CONCLUSION
The creation of a rule-based forward chaining system for managing insulin doses in diabetes patients marks a
big step forward in personalised healthcare. This project successfully demonstrates how rule-based systems
may automate and improve diabetes treatment. The approach not only makes it easier for patients to make
decisions, but it also helps to improve long-term glucose control, which improves the quality of life for persons
with diabetes (Herawan Hayadi et al., 2018).
ACKNOWLEDGMENTS
This paper is the starting point of Final Year Project conducted at the Faculty of Computer and Mathematic
Sciences, Universiti Teknologi MARA.
REFERENCES
1. Al-Mafrji, A. A. M., Hamodi, Y. I., Hassn, S. G., & Mohammed, A. B. (2023). Analyzing The Use of
Expert Systems in Improving the Quality of Decision Making. Eastern-European Journal of Enterprise
Technologies, 1(3–121), 73 80. https://doi.org/10.15587/1729-4061.2023.274584
2. Antar, S. A., Ashour, N. A., Marwa Sharaky, Khattab, M., Ashour, N. A., Zaid, R. T., Eun Joo Roh,
Elkamhawy, A., & Al-Karmalawy, A. A. (2023). Diabetes mellitus: Classification, mediators, and
complications; A gate to identify potential targets for the development of new effective treatments.
Biomedicine & Pharmacotherapy, 168, 115734. https://doi.org/10.1016/j.biopha.2023.115734
3. Anwar, M. R. (2023). Analysis of Expert System Implementation in Computer Damage Diagnosis with
Forward Chaining Method. International Transactions on Artificial Intelligence, 1(2), 139–155.
https://doi.org/10.33050/italic.v1i2.213
4. Arneth, B., Arneth, R., & Shams, M. (2019). Metabolomics of Type 1 and Type 2 Diabetes.
International Journal of Molecular Sciences, 20(10), 2467. https://doi.org/10.3390/ijms20102467
5. Basevi, Vittorio & Di Mario, Simona & Morciano, Cristina & Nonino, Francesco & Magrini, Nicola.
(2011). Comment on: American Diabetes Association. Standards of Medical Care in Diabetes - 2011.
Diabetes Care 2011;34(Suppl. 1): S11–S61. Diabetes care. 34. e53; author reply e54. 10.2337/dc11-
0174.
6. Brutsaert, E. (2023). Diabetes Mellitus (DM). MSD Manual Consumer Version; MSD Manuals.
https://www.msdmanuals.com/home/hormonal-and-metabolic-disorders/diabetes-mellitus-dm-and-
disorders-of-blood-sugar-metabolism/diabetes-mellitus-dm
7. Cole, J. B., & Florez, J. C. (2020). Genetics of Diabetes Mellitus and Diabetes Complications. Nature
Reviews. Nephrology, 16(7), 377–390. https://doi.org/10.1038/s41581-020-0278-5
8. Dottie. (2014). Diabetes Mellitus Laboratory Tests. Portal MyHealth.
http://www.myhealth.gov.my/en/diabetes-mellitus-laboratory-tests/
9. Endocrine, M. (2019). Clinic Practice Guidelines Management of Type 1 Diabetes Mellitus in Children
and Adolescents Malaysia, Malaysian Pediatric Association. https://www.moh.gov.my/moh/resources/
maklumat%20terkini/DRAF%20CPG/Draft_CPG_T1DM_301115.pdf
10. Endocrine, M. (2021, January 30). CPG - Management of Type 2 Diabetes Mellitus (6th Edition).
MEMS. https://mems.my/cpg-management-of-type-2-diabetes-mellitus-6th-edition/
11. Henderi Henderi, Fahmie Al Khudhorie, Giandari Maulani, Shofiyul Millah, & Viola Tashya Devana.
(2022). A Proposed Model Expert System for Disease Diagnosis in Children to Make Decisions in First
Aid. Intensif Jurnal Ilmiah Penelitian Dan Penerapan Teknologi Sistem
https://doi.org/10.29407/intensif.v6i2.16912
12. Herawan Hayadi, B., Bastian, A., Rukun, K., Jalinus, N., Lizar, Y., & Guci, A. (2018). Expert System
in the Application of Learning Models with Forward Chaining Method. International Journal of
Engineering & Technology, 7(2.29), 845. https://doi.org/10.14419/ijet.v7i2.29.14269