

The Impact of Artificial Intelligence (AI) on Lecturers' Teaching Practices in the Fundamentals of Marketing Subject

Rizwan Abu Karim^{1*}, Mohd Halim Mahphoth^{2*}

Faculty of Business & Management, Universiti Teknologi MARA Cawangan Melaka, Malaysia

*Corresponding Author

DOI: <https://dx.doi.org/10.47772/IJRRISS.2025.91100595>

Received: 11 December 2025; Accepted: 18 December 2025; Published: 26 December 2025

ABSTRACT

The rapid advancement of artificial intelligence (AI) has transformed teaching and learning practices in higher education. This study examines the impact of Artificial Intelligence (AI) on Lecturers' Teaching Practices in the Fundamentals of Marketing Subject. Using a convenience sample of 23 lecturers, data were collected through an online questionnaire and analyzed using descriptive statistics. Findings indicate that lecturers generally perceive AI as highly useful, easy to use, and effective in improving teaching efficiency and student engagement. Most respondents expressed positive attitudes toward continued integration of AI into their teaching practices. The study contributes empirical insights into AI adoption in marketing education and offers recommendations for enhancing lecturers' AI proficiency and classroom integration.

Keywords: Artificial Intelligence; Marketing Education; Lecturer Perceptions; Technology Adoption; Teaching Performance

INTRODUCTION

The rapid advancement of artificial intelligence (AI) has significantly transformed higher education, influencing instructional design, content creation, and classroom delivery. AI-assisted tools can reduce preparation time, provide automated layout suggestions, enhance visual quality, and transform complex information into digestible, visually appealing materials. In modern classrooms, where students increasingly prefer visual and interactive learning, AI may enhance teaching performance, clarity of instruction, and student engagement.

Despite these benefits, the adoption of AI among lecturers remains largely intermediate. Factors such as insufficient training, concerns about reliability, and limited experience with AI tools may hinder full integration [1,2]. Understanding lecturers' experiences with AI, including perceived usefulness, ease of use, impact on teaching performance, and attitudes toward AI, is essential for promoting effective integration in higher education.

This study aims to examine the impact of Artificial Intelligence (AI) on lecturers' teaching practices in the Fundamentals of Marketing subject. By analyzing lecturers' experiences with AI tools, the study contributes empirical evidence to inform strategies for integrating AI into modern teaching and learning practices.

LITERATURE REVIEW

Perceived Usefulness of AI in Teaching and Learning Perceived usefulness refers to the degree to which an individual believes that using a particular technology will enhance job performance [3]. AI has increasingly been recognized as a valuable tool for supporting instructional design, content development, and classroom delivery. AI-powered tools enable lecturers to generate teaching materials more efficiently, personalize instructional content, and support complex content delivery with reduced effort [2].

Previous studies show that AI applications, such as content-generation tools, adaptive learning systems, and instructional design assistants, improve the quality and effectiveness of teaching resources [4]. By assisting

educators in creating structured lesson plans, examples, and assessments, AI allows lecturers to focus more on pedagogy rather than routine content preparation. In marketing education, where conceptual understanding and application are critical, AI supports the delivery of relevant, engaging instructional materials.

Perceived Ease of Use of AI Tools Perceived ease of use is defined as the extent to which an individual believes that using a system will be free of effort [3]. In educational settings, intuitive and user-friendly AI tools increase the likelihood of adoption [5].

Recent research shows that generative AI platforms allow educators with limited technical backgrounds to confidently use AI for lesson preparation, idea generation, and instructional support [6]. Easy-to-use tools reduce the time required for lesson planning and assessment design, improving overall teaching efficiency [7]. Perceived ease of use, therefore, is a significant factor in lecturers' adoption of AI in teaching and learning.

Impact of AI on Teaching Performance Teaching performance refers to how effectively lecturers deliver content, engage students, and facilitate meaningful learning outcomes. AI has been shown to positively influence teaching performance by providing clearer explanations, improved instructional design, and enhanced student engagement [8].

