, Carvalho ML, Queralt I. Heavy metals' content of automotive shredder residues (ASR): evaluation of environmental risk. Environ Pollute 2008 May [cited 2017 Feb 25]; 153(2):476-82. Available from: http://www.sciencedirect.com/science/article/pii/S0269749107004083 Subscription required to view
- 63. Garnier J., Quantin C., Martins E.S. &Becquer T., (2006). Solid speciation and availability of chromium in ultramafic soils from Niquelandia, Brazil. Journal of Geochemical Exploration, 88, 206-209.
- 64. Garrido S., Campo G.M.D., Esteller M.V., Vaca R. & Lugo J., (2002). Heavy metals in soil treated with sewage sludge composting, their effect on yield and uptake of broad bean seeds (Viciafaba L.). Water, Air, and Soil Pollution, 166, 303-319.
- 65. Guala S.D., Vega F.A. & Covelo E.F., (2010). The dynamics of heavy metals in plant-Soil interactions. Ecological Modeling, 221, 1148-1152
- 66. Gurrrier J.T., (1998). Distribution of metals in water and sediments and effects on aquatic biota in the upper Stillwater River basin, Montana. Journal of Geochemical Exploration, 64, 83-100(1998).
- 67. He, Z.L., Zhang, M.K., Calvert, D.V., Stoffela, P.J., Yang, X.E., Yu, S., (2004). Transport of Heavy Metals in Surface runoff from Vegetable and Citrus Fields. Soil Science Amsterdam Journal. 68, 1662-
- 68. Horsfall, M. Jr. (2001). Advanced Environmental chemistry 1st Ed. La Limesters printer Port-Harcourt, Nig. 130-159.
- 69. Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980 [cited 2017 Feb 25]; 14(8):975-1001. Available from: http://www.sciencedirect.com/science/article/pii/0043135480901438 Subscription required viewing.
- 70. Hinojosa M.B., Carreira J.A., Ruiz R.G., & Dick R.P., (2013). Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal contaminated and reclaimed soils. Soil Biology & Biochemistry.
- 71. Ikomi, R.B. & EmuhV.C. (2000). The status of the physicochemical Hydrology of Upper Warm River Nigeria. Journal of Science and Environment. 2. 75 -86.
- 72. Ikomi, R.B. & N, Owabor (1997). The Status and Seasonality in the Physicochemical Hydrology of River Orogodo at Agbor, Nigeria. Bulletin of Science Association of Nigeria 21.167-175.
- 73. Irina- Virginia Dragulanescu and Natalia Dragulanescu (2013) Romanian statistical review, 12(1).
- 74. Iwegbue C.M.A, N. Isirimah N:, C. Igwe& E.S. Williams (2006). Characteristic levels of Heavy Metals in Soil Profiles of Automobile Mechanic Waste Dumps in Nigeria. The Environmentalist. (2) 123-128, Doi: 10.10077/S 10669-006-7428-0.
- 75. Iwegbue CM, Isirimah NO, Igwe C, Williams ES. Characteristic levels of heavy metals in soil profiles of automobile mechanic waste dumps in Nigeria. Environ. 2006 Jun [cited 2017 Feb 25];26(2):123-8. Available from: https://link.springer.com/article/10.1007/s10669-006-7482-0 Subscription required viewing.
- 76. Jasper L.B & Jenson J (1998). Critical Loads for Lead, Cadmium and Mercury in Denmark, A first attempt for soils based on Preliminary guidelines. DenmarksMilijounderseigelserArbejdsrapport Fra DMU nr 96.

