
INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)
ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue X October 2025
www.rsisinternational.org
17. Hardesty, L. (2018, April 3). Study finds gender and skin-type bias in commercial artificial intelligence
systems. MIT News. https://news.mit.edu/2018/study-finds-gender-skin-type-bias-artificial-
intelligence-systems-0212
18. Harmon, S., Wilsmann, M., Joshi, G., Ballesteros, A., & Baitinger, P. (2024). Decoding India’s AI
governance strategy and its implications for the US–India bilateral relationship. Indian Public Policy
Review, 5(4), 51–82. https://doi.org/10.55763/ippr.2024.05.04.003
19. Hofeditz, L., Mirbabaie, M., Luther, A., Mauth, R., & Rentemeister, I. (2022). Ethics guidelines for
using AI-based algorithms in recruiting: Learnings from a systematic literature review. In Proceedings
of the 55th Hawaii International Conference on System Sciences (HICSS).
https://doi.org/10.24251/HICSS.2022.018
20. Jagannathan, S., Ra, S., & Maclean, R. (2019). Dominant recent trends impacting on jobs and labor
markets—An overview. International Journal of Training Research, 17(Suppl. 1), 1–11.
https://doi.org/10.1080/14480220.2019.1641292
21. Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine
Intelligence, 1(9), 389–399. https://doi.org/10.1038/s42256-019-0088-2
22. Kamath, R., & Venumuddala, V. R. (2023). Emerging technologies and the Indian IT sector. Chapman
and Hall/CRC. https://doi.org/10.1201/9781003324355-4
23. Kathuria, R., & Dev, A. (2024). Technological advancement and employment changes: Recent trends
in the Indian economy. The Indian Journal of Labour Economics, 67(3), 637–660.
https://doi.org/10.1007/s41027-024-00519-z
24. Khan, I., Alekhya, V., Rajalakshmi, B., Lakhanpal, S., Alkhafaji, M. A., & Santhi, K. (2024, June).
Assessing the societal impacts of emerging distributed intelligence technologies. In Proceedings of the
2024 OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and
Advancement in Industry 4.0 (pp. 1–5). IEEE. https://doi.org/10.1109/OTCON60325.2024.10687876
25. King, R., & Kuschminder, K. (2022). Introduction: Definitions, typologies, and theories of return
migration. In Handbook of return migration. Edward Elgar Publishing. 1–2.
https://doi.org/10.4337/9781839100055.00008
26. Klabunde, A., & Willekens, F. (2016). Decision-making in agent-based models of migration: State of
the art and challenges. European Journal of Population, 32, 73–97. https://doi.org/10.1007/s10680-015-
9362-0
27. Landsbergis, P. A., Grzywacz, J. G., & LaMontagne, A. D. (2013). Work organization, job insecurity,
and occupational health disparities. PsycEXTRA Dataset. American Psychological Association.
https://doi.org/10.1037/e577572014-484
28. Lane, L. (2023). Preventing long-term risks to human rights in smart cities: A critical review of
responsibilities for private developers of AI. Internet Policy Review, 12(1).
https://doi.org/10.14763/2023.1.1697
29. Lane, M., & Saint-Martin, A. (2021). The impact of artificial intelligence on the labour market: What
do we know so far? OECD Social, Employment, and Migration Working Papers (No. 256). OECD
Publishing. https://doi.org/10.1787/7c1e5c30-en
30. Leontaridi, M. (1998). Segmented labour markets: Theory and evidence. Journal of Economic Surveys,
12(1), 103–109. https://doi.org/10.1111/1467-6419.00048
31. Luo, X. (2016). Quo vadis? Chinese migrant workers at home and abroad. Ethnic and Racial Studies,
39(8), 1467–1484. https://doi.org/10.1080/01419870.2016.1125010
32. Macdonald, R. (2023, December 15). AI in recruitment: A revolution in hiring or bias by design? Forbes.
https://www.forbes.com/sites/forbestechcouncil/2023/12/15/ai-in-recruitment-a-revolution-in-hiring-
or-bias-by-design
33. Manning, A. (2020). Monopsony in labor markets: A review. ILR Review, 74(1), 3–26.
https://doi.org/10.1177/0019793920922499
34. Markov, M. (2023). Artificial intelligence and the global economy: Risks, inequalities, and governance
challenges. Cambridge University Press. https://doi.org/10.1017/9781009378871
35. Mazzolari, F., & Ragusa, G. (2013). Spillovers from high-skill consumption to low-skill labor markets.
The Review of Economics and Statistics, 95(1), 74–86. https://doi.org/10.1162/REST_a_00237
36. McKinsey Global Institute. (2023). The future of work in the age of AI. McKinsey & Company.
https://www.mckinsey.com/mgi/our-research/the-future-of-work-in-the-age-of-ai