Conflict of Interest Statement
The authors declare that there is no conflict of interest regarding the publication of this manuscript.
Data Availability Statement
The datasets used and analyzed in this study are publicly available from the following sources:
• Modis:
• Misr:
• Firms:
• Aeronet:
REFERENCES
1. Andreae, H. M., He, J., & Wooster, M. J. (2023). Biomass burning CO, PM and fuel consumption per
unit burned area estimates derived across Africa using geostationary SEVIRI fire radiative power and
Sentinel-5P CO data. Atmospheric Chemistry and Physics, 23, 2089–2118.
https://doi.org/10.5194/acp-23-2089-2023 AGU Publications+3ACP+3ACP+3
2. Mallet, M., Voldoire, A., Solmon, F., Nabat, P., Drugé, T., & Roehrig, R. (2024). Impact of biomass
burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled
climate model. Atmospheric Chemistry and Physics, 24, 12509–12535.
https://doi.org/10.5194/acp-24-12509-2024 ACP
3. Elsey, J., Bellouin, N., & Ryder, C. (2024). Sensitivity of global direct aerosol shortwave radiative
forcing to uncertainties in aerosol optical properties. Atmospheric Chemistry and Physics, 24, 4065–
4081. https://doi.org/10.5194/acp-24-4065-2024 ACP
4. Akinyoola, J. A., Oluleye, A., & Gbode, I. E. (2024). A review of atmospheric aerosol impacts on
regional extreme weather and climate events. Aerosol Science and Engineering, 8, 249–274.
https://doi.org/10.1007/s41810-024-00223-x SpringerLink+1espo.nasa.gov+1
5. Nguyen, H. M., He, J., & Wooster, M. J. (2023). Biomass burning CO, PM and fuel consumption per
unit burned area estimates derived across Africa. Atmospheric Chemistry and Physics, 23, 2089–2118.
https://doi.org/10.5194/acp-23-2089-2023 (See Andreae et al.)
airbornescience.nasa.gov+3ACP+3ACP+3
6. Opio, R., Mugume, I., Nakatumba-Nabende, J., Nanteza, J., Nimusiima, A., & Mbogga, M., & Mugagga,
F. (2022). Evaluation of WRF-Chem simulations of NO₂ and CO from biomass burning over East Africa
and its surrounding regions. Terrestrial, Atmospheric and Oceanic Sciences, 33, Article 29.
https://doi.org/10.1007/s44195-022-00029-9 SpringerLink
7. Sakaeda, N., Vogelmann, A. M., Wang, H., et al. (2024). Estimation and model performance of aerosol
radiative forcing over Skukuza (South Africa) during 1999–2010 using sun photometer data. Journal of
Atmospheric Sciences (accepted). https://doi.org/10.1016/j.atmosenv.2024.01.005
ScienceDirect+1ScienceDirect+1
8. Stenchikov, G. L. (2024). Saharan dust impacts on regional radiative budgets and circulation:
implications for aerosol–climate interaction. Climate Dynamics (in press).
https://doi.org/10.1007/s00382-024-07089-x Wikipedia
9. Kazadzis, S., Kouremeti, N., Gröbner, J., Masoom, A., & Karanikolas, A. (2024). Aerosol Optical
Depth measurements at the WMO Global GAW-PFR network: long-term trends and calibration. Poster
presented at WMO/AERONET Workshop, Davos, Switzerland. [unpublished poster].
aeronet.gsfc.nasa.gov
10. Bouabid, S., Watson-Parris, D., Stefanović, S., Nenes, A., & Sejdinovic, D. (2022). AODisaggregation:
toward global aerosol vertical profiles. arXiv Preprint. https://doi.org/10.48550/arXiv.2205.04296
arXiv
11. Juma, S. G., & Mbithi, D. N. (2024). Estimation of radiative forcing due to black carbon on snow over
mountains of Eastern African region. Iconic Research and Engineering Journals, 8(1), 259–267.
https://doi.org/10.305/irej.2024.08.01.1706060 irejournals.com