

Sustainable Design and Social Integration of Tiny Houses: Exploring Environmental, Technical, and Societal Dimension

Mohd Zulakhmar Zakiyudin, Mohamad Sufian Hasim

Centre of Studies for Building Surveying, Faculty of Built Environment, University Teknologi Mara, Shah Alam, Selangor, Malaysia

DOI: https://dx.doi.org/10.47772/IJRISS.2024.916SCO0021

Received: 02 October 2025; Accepted: 08 October 2025; Published: 07 November 2025

ABSTRACT

This review paper explores the multifaceted dimensions of tiny houses, emphasizing their role as sustainable and innovative solutions to contemporary housing challenges. It examines environmental sustainability through the use of repurposed and composite materials, life cycle assessments demonstrating reduced impacts, and advanced thermal and renewable energy strategies. Technical innovations in structural safety, space optimization, and modular mobility are analyzed alongside participatory design practices. Social integration aspects cover housing affordability, homelessness reduction, psychological well-being, and cultural preferences, highlighting tiny houses as catalysts for social inclusion. The review also addresses regulatory and urban development challenges, identifying legal barriers and planning complexities that influence adoption. User perception studies reveal motivations, behavioral factors, and community acceptance dynamics. Overall, the review underscores the potential of tiny houses to contribute to sustainable urban living while calling for integrated policy frameworks and further research to overcome structural and societal hurdles.

Keywords: Tiny houses, Sustainable design, Social integration, Environmental sustainability, Housing affordability

INTRODUCTION

A. Background and Significance of Tiny Houses

The tiny house movement has emerged as a compelling response to contemporary challenges related to housing affordability, environmental sustainability, and urban space constraints. In many regions worldwide, escalating housing costs driven by market dynamics and constrained land availability have rendered traditional housing increasingly unattainable, especially among younger generations and lower-income groups. According to Wilson and Wadham (2023), the movement encapsulates not only a shift towards smaller physical dwelling sizes but also embodies a redefinition of lifestyle values emphasizing minimalism, agency, and social equity. Vasseur, Sing, and Short (2022) further highlight that motivations for adopting tiny houses range from economic necessity to environmental consciousness and a desire for closer community connections. Chang (2023) situates tiny houses within the broader dual crises of unaffordable housing and environmental degradation, underscoring their potential to serve as sustainable and cost-effective alternatives.

Environmental and social challenges are deeply intertwined in the tiny house narrative. Johst et al. (2024) discuss the pressing issue of waste from decommissioned wind turbine blades and propose innovative repurposing methods in tiny house construction that significantly reduce environmental impacts. This exemplifies the creative intersection of sustainable material reuse and housing solutions. Complementarily, Fischer (2022) investigates the role of tiny houses in Germany as tools to alleviate poverty and foster social integration, attesting to their potential impact beyond mere shelter towards addressing social exclusion and homelessness.

In addition to economic and environmental factors, cultural and demographic dimensions are shaping the adoption and design of tiny houses. Research by Kirana and Okada (2023) reveals that among Millennials in

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue XVI October 2025 | Special Issue on Sociology

Indonesia, preferences still lean towards conventional larger landed houses in theory, yet realities of limited urban land and finances push for optimized tiny house designs that accommodate modern living needs. Such findings resonate with Murillo and Bianchi's (2024) qualitative study in Latin America, which identifies psychological and hedonic benefits including autonomy and happiness reported among tiny house owners, affirming the positive social and emotional outcomes linked with this living model.

Technological and legal aspects also define the landscape of tiny house development. Stratton and Corneal (2023) emphasize the importance of structural integrity and safety through advanced design tools and finite element analyses, ensuring that tiny houses meet rigorous standards without compromising their minimalistic essence. Félix et al. (2023) demonstrate how multifunctional furniture crafted from innovative composite materials enhances space efficiency and sustainability within tiny house interiors.

However, adoption is still complicated by regulatory barriers and unclear legal frameworks. Bas, Kozanglu, and Bas (2023) provide a critical examination of Turkish law, illustrating how the fragmented legal recognition of tiny houses impedes broader dissemination. Similar challenges are noted by James and Shahab (2024) in England, where high transaction and planning permission costs limit development despite growing interest. Such policy-level obstacles highlight the need for informed legislation to unlock tiny houses' full potential.