AI-generated materials, including visual aids, summaries, and examples, help lecturers present complex information more accessibly. Multimedia-rich, AI-supported materials improve student attention and conceptual understanding compared to traditional text-based resources [9]. AI tools also enable customization of instructional resources, promoting inclusive and student-centered teaching [10]. In marketing education, AI-generated case studies and visualizations enhance practical learning and analytical thinking.

Attitudes Toward AI Integration in Teaching and Learning Attitude toward technology refers to an individual's positive or negative feelings about using a system and predicts behavioral intention [11]. Lecturers' attitudes toward AI are shaped by perceived usefulness, ease of use, trust, and reliability of AI-generated content.

Studies suggest that positive perceptions of AI lead to greater willingness to adopt and integrate AI in teaching [12]. Trust in AI-generated content is crucial in academic settings due to concerns about accuracy, bias, and ethics [2]. Lecturers who feel comfortable with AI and perceive it as a supportive tool are more likely to sustain its use. Positive attitudes toward AI reflect readiness to embrace digital transformation in higher education.

METHODOLOGY

Research Design

This study employed a descriptive research design to examine lecturers' adoption of AI in teaching Fundamentals of Marketing. A survey approach was used to collect standardized data on perceptions, attitudes, and self-reported practices.

Population and Sample

The population comprised lecturers teaching Fundamentals of Marketing in higher education institutions. Using convenience sampling, 23 lecturers who were readily accessible and willing to participate were selected.

Data Collection

Instrument and Procedure Data were collected using a structured online questionnaire developed based on the Technology Acceptance Model (TAM). The questionnaire covered perceived usefulness, perceived ease of use, impact on teaching performance, and attitudes toward AI integration. Participants completed the survey via Google Forms voluntarily and anonymously.

Data Analysis

Data were coded and analyzed using SPSS. Descriptive statistics, including frequencies and percentages, summarized demographic characteristics and responses to study variables.

FINDINGS

Demographic Profile of Respondents

Table 1: Demographic Profile

Gender	Frequency	Percentage
Gender		
Male	10 respondents	43.5%
Female	13 respondent	56.5%
Age Group		
30 - 39	8 respondents	34.8%
40m- 49	15 respondents	65.2%
Academic Qualification		
PhD	8 respondents	65.2%
Master	15 respondents	34.8%
Teaching Position		
Lecturer	2 respondents	8.7%
Senior Lecturer	20 respondents	87.0%
Associate Professor: 1 respondent	1 respondent	4.3%
Years of Teaching Experience		
4 – 7 years	4 respondents	17.4%
8 – 15 years	10 respondents	43.5%
More than 15 years	9 respondents	39.1%
Average Class Size		
20 – 40 students	18 respondents	78.3%
41 – 80 students	5 respondents	21.7%
Experience Using AI Tools		
Advanced:	2 respondents	8.7%
Intermediate	17 respondents	73.9%
Beginner	4 respondents	17.4%

The study involved a total of 23 respondents drawn from the academic teaching staff. With respect to gender distribution, 56.5% (n = 13) of the respondents were female, while 43.5% (n = 10) were male.

In terms of age, the majority of the respondents were between 40 and 49 years (65.2%, n = 15), while 34.8% (n = 8) were aged 30–39 years.

Regarding academic qualifications, 65.2% (n = 15) of the participants held a Master's degree, whereas 34.8% (n = 8) possessed a Doctoral (PhD) degree.

Concerning teaching positions, most respondents were Senior Lecturers (87.0%, n = 20). This was followed by Lecturers (8.7%, n = 2) and Associate Professors (4.3%, n = 1).

In relation to teaching experience, 43.5% (n = 10) of the respondents reported between 8 and 15 years of teaching experience, 39.1% (n = 9) had more than 15 years, and 17.4% (n = 4) had 4–7 years of experience.