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue X October 2025

- 77. John R. (2003). Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassicajuncea. International Journal of Plant Production (2009) 3(3): 65-71.
- 78. Kelly. J.J., Haggblom M.M., & Tate R.I. (2003). Effects of Heavy Metal Contamination Remediation on Soil Microbial Communities in the Vicinity of a Zinc Smelter As Indicated By Analysis of Microbial Community Phospholipids Fatty Acid Profiles. Biology of Fertile Soil, 38: 65-71.
- 79. Krishana R. (2009). Electrochemical remediation technologies for polluted soils citing Fang (1980)
- 80. Kingsley O.O.(2002). Nigeria: relief and hydrography in Africa Atlases: of Nigeria. Lagos les Edition J.A.
- 81. Karen MG (2005). An Assessment of heavy metal contamination in the marine sediments of Las Perlas Archipelago, Gulf of Panama. M.Sc. Thesis, School of Life Sciences Heriot -Watt University, Edinburgh.
- 82. Kimberly MHF, William H (1999). Trace metals in Montreal urban soils and leaves of Taraxacum official. Can. J. Soil Sci. 79:385-387.
- 83. Lacatusu R (2000). Appraising levels of soil contamination and pollution with heavy metals. In: H. J. HeinekeW, Eckelmann AJ, ThomassonR .J. Jones A, Montanarella L, Buckley B (Eds.). European Soil Bureau-Research ReportNo.4.Section 5(7):393-403. The European Soil Bureau, Joint Research Centre I-201020ISPRA—Italy
- 84. Lacatusu, R. (2002). Application Levels of Soil Contamination and Pollution with Heavy Metals. European Soil Bureau, Research Report No.4.
- 85. Lee Y.H (1998). Citing Aastrup (1991), an examination of current Mercury deposition and export in fennoScandian catchments, Biochemistry 40:125-135, 1998, Kurver academic Publisher. Printed in the Netherlands.
- 86. Lindquist, O.I Johansson k., Aastrup M., Anderson Bringmark L., Hovsenius G., Hakanson L, Iverfeldt A.. Meili M. & Timm B. (1991).Mercury in the Swedish Environment- Recent Research on Causes, Consequences and corrective Methods. Water, Air and Soil Pollution: 55
- 87. Li, Z., Larry, M., (2006). Heavy metal movement in contaminated soil profiles, soil science, 23
- 88. Mason, C.F. (1991), Biology of Freshwater Pollution. 2nd Edition; Longman New York: 351.
- 89. MbahC.N, Ezeaku, P.I (2010). Physicochemical Characterization of Farmland Affected By Automobile Wastes in Relation to Heavy Metal, Nature And Science 2010; 8(10).
- 90. Mbah C.N., AnikweM.A.N (2010). Variation in Heavy Metal Contents on Roadside Soils Along A Major Express Way in South East Nigeria. New York Science Journal 2010: 3(10).
- 91. Michael A.N, Huan F., & Kennedy A., (2010). Integrated Study for Automobile Wastes Management and Environmentally Friendly mechanic Villages in The Imo River Basin, African Journal of Environmental Science and Technology, 4(4). Pp.234-249. April 2010.
- 92. Mohr H.O. (1971). Effect of Garbage Sewage Sludge Compost on the Heavy Metal Content of Vineyard Soils Grapevines, Organs and Must. Weinberg Keller 1971: 26; 333-344
- 93. Mosses Yahiya (2006) Evaluation of levels of heavy metals in soil and well water within selected automobile mechanic workshiops in lokoja, Nigeria.
- 94. Nwachukwu AM, Feng H, Achilike K (2010). Integrated study for automobile wastes management and environmentally friendly mechanic villages in the Imo River Basin, Nigeria. African Journal of Environmental Science and Technology, 4 (4):234-294
- 95. Newton E.S. (1993). Mosaic Tetrasomy in two patients: Clinical data review of the Perfusion Patterns during temporal lobe seizures: relationship Feng, H., Alinnor, J., (2010). Assessment of Heavy Metal Pollution in Soil and Their implications within and around Mechanic Villages. Journal Environmental Science Technology 7(2) 347-358.
- 96. Ojamauga A, Lekwa, G., & Okusami, T.A., (1996) Distribution Classification and Potentials of Wetland Soils of Nigeria Monograph Number 2, Soil Science Society of Nigeria 1996, 1-24.
- 97. Omishakan, A.,(1986) Environmental Pollution and Home Health symposium on Plant Sanitation and Industrial Waste Disposal University Of Ibadan, Ibadan. 9th -13th September, 1986.
- 98. Onweremadu, E U, (1994).Investigation of Soil and Other Related Constraints to Sustained Agricultural Productivity of Soils of Owerri Zone in Imo State., Nigeria M.Sc., Thesis University of Nigeria, Nsukka, Nigeria. 164.
- 99. Onder S, Dursun S, Demirbas. A (2007). Determination of Heavy Metal Pollution in Grass and soil of City centre Green Areas (Konya, Turkey). Polish J. of Environ. 16(1):145 -154.

- 100. Obi E, O., Kamgba F, A, & NSA N.E, (2017). Environmental pollution of the soil by heavy metals at a dumpsite located at EsukUtan, Calabar, CRS, and Nigeria. Journal of environment pollution and human health. 5(3), 89-92. DOI: 10.12691/jephh-5-3-2.
- 101. Oguntimehin & Ipinmoroti E, (2008). Profile of heavy metals from Automobile workshops in Akure, Nigeria. Journal of environmental science and Technology, 1: 19-26.
- 102. Onweremadu E.U., Eshett, E.T., Osuji, G.E., (2007). Temporal Variability of Selected Heavy Metals in Automobile Soils .International Journal of Environmental Science Technology, 4(1), 35-41.
- 103. OSU I, Okereke V. C (2010). Heavy Metals Contamination in Relation to Microbial Counts in Soils of Automobile Mechanic Workshops, Port-Harcourt Metropolis, Rivers States, Nigeria. Journal of American Science 2010; 6(9): 6-9.
- 104. Oyegun, C.U & Adeyemo M.A (Eds) (2003). Essentials of social and environmental research, University of Port-Harcourt Press Limited.
- 105. Oyegun, (1999), citing Areola B. (1965), Allen C. (1983) and; Izeogbu M. Aisuegegun B.C. The Port-Harcourt region, University Of Port Harcourt press limited.
- 106. Osuji LC, Iniobong DI, Ojinnaka CM (2006a). Preliminary investigation of Mgbede-20 oil-polluted site in Niger Delta, Nigeria. Chem. Biodiv.3: 568-577.
- 107. Porteus A, editor. Hazardous waste management handbook. Oxford, UK: Butterworths; 1985. 305
- 108. Pierzynski, G.M., Zhang, H.L., Wolf, A., Kleinman, P., Mallarino, A. and Sullivan.D. (2011). Phosphorous determination in waters and extract of soils and by-products inductive coupled plasma spectrometry versus colorimetry procedures. http://www.sera17.ext. Vt.edu/SERA 17publications.htm.
- 109. Purves, D. (1985). Trace Element Contamination of the Environment Amsterdam, Elsevier.
- 110. Rabia and Tasneem, A.A. (2007). Effect of Heavy Metals on Soil Microbial Community and Mung Beans Seed Germination Park J. Bot., 39(2): 629-636.
- 111. Rainbow, P.S. (1985). The Biological of Heavy Metals in The Sea. International Journals of Environmental Studies.25: 195-198
- 112. Sanders, M.J. (1997); A Field Evaluation of Freshwater River Crab, Potamonautes 'Warreni, as A Bioaccummulative Indicator of Metal Pollution. Thesis, Rand Afrikaans University, South Africa.