B. Objectives and Scope

This review aims to explore the multifaceted dimensions of tiny houses by examining their environmental sustainability, technical and design innovations, and social integration potentials. The objective is to present a comprehensive understanding that bridges material lifecycle and energy considerations with human well-being and inclusive community practices. The rationale for adopting this multidisciplinary perspective stems from the recognition that tiny houses sit at the nexus of environmental imperatives, urban spatial challenges, technological advancement, and social transformation. Addressing these interconnected themes is essential for evaluating tiny houses not only as architectural solutions but also as catalysts for sustainable and equitable housing futures.

Environmental Sustainability of Tiny Houses

A. Sustainable Materials and Circular Economy

The environmental sustainability of tiny houses is increasingly being advanced through the incorporation of repurposed and sustainable materials, contributing directly to circular economy principles. Johst et al. (2024) explored the novel use of root section structures of decommissioned large-scale wind turbine blades as construction material for tiny houses. This approach offers a high-volume repurposing strategy that diverts massive composite waste quantities from landfills or incineration, addressing the environmental challenges presented by the 20 to 25-year lifespan of wind turbines and the lack of adequate recycling pathways. Their finite element analyses confirmed that these repurposed composite structures can resist multiple load cases, such as snow and wind loads, while a life cycle assessment (LCA) demonstrated a dramatic reduction—up to 97% in most environmental impact categories—compared with traditional wooden tiny houses, though certain impacts like climate change indicators showed marginal increases due to the heavier material.

Complementing this, Komazec et al. (2023, 2024) examined tiny house construction practices using discarded and secondhand materials, challenging conventional building norms. This approach highlights sustainability not only through material reuse but also by socially inclusive processes involving collaboration between researchers and practitioners. Their findings revealed that the strategic gathering, organizing, and creative adaptation of waste materials is key to achieving both environmental and social sustainability. However, this method requires flexibility, time investment, and innovative tool use to succeed. This perspective broadens sustainability from a mere material viewpoint to include process-oriented sustainability and social inclusion.

Further, Félix et al. (2023) contributed innovations in composite materials for multifunctional furniture within tiny houses. Employing wild thistle particles combined with polyurethane foam, the resulting products are lightweight yet mechanically resistant, embodying circular economy values. These advances support the design of interiors that optimize material use without compromising durability, lightening structures to decrease environmental burdens during transport and construction.

B. Life Cycle Assessment and Environmental Impact

Applying Life Cycle Assessment methodologies to tiny house construction reveals critical insights into sustainability performance across life stages, including material cultivation, production, construction, and transportation. Ruiz-Pastor et al. (2023) conducted an LCA on a mobile tiny house constructed primarily from hemp bricks and wood, underscoring hemp bricks as a sustainable alternative construction material when manufactured and transported efficiently. Their assessment identified production of titanium sheet metal, wood components, bricks, and logistics as primary environmental hotspots, thus emphasizing opportunities for reducing environmental footprints by material selection and supply chain optimization.

Similarly, Johst et al. (2024) illustrated that while repurposed wind turbine root sections achieved significant reductions in many environmental impact categories, certain areas, including climate change and ozone depletion, increased slightly due to the material's inherent weight and composition. This nuanced understanding stresses that while reuse strategies drastically reduce resource extraction and waste, trade-offs exist requiring holistic life cycle thinking. Level.

C. Energy Efficiency and Thermal Comfort

Energy efficiency within tiny houses is critical not only for environmental sustainability but also for occupant comfort, especially in extreme climates. He (2023) studied a tiny house designed for Joshua Tree National Park's desert environment, employing a passive thermal storage system within a dynamically insulated north wall functioning as a "cold battery." Using simulation tools like IES VE and Opaque, the study demonstrated significant improvements in thermal comfort without reliance on HVAC systems, mainly by optimizing insulation placement and thickness. The study validated natural ventilation strategies as complementary to thermal storage, enhancing overall comfort and energy savings.

Marin and Marin (2022) focused on Computational Fluid Dynamics (CFD) modeling to simulate heat loss in tiny houses under extreme weather conditions. Their results verified that applying composite shell shutters as window insulation effectively reduced thermal losses, demonstrating the value of technical solutions in energy-efficient tiny house envelopes.

In addition to passive measures, renewable energy integration further supports sustainability. Benaissa et al. (2023) presented the design and experimental validation of a solar-powered DC Nano-grid embedded within a tiny house, targeting rural locations lacking public utility grids. The system includes solar converters, battery storage, and smart droop control mechanisms ensuring power flow management and efficient appliance operation. This microgrid setup enables off-grid electrification, promoting energy autonomy and sustainability, which is particularly beneficial in remote or resource-constrained environments.

