
INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)
ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue X October 2025
www.rsisinternational.org
6. Eubanks, V. (2018). Automating inequality: How high-tech tools profile, police, and punish the poor.
St. Martin's Press.
7. Hanna-Attisha, M., LaChance, J., Sadler, R. C., & Champney Schnepp, A. (2016). Elevated blood
lead levels in children associated with the Flint drinking water crisis: A spatial analysis of risk and
public health response. American Journal of Public Health, 106(2), 283-290.
https://doi.org/10.2105/AJPH.2015.303003 Kitchin, R. (2014). The data revolution: Big data, open
data, data infrastructures and their consequences. SAGE Publications.
8. Lanphear, B. P., Hornung, R., Khoury, J., Yolton, K., Baghurst, P., Bellinger, D. C., Canfield, R. L.,
Dietrich, K. N., Bornschein, R., Greene, T., Rothenberg, S. J., Needleman, H. L., Schnaas, L.,
Wasserman, G., Graziano, J., & Roberts, R. (2005). Low-level environmental lead exposure and
children's intellectual function: An international pooled analysis. Environmental Health Perspectives,
113(7), 894-899. https://doi.org/10.1289/ehp.7688
9. Masten, S. J., Davies, S. H., & McElmurry, S. P. (2016). Flint water crisis: What happened and why?
Journal AWWA, 108(12), 22-34. https://doi.org/10.5942/jawwa.2016.108.0195
10. Noble, S. U. (2018). Algorithms of oppression: How search engines reinforce racism. New York
University Press.
11. O'Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens
democracy. Crown.
12. Olson, A., Boehmke, B., Lacombe, V., Schwing, C., & Seeger, B. (2017). Machine learning approach
for real-time lead exposure risk assessment in drinking water. Environmental Science & Technology,
51(14), 7835-7843.
https://doi.org/10.1021/acs.est.7b01497
13. Pasquale, F. (2015). The black box society: The secret algorithms that control money and information.
Harvard University Press.
14. Pauli, B. J. (2019). Flint fights back: Environmental justice and democracy in the Flint water crisis.
MIT Press.
15. Potash, E., Ghani, R., Walsh, J., Jorgensen, E., Lohmann, C., Prachand, N., & Mansour, R. (2015).
Predictive modeling for public health: Preventing childhood lead poisoning. Proceedings of the 21st
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2039-2047.
https://doi.org/10.1145/2783258.2788629
16. Proctor, R. N., & Schiebinger, L. (Eds.). (2008). Agnotology: The making and unmaking of
ignorance. Stanford University Press.
17. Sattar, A. M., Ertuğrul, Ö. F., Gharabaghi, B., McBean, E. A., & Cao, J. (2016). Prediction of timing
of watermain failure using gene expression models. Water Research, 90, 434-448.
https://doi.org/10.1016/j.watres.2015.12.040
18. Tilly, C. (1998). Durable inequality. University of California Press.
19. U.S. Census Bureau. (2014). American Community Survey 5-year estimates.
https://www.census.gov/programs-surveys/acs/ .
20. Winner, L. (1980). Do artifacts have politics? Daedalus, 109(1), 121-136.
21. Zahran, S., McElmurry, S. P., Kilgore, P. E., Mushinski, D., Press, J., Love, N. G., Sadler, R. C., &
Swanson, M. S. (2018). Assessment of the Legionnaires' disease outbreak in Flint, Michigan.
Proceedings of the National Academy of Sciences, 115(8), E1730-E1739.
https://doi.org/10.1073/pnas.1718679115