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ABSTRACT

Emergency alert systems that rely solely on auditory signals pose significant risks to the Deaf and Hard-
of-Hearing (DHH) community, especially in public and crowded environments. In response to this
accessibility gap, this project focuses on the design and implementation of a vibrotactile emergency alert bracelet
that delivers non-auditory feedback using real-time environmental sound recognition. The bracelet integrates an
Arduino Nano RP2040 Connect microcontroller, which features an onboard MP34DTO06JTR MEMS
microphone (Arduino, n.d.), and employs a mini vibration motor and OLED display to provide tactile and
visual alerts. Emergency sound types, including fire alarms, sirens, and public announcements, are classified
using machine learning models trained with Edge Impulse. The vibration feedback is controlled through
Linear Resonant Actuators (LRAs), chosen for their efficient, low- power haptic performance in wearable
devices. Feature extraction is performed using Mel-Frequency Cepstral Coefficients (MFCC), and
classification models are evaluated based on accuracy, latency, and robustness to untrained samples. The
system was validated through real-world testing, and results demonstrate high classification accuracy for tonal
alerts and effective user recognition of vibration patterns. Limitations remain in detecting speech-based
announcements. Battery drains tests and user surveys confirm the system’s reliability for daily short-term
usage. This project presents a cost-effective, wearable solution that enhances situational awareness and
safety for the DHH community in emergency scenarios.

Keywords: Vibrotactile alert system, MEMS microphone, Arduino RP2040 Connect, Emergency sound
classification, Linear Resonant Actuator (LRA), Edge Impulse, Deaf and Hard-of-Hearing (DHH)

INTRODUCTION

Emergency alert systems play a critical role in ensuring public safety during situations such as fires, natural
disasters, and security threats. However, conventional systems rely heavily on auditory signals such as sirens,
fire alarms, and public announcements, which inherently exclude individuals who are Deaf or Hard-of-Hearing
(DHH). This exclusion creates a significant safety gap, as the inability to perceive audio- based alerts delays
response time and increases vulnerability during emergencies. Studies have shown that DHH individuals often
rely on secondary cues like visual observation or crowd behavior to recognize danger (Basner et al., 2014),
further placing them at risk in chaotic scenarios.

Public infrastructures such as malls, offices, and transportation hubs often lack inclusive emergency
communication mechanisms. While visual alert systems, such as flashing lights and digital notifications, are in
use, their effectiveness is limited bythe user’sline of sight and the requirement for constant visual attention. These
constraints highlight the need for a more direct and accessible alert mechanism that functions independently of
auditory or visual awareness (Berglund, Lindvall, & Schwela, 1999).

Wearable vibrotactile technology presents a promising alternative for addressing this accessibility issue. By
delivering emergency alerts through tactile feedback, such devices can provide immediate, intuitive notifications
to DHH users without relying on sound or sight. Recent advancements in microcontroller hardware, particularly
the ArduinoNano RP2040 Connect, and machine learning platforms like Edge Impulse, have enabled the
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integration of real-time sound classification and vibration feedback in a compact, wearable form factor.

This study focuses on the development of a vibrotactile emergency alert bracelet that detects specific emergency
audio signals and converts them into vibration patterns recognizable to the user. The system utilizes MEMS-
based digital microphones for sound acquisition, Mel-Frequency Cepstral Coefficients (MFCCs) for audio
feature extraction, and neural network classifiers for signal recognition. Upon classification, vibration motors
driven by Linear Resonant Actuators (LRAs) are activated to deliver haptic feedback corresponding to the type
of emergency.

The goal of this research is to bridge the accessibility gap in emergency alerting systems by providing the DHH
community with an inclusive, responsive, and cost-effective wearable solution. Through real-time processing,
robust classification, and user-centric feedback, the system aims to enhance situational awareness and safety for
individuals who are traditionally underserved by conventional emergency communication technologies

METHODOLOGY

Vibrotactile Bracelet Product Design

The product was developed to be compact, ergonomic, and efficient in delivering haptic and visual alerts for
individuals with hearing impairments or those operating in noisy environments. The design objective was to create
a wearable solution capable of real-time sound classification and immediate feedback delivery through vibration
and OLED display. The bracelet integrates an embedded system capable of recognizing emergency-related
audio cues such as sirens, fire alarms, and public announcements. Upon detecting a specific sound, the device
activates a vibration motor to notify the user and simultaneously displays the corresponding classification label
on a compact OLED screen. Designed to be worn on the wrist, the system emphasizes portability, low power
consumption, and intuitive operation.