Collectively, these studies underscore an integrative approach merging material innovation, life cycle optimization, and energy-efficient design supported by renewable energy systems as pivotal for advancing the environmental sustainability of tiny houses.

Technical And Design Innovations

A. Structural Integrity and Safety

The structural integrity and safety of tiny houses are critical given their compact size and often mobile nature. Johst et al. (2024) employed finite element analysis (FEA) to assess the mechanical performance of repurposed composite materials derived from decommissioned wind turbine blades used in constructing tiny houses. Their study tested the structure's response under various load conditions, including snow, wind, and thermal stresses, demonstrating that the composite structure-maintained deformations within acceptable limits. This validation confirms the repurposed materials' viability for structurally sound tiny house construction, contributing to resource sustainability.

Complementing material-specific analysis, Stratton and Corneal (2023) developed an advanced design tool integrating structural, stability, weight, and thermal considerations. Using configurable SolidWorks models

paired with FEA, they generated construction solutions tailored to site-specific parameters, such as climate and user needs, enhancing safety and cost-effectiveness. The inclusion of thermal finite element analysis within this tool assists in optimizing heating and cooling strategies to ensure occupant comfort alongside physical stability. These integrated approaches represent a step forward in accessible, adaptable tiny house designs that maintain structural robustness while being mindful of energy requirements.

B. Space Optimization and Multifunctional Design

Optimizing limited space is a hallmark challenge for tiny houses. Félix et al. (2023) introduced multifunctional furniture crafted from innovative composite materials incorporating wild thistle particles and polyurethane foam. Such lightweight, mechanically resistant furniture pieces enable enhanced usability within confined interiors while aligning with circular economy principles. This design approach addresses common tiny house spatial constraints by utilizing materials that reduce weight and improve sustainability without sacrificing function.

User-centric design processes further improve spatial utility. Pratiwi (2023) applied participatory design methods engaging community stakeholders to optimize space layouts for urban tiny houses confronting increased population density and land scarcity. This approach yielded an open-plan concept emphasizing flexible, simple furnishings and light color schemes that promote perceived spatial expansion and comfort.

Parallel research by Kirana and Okada (2023) revealed millennial preferences favoring efficient landed house designs with reduced unnecessary spatial bulk. Their quantitative analysis identified that typical housing desires often include only essential rooms, prompting a shift toward tiny house concepts better suited to urban affordability and modern lifestyles. This demographic insight supports tailored design strategies focusing on practical space utilization to meet contemporary urban living demands.

C. Mobility and Modular Construction

Mobility remains a significant dimension influencing tiny house design. Yavru et al. (2023) explored the development of tiny houses on wheels (THOWs), addressing regulatory and dimensional constraints imposed by highway transportation standards. Their POD-THOW design concept employs modular components and lightweight construction to surmount size restrictions, facilitating practical mobility without compromising essential spatial functions. However, they emphasize the necessity of integrating sustainable energy sources and carefully engineered structural systems to realize the full benefits of mobile living.

In urban environments, modular and stacked constructions offer pathways toward high-density, resource-efficient housing. Musall et al. (2022) proposed a design of stacked tiny houses as urban shared living solutions with minimal ecological footprint. Combining recyclable and ecological materials within a revitalized existing building stock, these designs not only optimize urban land use but also foster social sustainability through community-oriented living models. The integrated use of local renewable energies within these structures exemplifies holistic thinking spanning architectural, environmental, and social innovation.

Additional technical innovations enrich the discourse on tiny house design. He (2023) presented a dynamic thermal insulation system employing moveable insulation and thermal storage within a tiny house in a desert environment. This passive strategy significantly improved indoor comfort without HVAC reliance, highlighting the importance of climate-adapted envelope design.

Further, Benaissa et al. (2023) showcased an off-grid solar-powered DC nano-grid integrated into a tiny house, facilitating essential electricity provision in rural settings lacking utility access. This exemplifies how energy system design advances contribute to tiny house viability beyond static infrastructure.

Collectively, these technical and design innovations underpin the ongoing evolution of tiny houses as adaptable, resilient, and sustainable living solutions across diverse contexts and functional demands.

