INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)
ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue X October 2025
ACKNOWLEDGMENT
For the opportunity to participate in this research, the authors would like to thank Center for Advanced
Computing Technology (C-ACT), Fakulti Kecerdasan Buatan dan Keselamatan Siber (FAIX), Fakulti
Teknologi Maklumat dan Komunikasi (FTMK) and Centre for Research and Innovation Management (CRIM),
Universiti Teknikal Malaysia Melaka (UTeM) for providing the facilities and support for this research work.
We'd also like to express our gratitude to the UTeM's Financial Support for funding the project.
REFERENCES
1. M. H. Ali, M. Zakaria, and S. El-Tawab, “A comprehensive study of recent maximum power
point tracking techniques for photovoltaic systems,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi:
10.1038/s41598-025-96247-5.
2. A. Elsafi, A. A. Almohammedi, M. Balfaqih, Z. Balfagih, and S. Sabri, “Comparative analysis
of maximum power point tracking methods for power optimization in grid tied photovoltaic
solar systems,” Discover Applied Sciences, vol. 7, no. 9, Sep. 2025, doi: 10.1007/s42452-025-
07606-w.
3. A. B. Djilali et al., “Enhanced variable step sizes perturb and observe MPPT control to reduce
energy loss in photovoltaic systems,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-
025-95309-y.
4. D. Sibtain, M. M. Gulzar, K. Shahid, I. Javed, S. Murawwat, and M. M. Hussain, “Stability
Analysis and Design of Variable Step-Size P&O Algorithm Based on Fuzzy Robust Tracking
of MPPT for Standalone/Grid Connected Power System,” Sustainability (Switzerland), vol. 14,
no. 15, Aug. 2022, doi: 10.3390/su14158986.
5. B. Babes, A. Boutaghane, and N. Hamouda, “A novel nature-inspired maximum power point
tracking (MPPT) controller based on ACO-ANN algorithm for photovoltaic (PV) system fed
arc welding machines,” Neural Comput Appl, vol. 34, no. 1, pp. 299–317, Jan. 2022, doi:
10.1007/s00521-021-06393-w.
6. M. Yaich, Y. Dhieb, M. Bouzguenda, and M. Ghariani, “Metaheuristic Optimization Algorithm
of MPPT Controller for PV system application,” in E3S Web of Conferences, EDP Sciences,
Jan. 2022. doi: 10.1051/e3sconf/202233600036.
7. N. Priyadarshi, V. K. Ramachandaramurthy, S. Padmanaban, and F. Azam, “An ant colony
optimized mppt for standalone hybrid pv-wind power system with single cuk converter,”
Energies (Basel), vol. 12, no. 1, Jan. 2019, doi: 10.3390/en12010167.
8. M. Sedraoui et al., “Development of a fixed-order controller for a robust P&O-MPPT strategy
to control poly-crystalline solar PV energy systems,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi:
10.1038/s41598-025-86477-y.
9. B. Naima et al., “Enhancing MPPT optimization with hybrid predictive control and adaptive
P&O for better efficiency and power quality in PV systems,” Sci Rep, vol. 15, no. 1, Dec.
2025, doi: 10.1038/s41598-025-10335-0.
10. [K. H. Chao and M. N. Rizal, “A hybrid mppt controller based on the genetic algorithm and ant
colony optimization for photovoltaic systems under partially shaded conditions,” Energies
(Basel), vol. 14, no. 10, May 2021, doi: 10.3390/en14102902.
11. K.Burhanudin, N.A.Kamarzaman, A.A.A.Samat, A.I.Tajudin, S.S.Ramli, and N.Hidayat,
Implementing Boost Converter Algorithm with PSO for Photovoltaic System During Partial
Shading Condition. Johor Bharu: IEEE, 2015. doi: 10.1109/CENCON.2015.7409576.
12. A. Nasir, I. Rasool, D. Sibtain, and R. Kamran, “Adaptive Fractional Order PID Controller
Based MPPT for PV Connected Grid System Under Changing Weather Conditions,” Journal of
Electrical Engineering and Technology, vol. 16, no. 5, pp. 2599–2610, Sep. 2021, doi:
10.1007/s42835-021-00782-w.
13. X. Liu et al., “Simulation-Based Evaluation of Power Efficiency and Output Capacitance in
Standalone PV MPPT Buck Converters Using 200 V p-GaN HEMTs,” Journal of Electrical
Engineering and Technology, vol. 20, no. 6, pp. 3875–3887, Sep. 2025, doi: 10.1007/s42835-
025-02334-y.
Page 8829