The key hardware components incorporated into the bracelet were selected based on size, power efficiency,
compatibility with embedded ML deployment, and the ability to perform reliably in real-time applications. Table
2.1 outlines the primary components used in the design.

Table 2.1 Hardware Components Integrated into the Bracelet

Harvdware Name Description Photo Reference

Arduino Nano Acts as the central microcontroller. It
RP2040 Connect  includesa built-in microphone for sound
capture, Wi-Fi and Bluetooth for future
ToT expansion, and enough processing
power to run real-time sound
classification models

Mini Flat Delivers haptic feedback based on sound
Vibration Motor  detection results. Different vibration
pattems can be programmed fordifferent

classes (e.g., fire alarm, siren)

28x32 OLED Shows real-time classification results
Display such as "SIREN" or "FIRE ALARM"
(SSD1306) giving visual confirmation of the

detected sound

3.7V Li-Po Powers the system for several hours
Battery (500mAh) Small and thinenough to be embedded
in the bracelet enclosure

TP4056 USB-C Provides rechargeable capability via
Charging Module USB-C. making the device user-friendly
and portable

MT3608 Step-Up  Ensures the 3.7V battery output is
Converter boosted to 5V for components that
require higher voltage

Mini Rocker Acts as the power switch to manually
Switch(KCD11) turn the device ON or OFF B ’

The physical enclosure for the bracelet was modeled in SolidWorks to ensure all components fit securely within
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a compact, ergonomic form factor. The design accounted for the actual dimensions of each electronic part to
prevent overcrowding and to maintain a low profile. Rounded edges and smooth surfaces were incorporated to
enhance wearability and reduce discomfort during prolonged use. The enclosure includes precise cutouts for the
OLED display, USB-C charging port, and a vent near the microphone area to prevent acoustic distortion. A
visual overview of the enclosure design is presented in Figure 2.1.

Figure 2.1 3D View of the Bracelet Enclosure Design

The final design emphasizes modularity, allowing for easy disassembly for maintenance or upgrades. This
ensures the device can be adapted for future improvements such as additional alert types, wireless
communication features, or integration with smart home systems. Overall, the bracelet’s physical and
functional design enables a practical, user-friendly, and inclusive solution for emergency awareness in daily
life.

Sound Dataset Collection and Preparation

To train the emergency sound classification model, six distinct audio classes were selected during the initial
development phase: ambulance siren, police siren, fire truck siren, background noise, fire alarm, and emergency
announcement. These classes were chosen to represent commonly encountered emergency-related sounds with
the intent of enabling the system to distinguish between them in real-world scenarios. The three siren types were
deliberately treated as separate classes to assess the model’s ability to differentiate tonal patterns across
emergency vehicles, supporting a more refined response mechanism.

All samples were recorded using the built-in microphone of a laptop connected directly to Edge Impulse’s data
acquisition platform, allowing real-time integration with the Arduino development environment. Data collection
was conducted via the platform’s recording interface, and audio clips were visualized immediately to confirm
signal quality and class distribution (Edge Impulse, n.d.), as shown in Figure 2.2.

Figure 2.2 Collected Sensor Data Displayed in Edge Impulse Data Acquisition Tab
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All audio samples used in this project were sourced from online platforms, primarily YouTube, to reflect realistic
emergency sound environments. Audio clips containing sirens, fire alarms, public announcements, and ambient
background noise were played and recorded in real time using the Arduino Nano RP2040 Connect's onboard
MEMS microphone. The device was connected to Edge Impulse through the edge-impulse-daemon interface,
allowing seamless integration between local hardware and the data acquisition platform.