D. Addressing Housing Affordability and Homelessness

Tiny houses have increasingly emerged as viable instruments to address pressing issues such as poverty, homelessness, and social exclusion. Fischer (2022) thoroughly explores how tiny houses serve as innovative

interventions in Germany, offering affordable housing alternatives that can mitigate homelessness and promote social integration. By providing more accessible dwelling units, tiny houses support the inclusion of marginalized populations and contribute to the United Nations Sustainable Development Goals focused on poverty reduction (SDG 1) and reducing inequalities (SDG 10). Complementing this perspective, Evans (2023) delves into community perceptions in Missouri regarding tiny house villages designed for homeless populations. Her findings reveal notable barriers including NIMBYism (Not-In-My-Backyard sentiment), which often hinder the social acceptance and establishment of such developments. Evans emphasizes the need to align tiny house village characteristics with community preferences related to design, social interaction, and security to foster greater acceptance and support.

Komazec et al. (2023) extend the discussion by documenting how building tiny houses from waste materials can provide a platform not only for environmental sustainability but also for social inclusion. Their research highlights that alternative building practices involving secondhand materials encourage collective participation, create spaces for diverse groups, and challenge exclusionary housing norms. The process fosters community building and offers affordable alternatives to traditional construction, which can be particularly impactful for disadvantaged groups.

Despite these benefits, Vasseur et al. (2022) identify substantial legal and perceptual obstacles that continue to limit the widespread adoption of tiny houses across Germany. Their study points to persistent negative perceptions about minimalism and unconventional living, which act as barriers to scaling tiny houses as a solution to housing shortages. Such socio-legal challenges imply that beyond providing affordable housing, promoting tiny houses requires concerted efforts to shift narratives, simplify legal frameworks, and foster community engagement.

E. Psychological and Quality of Life Dimensions

The impact of tiny house living on residents' psychological well-being is increasingly recognized as a significant dimension of social integration. Murillo and Bianchi (2024) provide qualitative evidence from Latin America, identifying six dimensions of enhanced hedonic and psychological well-being associated with inhabiting tiny houses: autonomy, mastery, purpose in life, personal growth, relatedness, and happiness. These findings imply that beyond addressing material needs, tiny houses enable occupants to experience a higher quality of life marked by psychological empowerment and community connectedness.

In a complementary vein, Wilson and Wadham (2023) conceptualize tiny houses as "spaces of hope," where inhabitants reclaim control over their housing conditions, challenge dominant housing paradigms, and foster agency. Their ethnographic work with women in diverse global contexts illustrates how tiny houses can symbolize resistance against mainstream housing norms, offering more just and equitable alternatives that empower residents socially and psychologically. The study reveals that tiny house living nurtures a sense of fairness and self-determination, which is intrinsically linked to social integration but also embodies broader political and cultural significance.

F. Cultural and Demographic Considerations

Millennial cohorts represent a demographic group exhibiting distinct preferences and behaviors concerning housing, making them a critical focus in tiny house research. Kirana and Okada (2023) investigate millennial user preferences in Indonesia, revealing a tension between the traditional idealization of large landed houses and practical constraints such as urban land scarcity and affordability. Their study concludes that tiny houses, with optimized space and functional design, offer a suitable housing alternative to uphold millennial lifestyle aspirations while adapting to realistic economic and spatial constraints.

Supporting this, Analisa and Okada (2023) further demonstrate that while millennials generally prefer larger houses, their pragmatic choices fall in the 60–80 square meter range priced below 500 million Rupiah (USD30,000). This reflects a gradual shift in housing values driven by modern urban challenges and cultural evolution. The tiny house concept aligns well with the need for compact, cost-effective dwellings that accommodate contemporary living patterns without sacrificing quality of life.

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue XVI October 2025 | Special Issue on Sociology

Cross-cultural perspectives illustrate important variations in the motivations and adoption of tiny houses. Studies from the Global South, such as Murillo and Bianchi (2024), underscore financial constraints, urban density, and access to credit as distinct contextual factors influencing tiny house adoption compared to Global North settings, where sustainability and lifestyle choices often dominate motivations. Wilson and Wadham's (2023) multiregional study further emphasizes how cultural, social, and political factors shape the meanings and expectations attached to tiny house living, influencing both individual decisions and collective movements.

Collectively, these studies affirm that social integration and well-being outcomes linked to tiny houses are deeply embedded in the interplay of economic realities, cultural values, psychological benefits, and political structures. Understanding these multifaceted dynamics is essential to advancing tiny houses as inclusive, sustainable housing solutions.

