INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)
ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue XII December 2025
60. Mostafa, R. B., & Kasamani, T. (2022). Antecedents and consequences of chatbot initial trust. European
journal of marketing, 56(6), 1748-1771.
61. Moussawi, S., Koufaris, M., & Benbunan-Fich, R. (2021). How perceptions of intelligence and
anthropomorphism affect adoption of personal intelligent agents. Electronic Markets, 31(2), 343–364.
62. Muslichah, M. (2018). The effect of self-efficacy and information quality on behavioral intention with
perceived usefulness as intervening variable. Journal of Account Business and Management, 25(1), 21–
34.
63. Na, S., Heo, S., Han, S., Shin, Y., & Roh, Y. (2022). Acceptance model of artificial intelligence (AI)-
based technologies in construction firms: Applying the Technology Acceptance Model (TAM) in
combination with the Technology–Organisation–Environment (TOE) framework. Buildings, 12(2), 90.
64. Norzelan, N. A., Mohamed, I. S., & Mohamad, M. (2024). Technology acceptance of artificial
intelligence (AI) among heads of finance and accounting units in the shared service industry.
Technological
Forecasting
and
Social
Change,198,123022.
65. Oliveira, T., Faria, M., Thomas, M. A., & Popovič, A. (2014). Extending the understanding of mobile
banking adoption: When UTAUT meets TTF and ITM. International journal of information management,
34(5), 689-703.
66. Pan, L., Luo, H., & Gu, Q. (2025). Incorporating AI literacy and AI anxiety into TAM: Unraveling
Chinese scholars' behavioral intentions toward adopting AI-assisted literature reading. IEEE Access.
67. Pillai, R., & Sivathanu, B. (2020). Adoption of AI-based chatbots for hospitality and tourism.
International Journal of Contemporary Hospitality Management, 32(10), 3199–3226.
68. Pillai, R., Ghanghorkar, Y., Sivathanu, B., Algharabat, R., & Rana, N. P. (2024). Adoption of artificial
intelligence (AI) based employee experience (EEX) chatbots. Information Technology & People, 37(1),
69. Podsakoff, P.M., MacKenzie, S.B., Lee, J.-Y. and Podsakoff, N.P. (2003), “Common method biases in
70. Portz, J. D., Bayliss, E. A., Bull, S., Boxer, R. S., Bekelman, D. B., Gleason, K., & Czaja, S. (2019).
Using the technology acceptance model to explore user experience, intent to use, and use behavior of a
patient portal among older adults with multiple chronic conditions: Descriptive qualitative study. Journal
of Medical Internet Research, 21(4), e11604. pp. 927-939, doi: 10.1016/j.ijinfomgt.2013.08.007
71. Prakash, A. V., Joshi, A., Nim, S., & Das, S. (2023). Determinants and consequences of trust in AI-based
customer
service
chatbot.
The
Service
Industries
Journal,
43(9–10),
642–675.
72. predicting purchase intention”, International Journal of Information Management, Vol. 33 No. 6,
73. Qatawneh, N., Aljaafreh, A., Allymoun, O., & Aladaileh, R. (2024). Critical success factors influencing
the behavioral intention to adopt smart home technologies. IEEE Access.
74. Rafique, H., Almagrabi, A. O., Shamim, A., Anwar, F., & Bashir, A. K. (2020). Investigating the
acceptance of mobile library applications with an extended technology acceptance model (TAM).
Computers & Education, 145, 103732.
75. Ragheb, M. A., Tantawi, P., Farouk, N., & Hatata, A. (2022). Investigating the acceptance of applying
chatbot (artificial intelligence) technology among higher education students in Egypt. International
76. Rajaobelina, L., Prom Tep, S., Arcand, M., & Ricard, L. (2021). Creepiness: Its antecedents and impact
on loyalty when interacting with a chatbot. Psychology & Marketing, 38(12), 2339-2356.
77. Rashid, A. B., & Kausik, M. A. K. (2024). AI revolutionizing industries worldwide: A comprehensive
overview of its diverse applications. Hybrid Advances, 7, 100277.
78. Sboui, M., Baati, O., & Sfar, N. (2024). Influencing factors and consequences of chatbot initial trust in
AI telecommunication services: A study on Generation Z. The TQM Journal.
79. Song, X., Gu, H., Li, Y., Leung, X. Y., & Ling, X. (2024). The influence of robot anthropomorphism
and perceived intelligence on hotel guests’ continuance usage intention. Information Technology &
80. Tian, W., Ge, J., Zhao, Y., & Zheng, X. (2024). AI chatbots in Chinese higher education: Adoption,
perception, and influence among graduate students—An integrated analysis utilizing UTAUT and ECM
models. Frontiers in Psychology, 15, 1268549.
Page 908