Page 300
www.rsisinternational.org
282. https://doi.org/10.1108/SCM-09-2020-0454
8. Gupta, S., Modgil, S., & Gunasekaran, A. (2020). Big data in lean six sigma: A review and future
research directions. International Journal of Production Research, 58(3), 947–
969. https://doi.org/10.1080/00207543.2019.1598599
9. Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2022). A primer on partial least squares
structural equation modeling (PLS-SEM) (3rd ed.). SAGE Publications.
10. Hazen, B. T., Skipper, J. B., Ezell, J. D., & Boone, C. A. (2016). Big data and predictive analytics for
supply chain sustainability: A theory-driven research agenda. Computers & Industrial Engineering,
101, 592–598. https://doi.org/10.1016/j.cie.2016.06.030
11. Ivanov, D., Dolgui, A., & Sokolov, B. (2022). Cloud supply chain: Integrating Industry 4.0 and digital
platforms in the “Supply Chain-as-a-Service”. Transportation Research Part E: Logistics and
Transportation Review, 160, 102676. https://doi.org/10.1016/j.tre.2022.102676
12. Kshetri, N. (2021). Blockchain and trust in supply chain management. In Blockchain and supply chain
management (pp. 3–23). Springer. https://doi.org/10.1007/978-3-030-73659-4_1
13. Kshetri, N. (2021). Blockchain and trust in supply chain management. In Blockchain and supply chain
management (pp. 3–23). Springer. https://doi.org/10.1007/978-3-030-73659-4_1
14. Liao, Y., Deschamps, F., Loures, E. D. F. R., & Ramos, L. F. P. (2017). Past, present and future of
Industry 4.0: A systematic literature review and research agenda. International Journal of Production
Research, 55(12), 3609–3629. https://doi.org/10.1080/00207543.2017.1308576
15. Mittal, S., Khan, M. A., Romero, D., & Wuest, T. (2018). A critical review of smart manufacturing &
Industry 4.0 maturity models: Implications for SMEs. Journal of Manufacturing Systems, 49, 194–
214. https://doi.org/10.1016/j.jmsy.2018.10.005
16. Ngai, E. W. T., & Gunasekaran, A. (2020). Big data analytics in logistics and supply chain
management: Certain investigations for research and applications. International Journal of Production
Economics, 176, 98–110. https://doi.org/10.1016/j.ijpe.2016.03.014
17. Ooi, K. B., Lee, V. H., Tan, G. W. H., Hew, T. S., & Hew, J. J. (2018). Cloud computing in
manufacturing: The next industrial revolution in Malaysia? Expert Systems with Applications, 93,
376–394. https://doi.org/10.1016/j.eswa.2017.10.009
18. Sanders, N. R., & Wagner, S. M. (2021). Big data and supply chain management: A review and
research agenda. Journal of Business Logistics, 42(1), 81–105. https://doi.org/10.1111/jbl.12264
19. Schoenherr, T., & Speier‐Pero, C. (2015). Data science, predictive analytics, and big data in supply
chain management: Current state and future potential. Journal of Business Logistics, 36(1), 120–
132. https://doi.org/10.1111/jbl.12082
20. Shmueli, G., Sarstedt, M., Hair, J. F., Cheah, J.-H., Ting, H., Vaithilingam, S., & Ringle, C. M.
(2019). Predictive model assessment in PLS-SEM: Guidelines for using PLSpredict. European Journal
of Marketing, 53(11), 2322–2347. https://doi.org/10.1108/EJM-02-2019-0189
21. Venkatesh, V., Thong, J. Y. L., & Xu, X. (2016). Unified Theory of Acceptance and Use of
Technology 2: A theoretical model extension. MIS Quarterly, 40(1), 283–
301. https://doi.org/10.25300/MISQ/2016/40.1.06
22. Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2020). How “big data” can make
big impact: Findings from a systematic review and a longitudinal case study. International Journal of
Production Economics, 165, 234–246. https://doi.org/10.1016/j.ijpe.2014.12.031
23. Wang, G., Gunasekaran, A., Ngai, E. W. T., & Papadopoulos, T. (2022). Big data analytics in logistics
and supply chain management: A predictive analytics perspective. Transportation Research Part E:
Logistics and Transportation Review, 114, 210–225. https://doi.org/10.1016/j.tre.2016.04.007
24. Wichmann, P., Brintrup, A., Baker, S., Woodall, P., & McFarlane, D. (2020). Extracting supply chain
maps from news articles using deep neural networks. International Journal of Production Research,
58(17), 5320–5336. https://doi.org/10.1080/00207543.2019.1671629
25. Zailani, S., Jeyaraman, K., Vengadasan, G., & Premkumar, R. (2012). Sustainable supply chain
management in Malaysia: Key drivers and performance outcomes. International Journal of Operations
& Production Management, 32(9), 984–1011. https://doi.org/10.1108/01443571211265684
26. Zhou, K., Liu, T., & Zhou, L. (2020). Industry 4.0: Towards future industrial opportunities and
challenges. International Journal of Production Research, 58(6), 1922–1940.
https://doi.org/10.1080/00207543.2019.1672905