Policy, Legal, And Urban Development Challenges

A. Regulatory Barriers and Legal Status

The expansion and adoption of tiny houses are significantly influenced by legal frameworks governing their construction and placement. In Oregon (USA), the 2020 Tiny House Zoning Reform Act by Oregon Department of Land Conservation and Development (2020) permitted accessory tiny dwellings on residential lots and simplified building code compliance, illustrating a successful state-level legislative adaptation. Similarly, Japan's micro-housing initiative integrates compact dwellings into dense urban zones to support aging populations and energy efficiency goals, Yamazaki & Arai (2021). In Canada, the British Columbia Modular Zoning Pilot (2023) formalized the use of prefabricated and modular tiny homes within affordable housing policies. These examples demonstrate how adaptive zoning and flexible codes foster tiny house adoption, complementing findings by Baş et al. (2023) and James & Shahab (2024). Governments can strengthen adoption by introducing a three-tier policy model; 1). Zoning reform for accessory dwellings. 2). Simplified mobile dwelling codes, and 3). Fiscal incentives like green construction credits.

In Ontario, Canada, Chang (2023) identified housing affordability and environmental crises as motivations for tiny house adaptation but noted that existing provincial legislation restricts access to tiny houses. The legal inaccessibility creates significant barriers despite the potential benefits. Chang underscores the pressing need for policy reform to enable tiny house living legally and socially.

In England, James and Shahab (2024) focus on the transaction costs associated with developing tiny houses, which are compounded by legal and planning complexities. They found that substantial expenditures and delays arise during information searches, land acquisition, planning permission processes, and construction phases, often discouraging prospective tiny house developers. The study advocates for enabling legislation and clearer planning policies to reduce these transaction costs and promote wider adoption of tiny houses.

Vasseur et al. (2022) further affirm the necessity of clear legal definitions and frameworks by demonstrating how such clarity can influence adoption patterns in Germany. Their research found legal restrictions and negative perceptions as significant barriers despite sustainability motivations. The absence of enabling legislation limits the sector's potential contribution to housing affordability and environmental objectives.

Together, these studies stress that without concerted efforts to clarify and adapt legal and regulatory environments, tiny houses will remain niche and underutilized solutions, despite their promise for sustainability and affordability.

B. Planning and Urban Sustainability Transitions

Beyond legal challenges, urban planning and sustainability transitions present critical hurdles and opportunities for tiny house integration. Lessard (2022) investigated the scaling up of the tiny house niche in Quebec, Canada, from a sustainability transition perspective. This study identifies key spatial and policy challenges, such as the prevalence of tiny house developments as single-family homes on greenfield sites in peripheral areas. Such scattered development patterns contribute to urban sprawl rather than supporting densification strategies. This phenomenon limits the transformative potential of tiny houses in achieving sustainable urban development goals.

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue XVI October 2025 | Special Issue on Sociology

Moreover, Lessard emphasizes the differentiated acceptance of tiny houses across municipal contexts. Rural municipalities often accept greenfield tiny house developments for short-term economic gains, while medium-sized cities and metropolitan regions plan to permit tiny houses primarily as accessory dwelling units (ADUs) in infill areas. This uneven geographical distribution indicates systemic barriers embedded within existing political-economy housing regimes that temper the role of tiny houses in promoting radical changes in urban sustainability.

Emerging urban models emphasize stacked modular configurations and micro-communities that optimize land and shared infrastructure. Projects in Tokyo and Vancouver demonstrate that clustered micro-homes reduce land cost while enhancing social cohesion via communal courtyards and renewable energy integration. These examples illustrate scalable integration in dense cities and extend Musall et al. (2022)'s "Minimal Impact, Maximum Output" concept.

Furthermore, the role of community engagement and social sustainability in planning is underscored as essential to realizing tiny houses' full benefits. The participatory design methods promote alignment with user needs and foster social cohesion, which enhance acceptance and integration within urban districts.

Several studies also indicate how the lack of alignment between tiny house policies and sustainable urban planning frameworks constrains these solutions. The difficulty lies in shifting from conventional housing models emphasizing scale and volume to innovative living arrangements characterized by minimal footprints, multifunctionality, and mobility.

In summary, tackling urban sustainability transitions related to tiny houses requires coordinated policy interventions at municipal, provincial, and federal levels. Planning policies should facilitate infill development, adaptive reuse, and urban densification while promoting community integration and resource efficiency, thereby maximizing the social and environmental gains tiny houses can offer.

User Perception, Evaluation, And Adoption Factors

A. Visual Perception and Design Evaluation

Understanding user perception of tiny house interiors and architectural elements is crucial for optimizing design and enhancing satisfaction. Studies employing eye-tracking technology provide valuable empirical insights into how visitors and potential residents visually engage with tiny house prototypes. Berni et al. (2023) conducted an experiment with 26 volunteers observing a tiny house prototype while wearing mobile eye-tracking glasses, capturing real-time visual attention metrics. Their findings suggest that the time visitors spent viewing specific architectural elements—termed areas of interest—significantly influenced their overall evaluation of the tiny house. Some secondary elements, not traditionally considered core design features, surprisingly affected user ratings more than the primary qualities, highlighting the nuanced impact of environmental elements on perception.