Each recording was standardized to a 4-second duration, with careful manual cropping to eliminate silent
intervals and irrelevant background sounds. This ensured that each sample captured the most prominent and
identifiable features of the target sound class. The use of a uniform recording method and consistent device
configuration across all sound categories contributed to high-quality, comparable data throughout the dataset, as
shown in Figure 2.3.

FIRE TRUCK SIREN.5uBm0uSc

Figure 2.3 Cropped Raw Sensor Data in Edge Impulse Studio

The complete dataset consisted of 150 audio samples, each recorded at a duration of 4 seconds. These samples
were evenly divided across six classes relevant to emergency alert scenarios, as shown in Table XX. The three
siren-relatedclasses: ambulance, police, and fire truck, were each represented by 15 samples, enabling early
testing of the model’s ability to differentiate between tonal emergency vehicle signals. Two additional classes,
fire alarm and emergency announcement, also included 15 samples each, simulating sounds typically
encountered in public infrastructure such as offices, schools, and malls.

Sound Class Number of Samples Sample Duration
Ambulance Siren 15 4 seconds

Police Siren 15 4 seconds

Fire Truck Siren 15 4 seconds
Background Noise 75 4 seconds

Fire Alarm 15 4 seconds
Emergency Announcement 15 4 seconds

Total 150 samples ~10 minutes

Table 2.2 Sample Data Distribution by Class in Edge Impulse Project

The background noise class contained 75 samples, intentionally overrepresented to enhance the model’s
robustness against false alarms. These samples covered a wide rangeof environmental audio, including human
conversation, indoor ambient noise, and outdoortraffic sounds. This imbalance was a deliberate design choice to
ensure the model could reliably differentiate emergency cues from everyday sound environments. An overview
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of the combined dataset is visualized in Table 2.2.

Preprocessing was performed using Edge Impulse Studio’s built-in tools, which automatically standardized the
duration and amplitude of all samples. Each 4-second clip was trimmed to remove silence and normalized to
reduce amplitude variance across classes. The most important preprocessing step involved the transformation
of raw audio into Mel-Frequency Cepstral Coefficients (MFCCs) during the Digital Signal Processing (DSP)
phase (Davis & Mermelstein, 1980). MFCCs are widely used in sound classification tasks as they capture the
frequency-based characteristics of audio in a compact, machine- readable format.

This MFCC representation was further reduced into a set of numerical features, which served as the input to the
neural network classifier. These features significantly reduced data dimensionality while retaining essential
acoustic information, improving training efficiency and enhancing the model’s ability to generalize across
various real- world acoustic conditions.

Altogether, this structured and carefully curated dataset provided a reliable foundation for training a lightweight
yet accurate classification model deployable on embedded hardware.

Model Training and Deployment

The sound classification model for the vibrotactile alert bracelet was developed using Edge Impulse’s neural
network classifier, specifically optimized for deployment on embedded hardware with constrained memory and
processing capacity (Zhang, Wang, & Zhao, 2022). The model architecture consisted of an input layer for MFCC
features, followed by a fully connected dense layer with ReL U activation, and a softmax output layer to classify
inputs into one of six predefined sound classes. The configuration is shown in Figure 2.4.

Neural Network settings

Training setungs

Advanced training settings -

Figure 2.4 Edge Impulse Neural Network Configuration for Audio Classification

Edge Impulse’s AutoML feature provided an initial model structure, which was slightly modified to reduce RAM
and Flash usage without compromising accuracy. No convolutional layers were included to maintain the
lightweight nature of the model (Yin, You, & Cui, 2021), ensuring smooth real-time inference on the Arduino
Nano RP2040 Connect.

During training, the model achieved an overall accuracy of 96.55%, with excellent classification results across
most sound classes.
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Figure 2.5 Model Testing Accuracy Reading in Edge Impulse Studio

As summarized in Figure 2.5, the model’s performance metrics were exceptionally high:
e AUC (Area Under Curve): 1.00

e Weighted Precision: 1.00

o Weighted Recall: 1.00

e Weighted F1 Score: 1.00

The confusion matrix revealed that classes like siren, fire alarm, and background noise were classified with
perfect accuracy, each reaching an F1 score of 1.00. However, the emergency announcement class showed
occasional misclassification, with only 66.7%accuracy, partly due to similarities between speech tones and
general ambient voice noise. Despite this minor limitation, the model maintained high reliability overall and
was considered suitable for real-time deployment.

