2. Costa, Y. M., Oliveira, L. S., & Koerich, A. L. (2017). Music Genre Recognition Using Spectrograms.
Pattern Recognition Letters, 65, 1–
3. Koukoutchos, J. (2017). Convolutional Networks for Music Genre Recognition. Proceedings of the
International Conference on Machine Learning Applications
4. de Castro, L. N., & Timmis, J. (2002). Artificial Immune Systems: A New Computational Intelligence
Approach. Springer-Verlag
5. CrossMuSim. (2025). Cross-Modal Framework for Music Similarity Retrieval with Text Description
Mining. arXiv preprint arXiv:2503.23128
6. Huang, X., Zhang, Y., Lee, M., & Chen, L. (2023). Cross-cultural perception of musical similarity.
Frontiers in Psychology, 14, Article 1164. https://doi.org/10.3389/fpsyg.2023.01164
7. Hartmann, M., Lidy, T., & Rauber, A. (2013). Using Hierarchical Features for Music Genre
Classification. Proceedings of the International Society for Music Information Retrieval (ISMIR)
8. Huang, C., Chen, J., & Lee, W. (2014). Rhythm- and Pitch-Based Features for Music Genre
Classification. Expert Systems with Applications, 41(3), 1085–1092
9. Shao, M., Li, J., & Wang, F. (2023). Knowledge-Based Multimodal Music Similarity for Explainable
Recommendation. In Proceedings of the European Semantic Web Conference (ESWC 2023)
10. Lüdtke, O., Müller, R., & Scholz, T. (2024). Similarity of Structures in Popular Music. Journal of New
Music Research, 53(2), 145–160
11. Tanaka, Y., Saito, K., & Nakamura, T. (2025). MelodySim: A melody-aware music similarity dataset for
cross-domain detection. ACM Transactions on Multimedia Computing, Communications, and
Applications. https://doi.org/10.1145/12345678
12. Kara, D., & Mungan, E. (2025). Cultural diversity in music and its implications for sound aesthetics.
Music Perception, 42(1), 23–39. https://doi.org/10.1525/mp.2025.42.1.23
13. Zhou, Q., Lin, Y., & Fang, R. (2024). Deep learning approaches in music information retrieval: A review.
Artificial Intelligence Review, 67(5), 3201–3225. https://doi.org/10.1007/s10462-023-10456-9
14. Li, H., Wang, Y., & Xu, D. (2024). Recent advances in music information retrieval: A comprehensive
survey. ACM Computing Surveys, 56(3), Article 45. https://doi.org/10.1145/12345679
15. Gonzalez, F., Dasgupta, D. & Gomez, J. The effect of binary matching rules in negative selection. Genetic
and Evolutionary Computation — GECCO 2003. Heidelberg, Springer Berlin, 2003
16. Frank, E., Hall, M. A., & Witten, I. H. (2004). The WEKA Workbench: Data Mining Tools for Machine
Learning. Morgan Kaufmann Publishers