Complementing this, Berni et al. (2022) identified that structural elements in buildings typically received limited visual attention, which may overshadow the perceived novelty and quality of materials used in tiny houses. This reveals a design challenge: architects and designers must balance functionality with visual appeal to ensure that critical structural components are integrated in ways that also engage and satisfy users aesthetically.

These eye-tracking studies emphasize that visual perception is not merely about aesthetics but also informs the occupant's sense of quality and comfort, suggesting that design evaluation should incorporate metrics of visual engagement to better predict user satisfaction.

B. Motivations, Barriers, and Behavioral Aspects

Motivations driving adoption of tiny houses are multi-faceted, encompassing sustainability, cost reduction, personal freedom, and community belonging. Vasseur et al. (2022) highlight that prospective tiny house residents are motivated by environmental consciousness, economic savings, lifestyle simplification, mobility, and minimalism. These motivations align closely with broader societal shifts towards sustainable living and economic pragmatism.

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue XVI October 2025 | Special Issue on Sociology

However, Vasseur et al. (2022) also point to significant barriers, including restrictive legal frameworks, negative societal perceptions of minimalism as deprivation, and a general lack of knowledge about tiny houses. Legal constraints especially impose challenges on siting and construction approvals, limiting accessibility despite growing interest.

Shearer and Burton (2023) contextualize these findings within the Australian tiny house movement, identifying five major thematic drivers and deterrents. Among motivating themes are sustainability and tenure security, whereas deterrents include regulatory hurdles and lack of precise definitions of tiny house living, which contribute to uncertainty and limit broader uptake.

Quantitative evidence by International Journal of Sustainable Building (2022) indicates that tiny houses reduce construction costs by 40–60% and operational energy use by about 35% compared with conventional housing. Pilot programs in Portland (USA) and Nagoya (Japan) show adoption growth rates of 12–18% per year, reflecting increasing public acceptance. Such numerical insights strengthen practical applicability by linking affordability, sustainability, and behavioral adoption

Demographic factors further influence evaluations and adoption behaviors. Nezzi et al. (2022) investigated how age and gender shape perceptions of tiny houses and found that these variables significantly affect sustainability ratings, perceived quality, and appropriateness. While younger and female participants tended to rate tiny houses more positively in terms of sustainability, experience with tiny houses or level of education showed less impact. This suggests that targeted demographic engagement can enhance acceptance and satisfaction.

Millennial preferences also emphasize this point. Kirana and Okada (2023) demonstrated in Indonesian urban contexts that despite an initial stereotype favoring large houses with ample land, realistic preferences among Millennials converge on smaller, compact housing solutions with functional spatial configurations that support contemporary lifestyles, validating the suitability of tiny houses for this demographic.

C. Community Perceptions and Support

The success of tiny house projects, particularly community-oriented ones like tiny house villages for homeless populations, is deeply contingent on local community perceptions and acceptance. Evans (2023) found that NIMBYism remains a critical social barrier. Practical mitigation strategies include: 1). Participatory design to engage local residents in the planning process. 2) Public education campaigns highlighting environmental and economic benefits, and 3) Demonstration projects showcasing aesthetic and community value. For instance, pilot tiny house villages in Portland and Vancouver gained approval after visual charrettes and open community sessions reduced stigma. These participatory methods foster acceptance and align with Fischer's (2022) call for inclusive urban housing strategies

Addressing these concerns requires deliberate design and policy strategies. Incorporating community preferences fosters greater local support, encourages social integration, and reduces stigma associated with tiny housing initiatives. Evidence suggests that when tiny house villages are designed with stakeholder input and visible benefits for neighborhoods, acceptance improves.

Further, James and Shahab (2024) highlight the importance of addressing transaction costs linked to tiny house development, such as navigating complex planning permissions and sourcing land. They argue that enabling legislation, clear legal definitions, and educational outreach to planning authorities and the public are critical to lowering adoption barriers and promoting societal acceptance.

Together, these findings underscore that beyond physical design, socio-legal frameworks and community engagement shape the viability and scalability of tiny housing as an alternative living paradigm.