Following training, the final model was compiled into a custom firmware package for the Arduino Nano
RP2040 Connect via Edge Impulse’s deployment tools (Yang & Deb, 2009). The generated firmware included
the inference engine and required libraries, allowing for standalone operation without dependence on internet
connectivity or external servers.

Configure your deployment

&

Figure 2.6 Deployment Configuration Settings in Edge Impulse Studio Deployment was executed through the
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Arduino IDE, where the device was flashed with the .ino file containing the classification logic, as shown in
Figure 2.6.

RESULT AND DISCUSSION

Sound Classification Results

The initial model used a 4000 ms window size and six distinct classes, achieving 76.7% validation accuracy
(Figure 3.1). It performed well on siren (100%) and background noise (92.9%), but struggled with fire alarms
and emergency announcements, often confusing them with background noise due to overlapping speech or
tonal features (Figure3.2).

Model Model version: @ | Quantized (int8) ~

Last training performance (vahdation set)

0 76.7% e 2.72

Confusion matrix (validation s&t)

100
2.9

Metrics (vakidation set) &
Figure 3.1 Model Training Results in Edge Impulse Studio
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Figure 3.2 Visualization of Dataset in Edge Impulse Data Explorer
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However, this model was too large to be deployed to the Arduino due to memory constraints. To address this, a
2000 ms model was created with all siren types merged into a single “SIREN” class, significantly reducing
model complexity. This updated model achieved 100% validation accuracy in Edge Impulse (Figure 3.3), with a
cleaner confusion matrix and improved performance for fire alarms and background noise. Emergency
announcements still showed some misclassification, indicating persistent acoustic overlap.

-~ " T LA O et b -t)
o 100.0% o 0.0
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Figure 3.3 Updated Training Result in Edge Impulse Data Explorer

Inference Time (Latency)

After deployment, latency tests were conducted on the Arduino using the serial monitor. The system took an
average of 2.7 seconds per classification, broken down into DSP time (~2685 ms) and inference time (~21.5
ms), as shown in Table 3.1.

Recording. ..

Recording done

run classifier returned: 0

Timing: D3P 2681 ms, inference 22 ms, znomaly 0 ms

Predictions:
ANNOUNCEMENT: 0.39%
BACKGROUND NOISE: 9
FIRE ALARM: 0.00%

SIREN: 0.00%

Figure 3.4 Inference Latency in Arduino IDE Serial Monitor
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Run DSP Time (ms) Inference Time (ms) Total Latency (ms)
1 2680 22 2702

2 2682 21 2703

3 2680 21 2701

4 2696 22 2718

5 2684 21 2705

6 2683 22 2705

7 2687 21 2708

8 2689 22 2711

9 2685 21 2706
10 2681 22 2703
Average 2684.7 215 2706.2

Table 3.1 Sample Readings of DSP and Inference Latency from Real-Time Testing

This delay, while noticeable, remains functional for awareness purposes, especially for users needing
environmental cues rather than instant reaction (Podlubny, 1999). The latency was consistent across trials,
supporting predictable performance. Future improvements may include shorter window sizes or more efficient
models to reduce response time.

Real-World Deployment Accuracy

Controlled tests using 100 trials per class were conducted using YouTube audio. The model maintained good
performance for tonal sounds, with 86% accuracy for sirens, 90%for fire alarms, and 98% for background noise
(Table 3.2). However, emergency announcements were not detected at all (0%), as all samples were
misclassified, primarily as background noise, due to the model’s limitations with speech-based inputs.