With regard to class size, the majority of participants (78.3%, n = 18) taught classes comprising 20–40 students, while 21.7% (n = 5) reported teaching classes with 41–80 students.

Finally, participants' experience with artificial intelligence (AI) tools varied. Most respondents identified as having intermediate-level experience (73.9%, n = 17), followed by beginner-level experience (17.4%, n = 4), while a smaller proportion reported advanced experience (8.7%, n = 2).

4.2 Descriptive Analysis of AI Adoption

Table 2: Perceived Usefulness of AI

Item	Neutral (%)	Agree (%)	Strongly Agree (%)
AI tools make it easier to develop teaching materials	4.35	26.09	69.57
AI helps generate high-quality instructional content efficiently	8.70	34.78	56.52
AI improves ability to present complex concepts in engaging ways	8.70	39.13	52.17

The results from Table 2 show that teachers perceive AI as highly useful in supporting their teaching tasks. A large majority agreed that AI tools make it easier to develop teaching materials, generate high-quality instructional content, and present complex concepts in more engaging ways. This indicates that AI is viewed as an effective tool for enhancing the quality and clarity of teaching materials.

Table 3: Perceived Ease of Use of AI

Item	Neutral (%)	Agree (%)	Strongly Agree (%)
I feel confident using AI for idea generation and materials	4.35	43.48	52.17
Learning to use AI is easy	4.35	26.09	69.57
Item	Neutral (%)	Agree (%)	Strongly Agree (%)
AI reduces lesson preparation time	4.35	26.09	69.57

Table 3 further demonstrates that teachers find AI tools easy to use. Most respondents expressed confidence in using AI for idea generation and material preparation, and they also agreed that learning to use AI is simple. Additionally, the majority felt that AI reduces lesson preparation time, suggesting that AI is both user-friendly and efficient.

Table 4: Impact on Teaching Performance

Item	Neutral (%)	Agree (%)	Strongly Agree (%)
AI-generated materials help deliver clearer explanations	4.35	43.48	52.17
AI assists in creating engaging learning resources	4.35	47.83	47.83
AI helps improve students' understanding of course content	17.39	39.13	43.48

The findings in Table 4 show that AI positively impacts teaching performance. Respondents agreed that AI-generated materials support clearer explanations and help create more engaging learning resources. While slightly fewer respondents strongly agreed that AI improves students' understanding, the overall responses still indicate that AI contributes to better comprehension and learning outcomes.

Table 5: Attitudes Toward AI Integration

Item	Neutral (%)	Agree (%)	Strongly Agree (%)
Willing to continue using AI in teaching	4.35	43.48	52.17
AI is valuable for modern teaching and learning	0	43.48	56.52
Comfortable integrating AI into teaching and content creation	0	43.48	56.52

Lastly, Table 5 highlights teachers' positive attitudes toward integrating AI into their teaching practice. Nearly all respondents expressed willingness to continue using AI, and all agreed that AI is valuable for modern teaching and learning. The unanimous comfort in integrating AI into instructional processes reflects strong acceptance and readiness to adopt AI.

It can be summarized that lecturers demonstrate strong positive perceptions and attitudes toward AI adoption. Across all categories, the majority agreed or strongly agreed with statements regarding AI's usefulness, ease of use, impact on teaching performance, and attitudes toward integration. Neutral responses were minimal, and no negative responses were reported, indicating widespread acceptance.

DISCUSSION

The findings indicate a positive perception and adoption of AI tools among marketing lecturers. Lecturers reported that AI enhances teaching material development, simplifies complex concepts, improves instructional quality, and fosters student engagement, consistent with the Technology Acceptance Model [3].

Perceived Usefulness and Ease of Use: Strong agreement with usefulness and ease of use aligns with prior research demonstrating AI's ability to automate content creation and reduce workload [4] [13].