CONCLUSIONS

This review demonstrates that tiny houses can be effective tools for sustainable, affordable, and socially inclusive living. They offer substantial environmental advantages through innovative materials, life-cycle optimization, and renewable energy use, while their compact scale promotes energy efficiency and reduced carbon footprints.

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue XVI October 2025 | Special Issue on Sociology

To advance widespread adoption, policymakers should integrate tiny house development into national sustainable housing agendas, drawing lessons from Oregon's zoning reform, Japan's micro-housing strategy, and Canada's modular zoning pilot. These global precedents show how adaptive regulation and incentive mechanisms can transform tiny houses from niche experiments into mainstream housing options. Quantitative evidence supports these benefits—tiny houses can lower construction costs by 40–60% and reduce operational energy use by around 35%, proving their viability as long-term sustainable housing solutions. At the social level, participatory design and proactive community engagement help mitigate NIMBYism, reinforcing social inclusion and neighborhood acceptance. Coordinated legal reform, fiscal incentives, and planning innovation are essential to unlock the full potential of tiny houses in promoting environmental sustainability and equitable urban living.

ACKNOWLEDGMENT

The authors would like to express their sincere gratitude to University Teknologi MARA (UiTM) for providing the facilities and academic environment that supported the completion of this study. Appreciation is also extended to colleagues and students from the Centre of Studies for Building Surveying, Faculty of Built Environment, UiTM, for their constructive feedback and assistance during data collection. Special thanks are due to the participating organizations and stakeholders for their valuable cooperation and contributions.

REFERENCES

- 1. Wilson, A., & Wadham, H. (2023). (Tiny) spaces of hope: Reclaiming, maintaining, and reframing housing in the tiny house movement. Environment and Planning D: Society and Space, 41, 0-0. https://doi.org/10.1177/02637758231165295
- 2. Vasseur, V., Sing, J., & Short, S. W. (2022). Determinants of the adoption of tiny houses and their role in alleviating housing shortages in Germany. Clean Technologies and Recycling, 2, 0-0. https://doi.org/10.3934/ctr.2022011
- 3. Chang, A. (2023). Evaluating Tiny Houses as a Solution to the Housing Affordability and Environmental Crises. Aletheia, 3, 0-0. https://doi.org/10.15173/a.v3i1.3197
- 4. Johst, P., Chatzipanagiotou, K.-R., Kucher, M., Zschiebsch, W., Voigt, P., Breinl, D., Koumoulos, E. P., & Böhm, R. (2024). Concept and Life Cycle Assessment of a Tiny House Made from Root Section Structures of a Decommissioned Large-Scale Wind Turbine Blade as a Repurposed Application. Materials Circular Economy, 6, 0-0. https://doi.org/10.1007/s42824-023-00093-7
- 5. Fischer, A. (2022). Tiny houses as instruments for reducing poverty and promoting social integration in Germany. No Journal, 16, 0-0. https://doi.org/10.1504/IJISD.2022.123904
- 6. Kirana, F. C., & Okada, S. (2023). Tiny House as Highly Potential Landed House Design for Millennials in Urban Areas of Indonesia. In LNCE (Vol. 334, pp. 0-0). https://doi.org/10.1007/978-981-99-1403-6_4
- 7. Murillo, C., & Bianchi, C. (2024). The experience and well-being outcomes of tiny house owners in Latin America. Housing Studies, 39, 0-0. https://doi.org/10.1080/02673037.2022.2091116
- 8. Stratton, M. J., & Corneal, L. M. (2023). Development of a tiny house design tool to increase safety, efficiency, and cost-effectiveness. Innovation and Green Development, 2, 0-0. https://doi.org/10.1016/j.igd.2023.100052
- 9. Félix, M. J., Santos, G., Sá, J. C., Dias, S., & Saraiva, M. (2023). Multifunctional Furniture for Tiny Houses—Design, Quality, Innovation and Sustainability in Advanced Materials. No Journal, 0-0. https://doi.org/10.1007/978-3-031-12914-8 24
- 10. BAŞ, S., KOZANOĞLU, G., & BAŞ, S. (2023). HUKUKİ BOYUTLARIYLA TINY HOUSE. Adalet Dergisi, 0-0. https://doi.org/10.57083/adaletdergisi.1391726
- 11. James, M., & Shahab, S. (2024). Big costs for tiny houses: exploring the transaction costs of developing tiny houses in England. International Journal of Housing Policy, 24, 0-0. https://doi.org/10.1080/19491247.2024.2308725
- 12. Komazec, K., Vaara, E., Brun, G., Larsson, S., & Tobiasson, H. (2023). Building Tiny house from waste. FormAkademisk, 16, 0-0. https://doi.org/10.7577/formakademisk.5379
- 13. Ruiz-Pastor, L., Altavilla, S., Nezzi, C., Borgianni, Y., & Orzes, G. (2023). Life Cycle Assessment of a Mobile Tiny House Made with Sustainable Materials and Design Implications. No Journal, 0-0. https://doi.org/10.1007/978-3-031-15928-2 3