Class Tested Accuracy

Samples Output (%)

Siren | Fire Background Emergency
Alarm | Noise Announcement

Siren 100 86 10 4 0 86%
Fire Alarm 100 6 90 4 0 90%
Background Noise 100 0 0 98 2 98%
Emergency Announcement | 100 0 0 100 0 0%

Table 3.2 Controlled Test Results with 100 Trials per Class
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Figure 3.5 Heatmap of Classification Accuracy for Each Class from Controlled Tests
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Figure 3.6 Graphical Representation of Model Accuracy Across All Classes

These results confirm that while the model is reliable for tonal emergency cues, it fails to handle verbal alerts,
which are acoustically complex and often resemble ambient conversation.

Robustness Against Untrained Audio Samples

To test generalization, 50 untrained samples per class were evaluated using unfamiliar sirens, alarms, and
ambient noise (Table 3.3). Results showed a 15-20% accuracy drop for siren and fire alarm classes due to new
sound patterns, but background noise remained strong at 93% accuracy. Emergency announcements again failed
with 0% accuracy, reinforcing the model’s poor handling of speech-based content.

Class Tested Accuracy

Samples Output (%)

Siren | Fire Background Emergency
Alarm Noise Announcemen
tt
Siren 50 35 10 5 0 70%
Fire Alarm 50 7 36 7 0 72%
Background Noise 50 1 2 47 0 93%
Emergency Announcement 50 0 0 50 0 0%
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Table 3.3 Robustness Test Using 50 Untrained Samples per Class Under Realistic Conditions
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Figure 3.7 Bar Chart Showing Model Robustness Across Untrained Audio Sources
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Figure 3.8 Robustness Evaluation Heatmap with 50 Untrained Samples per Class

Despite these limitations, the system remains effective for tone-based emergency alert detection in wearable
applications. For improved speech recognition, future iterations should incorporate dedicated speech detection
models or separate processing strategies to isolate announcements from conversational noise.

Vibration Pattern Effectiveness

To provide intuitive, non-auditory alerts, the system implemented distinct vibration patterns for each classified
sound category (Precision Microdrives, n.d.). These patterns were designed based on the urgency and acoustic
profile of the respective sound (Dahiya et al., 2010). As shown in Table 3.4, the siren class used a moderate pulsing
loop to emulate its rising-falling tone, while fire alarms triggered continuous vibration to indicate persistent danger.
Background noise had no vibration output, helping to avoid unnecessary alerts. Emergency announcements were
assigned a unique two-pulse pattern to mimic speech cadence, although this was not consistently activated in

real testing due to model limitations.

Sound Class

Vibration Pattern Description

Purpose / Justification

Page 407

www.rsisinternational.org



http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (1JRISS)

ISSN No. 2454-6186 | DOL: 10.47772/1JRISS | Volume X Issue I January 2026

Siren Moderate pulsing 500 ms ON, 500 ms OFF in |Emulates the wailing rhythm of sirens to
cycles convey urgency

Fire Alarm Continuous vibration ON as long as alarm is | Indicates a critical and ongoing
detected emergency

Background Noise

No vibration

Avoids unnecessary feedback for non-
emergency sounds

Emergency
Announcement

Patterned sequence two short 200 ms pulses
separated by a 100 ms pause, followed by a 500
ms pause

Mimics speech rhythm for voice-based
alerts, offers uniqueness

Table 3.4 Haptic Feedback Patterns Corresponding to Detected Sound Classes

This design allowed users to interpret the nature of the detected sound through haptic feedback alone. Each
pattern served a functional purpose: communicating urgency, presence, or the absence of danger, tailored to
suit DHH users or those in noisy environments.

In terms of response time, the system exhibited an average latency of approximately 2.7 seconds, primarily from
feature extraction (DSP ~2680 ms) and inference (~22 ms). Once classification was complete, the vibration
motor was triggered immediately, resulting in virtually zero added delay between sound recognition and

feedback.

User feedback was collected through a small-scale evaluation involving 10 participants, all wearing noise-
canceling headphones to simulate deaf or acoustically isolated environments. Participants were exposed to the
vibration patterns corresponding to each class and asked to identify the intended alert type. The results,
summarized in Table3.5, showed:

e 100% accuracy for fire alarm and background noise, confirming the effectiveness of these patterns.

e 80% accuracy for siren, with some confusion between the siren and announcement patterns due to similar
rhythmic structures.

e 0% accuracy for emergency announcements, as the model failed to trigger any vibration due to persistent
misclassification. Users therefore assumed the absence of feedback meant background noise.

