INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)
ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue XI November 2025
ACKNOWLEDGMENT
The authors would like to express their sincere gratitude to the Kedah State Research Committee, UiTM Kedah
Branch, for the generous funding provided under the Tabung Penyelidikan Am. This support was crucial in
facilitating the research and ensuring the successful publication of this article.
REFERENCES
1. Tshuma, C., Ntombela, N., and van Wijk, H. C., (2022). Challenges and coping strategies of the visually
impaired adults: A brief exploratory systematic literature review. Prizren Social Science Journal, 6(2),
71–80.
2. Remillard, E. T., Koon, L. M., Mitzner, T. L., and Rogers, W. A., (2024). Everyday challenges for
individuals aging with vision impairment: Technology implications. Gerontologist, 64(6), gnad169.
3. Purola, P., Koskinen, S., and Uusitalo, H., (2023). Impact of vision on generic health-related quality of
life-A systematic review. Acta Ophthalmol, 101(7), 717–728.
4. [4] Bastidas-Guacho, G. K., Paguay Alvarado, M. A., Moreno-Vallejo, P. X., Moreno-Costales, P. R.,
Ocaña Yanza, N. S., and Troya Cuestas, J. C., (2025). Computer Vision-Based Obstacle Detection Mobile
System for Visually Impaired Individuals. Multimodal Technologies and Interaction, 9(5), 48.
5. Khan, A., and Khusro, S., (2021). An insight into smartphone-based assistive solutions for visually
impaired and blind people: issues, challenges and opportunities. Univers Access Inf Soc, 20(2), 265–298.
6. Al-Razgan, M., et al., (2021). A systematic literature review on the usability of mobile applications for
visually impaired users. PeerJ Comput Sci, 7, e771.
7. Collart, L., Ortibus, E., and Ben Itzhak, N., (2024). An evaluation of health-related quality of life and its
relation with functional vision in children with cerebral visual impairment. Res Dev Disabil, 154, 104861.
8. Wang, J., Li, Y., Yang, G.-Y., and Jin, K., (2024). Age-related dysfunction in balance: a comprehensive
review of causes, consequences, and interventions. Aging Dis, 16(2), 714.
9. Singh, R. R., and Maurya, P., (2022). Visual impairment and falls among older adults and elderly:
evidence from longitudinal study of ageing in India. BMC Public Health, 22(1), 2324.
10. Ouyang, S., et al., (2022). Risk factors of falls in elderly patients with visual impairment. Front Public
Health, 10, 984199.
11. Kim, H., and Sohn, D., (2020). The urban built environment and the mobility of people with visual
impairments: analysing the travel behaviours based on mobile phone data. Journal of Asian Architecture
and Building Engineering, 19(6), 731–741.
12. Thoma, M., Partaourides, H., Sreedharan, I., Theodosiou, Z., Michael, L., and Lanitis, A., (2023).
Performance Assessment of Fine-Tuned Barrier Recognition Models in Varying Conditions. In:
International Conference on Computer Analysis of Images and Patterns, Springer, 172–181.
13. Alsuwaylimi, A. A., Alanazi, R., Alanazi, S. M., Alenezi, S. M., Saidani, T., and Ghodhbani, R., (2024).
Improved and efficient object detection algorithm based on YOLOv5. Engineering, Technology &
Applied Science Research, 14(3), 14380–14386.
14. Jia, X., Tong, Y., Qiao, H., Li, M., Tong, J., and Liang, B., (2023). Fast and accurate object detector for
autonomous driving based on improved YOLOv5. Sci Rep, 13(1), 9711.
15. Rasheed, A. F., and Zarkoosh, M., (2025). Optimized YOLOv8 for multi-scale object detection. J Real
Time Image Process, 22(1), 6.
16. Said, Y., Atri, M., Albahar, M. A., Ben Atitallah, A., and Alsariera, Y. A., (2023). Obstacle detection
system for navigation assistance of visually impaired people based on deep learning techniques. Sensors,
23(11), 5262.
17. Hanhirova, J., Kämäräinen, T., Seppälä, S., Siekkinen, M., Hirvisalo, V., and Ylä-Jääski, A., (2018).
Latency and throughput characterization of convolutional neural networks for mobile computer vision.
In: Proceedings of the 9th ACM Multimedia Systems Conference, 204–215.
18. Mahendran, J. K., Barry, D. T., Nivedha, A. K., and Bhandarkar, S. M., (2021). Computer vision-based
assistance system for the visually impaired using mobile edge artificial intelligence. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2418–2427.
19. Kaliappan, V. K., M. S. V., Shanmugasundaram, K., Ravikumar, L., and Hiremath, G. B., (2023).
Performance Analysis of YOLOv8, RCNN, and SSD Object Detection Models for Precision Poultry
Page 1637