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue XVI October 2025 | Special Issue on Sociology

- 14. He, Y. (2023). TINY HOUSE IN THE DESERT: A study in indoor comfort using moveable insulation and thermal storage. Highlights in Science, Engineering and Technology, 75, 0-0. https://doi.org/10.54097/q226hq60
- 15. Marin, F.-B., & Marin, M. (2022). CFD Modeling and Simulation of a Tiny House in Extreme Weather Conditions. The Annals of "Dunarea de Jos" University of Galati. Fascicle IX, Metallurgy and Materials Science, 45, 0-0. https://doi.org/10.35219/mms.2022.4.16
- 16. Benaissa, A., Zuidervliet, D., & Van Duijsen, P. (2023). Stand-alone DC Nano-Grid for a Tiny House with Droop Control. No Journal, 0-0. https://doi.org/10.1109/ICECCME57830.2023.10252427
- 17. Pratiwi, M. A. b. (2023). PERANCANGAN TINY HOUSE DENGAN METODE PARTICIPATORY DESIGN. Gorga: Journal Seni Rupa, 12. https://doi.org/10.24114/gr.v12i1.42884
- 18. Kirana, F. C., & Okada, S. (2023). Tiny house characteristics in Indonesia based on millennial's user preference. Urban, Planning and Transport Research, 11. https://doi.org/10.1080/21650020.2023.2166095
- 19. Yavru, T. E., Topaloğlu, G., Baş, G. Y., & Yılmaz, S. (2023). A new construction approach for tiny house on wheels: POD THOWs. Vitruvio, 8. https://doi.org/10.4995/vitruvio-ijats.2023.19350
- 20. Musall, E., Hering, J., Brockerhoff, M., Bauer, J., & Rödder, M. (2022). MIMO MINIMAL IMPACT, MAXIMUM OUTPUT Gestapelte Tiny Houses als urbane WG. Bauphysik, 44. https://doi.org/10.1002/bapi.202200014
- 21. [21] Evans, K. (2023). An examination of perceptions and preferences for tiny house villages for the homeless in Missouri. International Journal of Housing Policy, 23. https://doi.org/10.1080/19491247.2022.2072661
- 22. Lessard, G. (2022). The scaling up of the tiny house niche in Quebec transformations and continuities in the housing regime. Journal of Environmental Policy and Planning, 24. https://doi.org/10.1080/1523908X.2021.2022464
- 23. Berni, A., Nezzi, C., Ruiz-Pastor, L., Altavilla, S., Kofler, I., & Borgianni, Y. (2023). Exploring People's Visual Perception and Its Impact on Evaluation of a Tiny House Prototype Using Eye Tracking Technology. https://doi.org/10.1007/978-3-031-15928-2_128
- 24. Berni, A., Altavilla, S., Ruiz-Pastor, L., Nezzi, C., & Borgianni, Y. (2022). An Eye-Tracking Study to Identify the Most Observed Features in a Physical Prototype of a Tiny House. https://doi.org/10.1017/pds.2022.86
- 25. Shearer, H., & Burton, P. (2023). Tiny houses: movement or moment? Housing Studies, 38. https://doi.org/10.1080/02673037.2021.1884203
- 26. Nezzi, C., Ruiz-Pastor, L., Altavilla, S., Berni, A., Borgianni, Y., & Orzes, G. (2022). How Sustainability-Related Information Affects the Evaluation of Designs: A Case Study of a Locally Manufactured Mobile Tiny House. Designs, 6. https://doi.org/10.3390/designs6030057.
- 27. Oregon Department of Land Conservation and Development. (2020). Tiny House Zoning Reform Act. Salem, OR.
- 28. Yamazaki, T., & Arai, K. (2021). Micro-housing strategies for aging urban populations in Japan. Urban Housing Studies, 15(2), 112–128.
- 29. Government of British Columbia. (2023). Modular Zoning and Affordable Micro-Communities: Pilot Policy Report.
- 30. International Journal of Sustainable Building. (2022). Comparative Analysis of Tiny House Economics and Energy Efficiency, 9(4), 55–62.