Sound Class Actual  Vibration | Sample Perceived Classification by Users Accuracy

Pattern Size (%)

Siren Fire Backgroun
Alarm d noise

Siren Pulsing loop 10 8 - - 80%
Fire Alarm Continuous buzzing 10 - 10 - 80%
Background Noise | No vibration 10 - - 10 100%
Emergency Two short buzzes + | 10 - - 10 0%
Announcement pause cycle

Table 3.5 User Feedback on Accuracy of Vibration Pattern Recognition for Each Sound Class

While the feedback system itself performed well, the failure of the model to detect announcements undermined
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its effectiveness. This limitation lies in the model’s classification capability rather than the haptic design. Future
improvements should focus on enhancing speech-based detection, ensuring that critical verbal alerts reliably
activate their corresponding tactile response.

Battery Life Battery Performance

A battery drain test was conducted using the 3.7V, 500mAh Li-Po battery under mixed-usage conditions, where
the device remained on and alternated between idle monitoring and active alert states. As shown in Table 3.6, the
system operated continuously for approximately 6 hours, with intermittent activation of the vibration motor and
OLED display. This duration reflects a realistic usage scenario, balancing background standby time with
occasional emergency detections.

Operating Mode Battery Duration Until | Remarks

Capacity Shutdown
Mixed (Idle +|3.7V,500mAh | ~6 hours Occasional alerts triggered vibration and
Alerts) OLED output

Table 3.6 Battery Drain Test Under Mixed-Usage Conditions

The charging test using the TP4056 USB-C module indicated a full recharge time of approximately 1 hour 30
minutes at ~1 A current (TP4056, n.d.). The module’s indicator LED transitioned from red to blue once charging
was complete (Table 3.7), enabling convenient reuse within short turnaround times.

Charger Module Charging Full Charging Time (from0% | Indicator Behavior
Current to 100%)
TP4056 (via USB-C) | ~1A ~1 hour 30 minutes Red (charging) — Blue (full)

Table 3.7 Charging Duration to Full Using TP4056 USB-C Module

Although 6 hours may be modest, the result is reasonable given the device's compact form and the energy demands
of the vibration motor and OLED display. For extended deployment, future improvements may include
implementing power-saving modes, optimize component efficiency, or use higher-capacity batteries (Wang,
Duan, & Yu, 2012).

OLED Display Output Evaluation

The OLED display functions as the primary visual feedback mechanism of the wearable device, showing real-
time classification results after sound detection. Upon model inference, the display is updated instantly,
typically within ~1 millisecond (Adaftruit, n.d.), with text labels such as “SIREN DETECTED” or “FIRE
ALARM DETECTED”, ensuring no perceptible delay for the user. Display performance is summarized in
Table 3.8.

Detected Sound Class OLED Display Output Text Photo of OLED Output Speed

Siren SIREN DETECTED ~1ms
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Fire Alarm FIRE ALARMDETECTED ~1ms
Background Noise Peaceful Sound ~Ims
Emergency EMERGENCY NO PHOTO SINCE | -
Announcement ANNOUNCEMENT DETECTED | EMERGENCY

Table 3.8 Real-Time OLED Display Output Showing Classified Sound Labels

To minimize memory usage and preserve processing efficiency, the output is purely text-based, no icons or
graphics were used. The display remains off during idle periods and activates only when a classification occurs,
conserving battery power. The only exception was emergency announcements, which failed to appear due to
the model’s inability to recognize that class during real-time inference.

Overall, the OLED display provided fast, clear, and contextually relevant feedback, making it suitable for wearable
assistive applications. Future improvements could include implementing adaptive brightness control, multi-
language support, or low-power display modes to extend operational life without compromising usability.

