11. J. Lu et al., “Graph-based reinforcement learning for software-defined networking traffic
engineering,” J. King Saud Univ. – Comput. Inf. Sci., vol. 37, Art. 119, 2025, doi:10.1007/s44443-
025-00133-z.
12. R. Kablaoui et al., “Network traffic prediction by learning time series as images,” Eng. Sci. Technol.
Int. J., vol. 36, Art. 101754, 2024, doi:10.1016/j.jestch.2024.101754.
13. M. J. F. Alenazi, “An effective deep-Q learning scheme for QoS improvement in physical layer of
software-defined net- works,” Physical Communication, vol. 61, Art. 102387, 2024,
doi:10.1016/j.phycom.2024.102387.
14. Y. Zheng et al., “Flow-by-flow traffic matrix prediction methods: achiev- ing accurate, adaptable, low
cost results,” Computer Commun., vol. 194, pp. 348–361, 2022, doi:10.1016/j.comcom.2022.07.052.
15. Y. Yang, “A network traffic forecasting method based on SA-optimized ARIMA-BP neural network,”
Computer Networks, vol. 193, Art. 108102, 2021, doi:10.1016/j.comnet.2021.108102.
16. F. Aktas et al., “AI-enabled routing in next generation networks: A survey,” Alexandria Eng. J., vol.
120, no. 3, pp. 449–474, 2025, doi:10.1016/j.aej.2025.01.095.
17. X. Wang et al., “Traffic Engineering Optimization in Hybrid Software- Defined Networks: A mixed
integer nonlinear programming model and heuristic algorithm,” Int. J. Network Management, vol. 35,
no. 3, 2025, doi:10.1002/nem.70017.
18. S. M. S. Bukhari et al., “Network traffic prediction: using AI to predict and manage traffic in high-
demand IT networks,” Policy Res. J., vol. 2, no. 4, p. 1706, 2024.
19. M. Gupta and P. Kumar, “Traffic optimization in SD-WAN using AI and segment routing,” Internet of
Things J., vol. 10, no. 1, pp. 1–15, 2023, doi:10.1016/j.iot.2023.100789.
20. R. Kołakowski et al., “Hierarchical Traffic Engineering in 3D Networks Using QoS-Aware
21. Graph-Based Deep Reinforcement Learning,” Electronics, vol. 14, no. 5, Art. 1045, 2025,
doi:10.3390/electronics14051045.
22. D. Aureli et al., “Intelligent Link Load Control in a Segment Routing network via Deep
Reinforcement Learning,” in ICIN, 2022, doi: (ICIN).
23. A. Abdelsalam et al., “SRPerf: a Performance Evaluation Frame- work for IPv6 Segment Routing,”
IEEE TNSM, Dec. 2020, doi:10.1109/TNSM.2020.3030084.
24. A. Abdelsalam et al., “Pushing Network Programmability to the limits with SRv6 uSIDs and P4,” in
EuroP4, 2020.
25. C. Scarpitta et al., “High performance delay monitoring for SRv6-based SD-WANs,” IEEE TNSM,
2023, doi:10.1109/TNSM.2023.3300151.
26. M. A. Habib et al., “Traffic Steering for 5G Multi-RAT Deployments using Deep Reinforcement
Learning,” arXiv preprint arXiv:2301.05316, 2023.
27. J. Lu et al., “Graph-based reinforcement learning for software**-defined networking traffic
engineering,” J. King Saud Univ. – Comput. Inf. Sci., 2025, doi:10.1007/s44443025-00133-z.
28. R. Kołakowski et al., “Hierarchical Traffic Engineering in 3D Net- works Using QoSAware Graph-
Based DRL,” Electronics, 2025, doi:10.3390/electronics14051045.