Impact on Teaching Performance: AI-generated materials were perceived to improve clarity and engagement, supporting [9] assertion that visual and interactive materials enhance learning outcomes. A minor proportion of neutral responses regarding student understanding suggests that lecturers may require more experience or evidence of AI's direct impact.

Attitudes Toward AI Integration: Positive attitudes and willingness to continue AI use reflect trust, perceived reliability, and readiness for digital transformation [2] [12].

Implications for Marketing Education: AI integration facilitates development of interactive case studies, visual simulations, and applied learning materials, improving engagement and comprehension. Time saved can be redirected to personalized instruction and active learning strategies.

Challenges: Most lecturers reported intermediate AI experience, highlighting the need for training, peer support, and institutional guidance to maximize effective integration.

CONCLUSION

This study demonstrates that lecturers teaching Fundamentals of Marketing perceive AI as a useful, easy-to-use tool that enhances teaching performance and student engagement. Most respondents exhibited intermediate AI experience but expressed strong confidence and willingness to integrate AI into their teaching practices.

RECOMMENDATIONS:

1. Professional Development: Workshops, tutorials, and peer sharing to improve AI proficiency.
2. Institutional Support: Reliable AI platforms, technical support, and guidelines for evaluating AI generated content.
3. Curriculum Enhancement: Integration of AI-supported interactive case studies and applied learning materials.
4. Ongoing Evaluation: Monitor AI's impact on student outcomes and explore longitudinal and cross disciplinary research.

Ethical Considerations This study obtained informed consent from all participants and ensured anonymity of responses.

Data Availability The data supporting the findings of this study are available from the corresponding author upon reasonable request.

Conflict of Interest The author declares no conflicts of interest.

REFERENCES

1. Zawacki-Richter, O., Marin, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education. *International Journal of Educational Technology in Higher Education*, 16, 39. <https://doi.org/10.1186/s41239-019-0171-0>
2. Kasneci, E., et al. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. *Learning and Individual Differences*, 103, 102274. <https://doi.org/10.1016/j.lindif.2023.102274>
3. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. *MIS Quarterly*, 13(3), 319–340. <https://doi.org/10.2307/249008>
4. Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. *IEEE Access*, 8, 75264–75278. <https://doi.org/10.1109/ACCESS.2020.2988510>
5. Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the Technology Acceptance Model. *Management Science*, 46(2), 186–204. <https://doi.org/10.1287/mnsc.46.2.186.11926>
6. Dwivedi, Y. K., et al. (2023). So what if ChatGPT wrote it? *International Journal of Information Management*, 71, 102642. <https://doi.org/10.1016/j.ijinfomgt.2023.102642>
7. Holmes, W., Tuomi, I., & Pozzebon, M. (2022). Understanding AI in education: Practical possibilities and ethical challenges. *Learning, Media and Technology*, 47(1), 1–14. <https://doi.org/10.1080/17439884.2022.2037405>
8. Ouyang, F., & Jiao, P. (2021). Artificial intelligence in education: The three paradigms. *Computers and Education: Artificial Intelligence*, 2, 100020. <https://doi.org/10.1016/j.caeai.2021.100020>

9. Mayer, R. E. (2020). *Multimedia learning* (3rd ed.). Cambridge University Press.
<https://doi.org/10.1017/9781316941355>
10. Zhai, X., et al. (2021). A review of artificial intelligence (AI) in education from 2010 to 2020. *Complexity*, Article ID 8812542. <https://doi.org/10.1155/2021/8812542>
11. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. *MIS Quarterly*, 27(3), 425–478. <https://doi.org/10.2307/30036540>
12. Teo, T. (2011). Factors influencing teachers' intention to use technology: Model development and test. *Computers & Education*, 57(4), 2432–2440. <https://doi.org/10.1016/j.compedu.2011.06.008>
13. Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). *Intelligence unleashed: An argument for AI in education*. Pearson.