Integration and System Functionality

This section evaluates the overall integration and operational stability of the wearable emergency alert system,
comprising the Arduino Nano RP2040 Connect, OLED display, vibration motor, Li-Po battery, and Edge
Impulse-deployed sound classification model.

After deployment, the system was tested under typical usage scenarios to assess whether all components worked
cohesively. As shown in Figure 3.9, the full hardware and software stack was integrated into a compact
wearable form.

Figure 3.9 Full System Integration of Hardware and Software Components

Page 410 www.rsisinternational.org



http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (1JRISS)
ISSN No. 2454-6186 | DOL: 10.47772/1JRISS | Volume X Issue I January 2026

Test Parameter Details Result Remarks
Power-On Tests Number of times the device was | 20 attempts Simulates daily user
manually powered on interaction
Successful Startups | Device initialized correctly and | 19 /20(95%) One instance required manual
entered monitoring mode reset due to boot delay
System  Readiness | Time taken for OLED to display | 1-2 seconds No significant delay observed
Time and classification model to activate during boot-up
Peripheral OLED, vibration motor, | 100% All modules initialized without
Initialization microphone functionality on functional error
startup
Overall Startup Reliability of system initialization | Stable Minor issue occurred once;
Status over multiple trials otherwise consistently reliable

Table 3.9 Functional Evaluation of Integrated Wearable Emergency Alert System

Across 20 power-on trials, the system successfully initialized in 95% of cases, consistently entering monitoring
mode within 1-2 seconds. A single startup failure was observed, likely due to a low battery or unstable USB
connection, which was resolved via manual reset. Peripheral modules, including the OLED, vibration motor,
and microphone, initialized correctly in all trials, confirming reliable startup routines.

During operation, classification events consistently triggered the appropriate OLED output and vibration
feedback, validating the correct functioning of the communication and control logic. No crashes, freezes, or
unexpected behavior were observed even during repeated detection cycles, demonstrating the firmware’s
robustness and the stability of the embedded workflow (Cogan, 2008).

Overall, the system proved to be reliable and well-integrated, offering stable performance under normal
operating conditions. While rare startup delays may occur under specific conditions (e.g., low voltage), the
platform remains functionally sound for short-term, real-world wearable applications.

CONCLUSION

The development of the vibrotactile emergency alert bracelet successfully achieved its core objective: creating a
compact, wearable device capable of detecting emergency sounds and notifying users through vibration and
OLED display feedback. Built around the Arduino Nano RP2040 Connect, the device leveraged its built-in
microphone and onboard processing to run real-time inference without requiring constant internet connectivity.

A total of 150 audio samples across six classes—including sirens, fire alarms, emergency announcements, and
background noise—were collected, primarily from YouTube, and processed via Edge Impulse. Feature
extraction using MFCCs and automated preprocessing enabled consistent and efficient model training. The final
classifier achieved 96.55% accuracy during testing, with near-perfect precision, recall, and AUC scores.

In real-world deployment, the system performed well with trained sounds, achieving 86% accuracy for sirens,
90% for fire alarms, and 98% for background noise, but completely failed to detect emergency announcements
due to overlapping speech features and insufficient training diversity. For unfamiliar (untrained) audio, accuracy
dropped by 15-20%, highlighting limited generalization.

Inference latency averaged 2.7 seconds, which is acceptable for general awareness but may not suffice for
urgent, high-speed scenarios (Jayaraman & Sun, 2017). The vibration motor and OLED display delivered
effective feedback, with custom vibration patterns assigned to each class. User testing showed high recognition
rates for tonal alerts but confusion for announcement feedback, tied to detection failures.
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Battery testing with a 3.7V 500mAh Li-Po showed around 6 hours of continuous use, and full charging took 2.5
hours. The system’s boot success rate of 98% demonstrated stable operation.

Overall, the bracelet provides reliable offline emergency alerting for tonal sounds and lays a solid foundation
for future improvement. Key areas for enhancement include expanding the dataset, improving speech-based
detection, reducing inference delay, and extending battery life. This project contributes a practical solution for
enhancing safety and accessibility for the Deaf and Hard-of-Hearing community in everyday environments
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