
INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)
ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue XXVI October 2025 | Special Issue on Education
www.rsisinternational.org
8. Flemming, K., Booth, A., Garside, R., Tunçalp, Ö., & Noyes, J. (2019). Qualitative evidence synthesis
for complex interventions and guideline development: Clarification of the purpose, designs and
relevant methods. BMJ Global Health, 4(000882), 1–9. https://doi.org/10.1136/bmjgh-2018-000882
9. Gusenbauer, M., & Haddaway, N. R. (2020). Which academic search systems are suitable for
systematic reviews or meta‐analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and
26 other resources. Research Synthesis Methods, 11(2), 181–217. https://doi.org/10.1002/jrsm.1378
10. Kazanidis, I., & Pellas, N. (2024). Harnessing generative artificial intelligence for digital literacy
innovation: A comparative study between early childhood education and computer science
undergraduates. AI, 5(3), 1427-1445. https://doi.org/10.3390/ai5030068
11. Kewalramani, S., Kidman, G., & Palaiologou, I. (2021). Using Artificial Intelligence (AI)-interfaced
robotic toys in early childhood settings: a case for children’s inquiry literacy. European Early
Childhood Education Research Journal, 29(5), 652-668.
https://doi.org/10.1080/1350293X.2021.1968458
12. Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele, UK, Keele University,
33(2004), 1-26.
13. Kölemen, E. B., & Yıldırım, B. (2025). A new era in early childhood education (ECE): Teachers’
opinions on the application of artificial intelligence. Education and Information Technologies, 1-42.
https://doi.org/10.1007/s10639-025-13478-9
14. Lakhe Shrestha, B. L., Dahal, N., Hasan, M. K., Paudel, S., & Kapar, H. (2025). Generative AI on
professional development: a narrative inquiry using TPACK framework. In Frontiers in
Education (Vol. 10, p. 1550773). Frontiers Media SA. https://doi.org/10.3389/feduc.2025.1550773
15. Li, X., & Yu, S. (2025). Culturally responsive AI module in early childhood teacher education: an
action research. Journal of Early Childhood Teacher Education, 1-17.
https://doi.org/10.1080/10901027.2025.2552973
16. Lu, R. S., Lin, H. C. K., Yang, Y. C., & Chen, Y. P. (2024). Integrating Urban Mining Concepts
Through AI-Generated Storytelling and Visuals: Advancing Sustainability Education in Early
Childhood. Sustainability (2071-1050), 16(24). https://doi.org/10.3390/su162411304
17. Lu, R. S., Lin, H. C. K., Yang, Y. C., & Chen, Y. P. (2024). Integrating Urban Mining Concepts
Through AI-Generated Storytelling and Visuals: Advancing Sustainability Education in Early
Childhood. Sustainability (2071-1050), 16(24). https://doi.org/10.3390/su162411304
18. Luo, W., He, H., Gao, M., & Li, H. (2024). Safety, identity, attitude, cognition, and capability: The
‘SIACC’framework of early childhood AI literacy. Education Sciences, 14(8), 1-19.
https://doi.org/10.3390/educsci14080871
19. Messinger, D. S., Perry, L. K., Mitsven, S. G., Tao, Y., Moffitt, J., Fasano, R. M., ... & Jerry, C. M.
(2022). Computational approaches to understanding interaction and development. In Advances in
child development and behavior (Vol. 62, pp. 191-230). JAI.
https://doi.org/10.1016/bs.acdb.2021.12.002
20. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic
reviews and meta-analyses: the PRISMA statement. Bmj, 339. https://doi.org/10.1136/bmj.b2535
21. Oyetade, K., & Zuva, T. (2025). Advancing Equitable Education with Inclusive AI to Mitigate Bias
and Enhance Teacher Literacy. Educational Process: International Journal, 14, e2025087.
https://doi.org/10.22521/edupij.2025.14.87
22. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... &
Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic
reviews. PLOS Medicine, https://doi.org/10.1371/journal.pmed.1003583
23. Park, S. O., & Hassairi, N. (2021). What predicts legislative success of early care and education
policies?: Applications of machine learning and Natural Language Processing in a cross-state early
childhood policy analysis. Plos one, 16(2), e0246730. https://doi.org/10.1371/journal.pone.0246730
24. Sanusi, I. T., Sunday, K., Oyelere, S. S., Suhonen, J., Vartiainen, H., & Tukiainen, M. (2024).
Learning machine learning with young children: Exploring informal settings in an African context.
Computer Science Education, 34(2), 161-192. https://doi.org/10.1080/08993408.2023.2175559
25. Su, J., & Yang, W. (2024). Artificial intelligence and robotics for young children: Redeveloping the
five big ideas framework. ECNU Review of Education, 7 (3), 685-698. https://us.sagepub.com/en-
us/journals-permissions