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Abstract: Multiple Regression Models are used in prediction the nature of relationship between one dependent variable and more 

than more independent variables. There are so many assumptions the guide the estimation of the parameters of the model. The 

interpretations of parameters are always subjected to the nature of data involved. Missing values tends to limit the fullness of 

information in analysis. It is therefore necessary to check for the effect of missing data on the parameters of the Multiple Regression 

Model. Data were simulated using Binomial, Geometric, Normal and Exponential Distribution. The simulation was done at different 
sample sizes of 15, 25, 50 and 100. The level of missingness was moderated at 5%, 10%, 25% and 35%. Two methods of handling 

missing data were employed, listwise deletion and Mean imputation. Data were analysis using multiple regression and Analysis of 

Variance. The results shows that the least Mean Square Error (MSE) were obtained at different level of missingness depending of 

the distribution. There was a significant effect on the parameters of the multiple Regression base on sample sizes. 
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I. Introduction  

Researchers have faced the problem of missing quantitative data at some point in the work. Missing data can occur if research 

informants refuse or forgot to answer a survey question or there might be lost of files as well as data might not be recorded properly. 

Given the high cost of collecting data, there cannot be wastage of effort of starting all over or to wait until soundproof methods of 

collecting information are developed. In statistics, Missing data/value is an occurrence when there is no data value stored for the 

variable in an observation.  

Regression analysis is the study of the nature of relationship between dependent variable(s) and independent variable(s). The Simple 

Linear regression involves just one dependent and one independent variable. The situation where there exist one dependent variable 

and more than one independent variable is referred to as Multiple Regression (MR). When estimating the parameters of the Multiple 
Regression, Least Squares Method (LSM) is used most often. There are various factors that can affect the signs or magnitudes of 

the parameter(s), one of such is that of missing data. There is need to adequately address the problem of missing data before analysis 

the data to avoid reaching wrong conclusions.   

When treating missing data, the most common method and the easiest to apply is the use of only those cases with complete 

information. An alternative to complete case analysis, there is the use of the mean as a replacement of the missing value. More 

recently, there are methods that are based on distributional models for the data (such as maximum likelihood and multiple 

imputation).  

Methods of analyzing missing data require assumptions about the nature of the data and about the reasons for the missing 

observations that are not often acknowledged. There is need to carefully considered the required assumptions before treating missing 

data. Missing data can lead to problems that affect the interpretation and inference of research results, the understanding and 

explanation of conclusions made, the strength of the study design, the validity of conclusions about the relationship between 

variables and may limit the representativeness of the sample. 

Avoiding missing data is the optimal means of handling incomplete observations.  During data collection phase, the researcher has 

the opportunity to make decisions about what data to collect, and how to monitor data collection. The scale and distribution of the 

variables in the data and the reasons for missing data are two critical issues for applying the appropriate missing data techniques. 

This paper there seek to evaluate the effects of missing data on the parameter estimates of the Multiple Regression. 

II. Literature  

There are various forms of missingness. Rubin (1976) introduced the term “Missing Completely At Random” (MCAR). MCAR is 

a situation where the events that led to the particular data item being missing are independent both of observable variables and of 

unobservable parameters of interest and occur entirely at random. There is another missingness referred to as Missing AT Random 

(MAR), which occurs when the missingness is not random, but where missingness can be fully accounted for by variables where 
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there exists complete information. This is when the probability that the responses that are missing depends on the set of observed 

responses, but not related to the specific missing values. 

Sunbul (2018) opined in his study aimed at investigating the impact of different missing data handling methods on model parameter 

estimation and classification accuracy. Simulated data were used and the data were generated by manipulating the number of items 

and sample size. In the generated data, two different missing data mechanisms (Missing Completely At Random and Missing At 

Random) were created according to three different amounts of missing data. The generated missing data was completed by using 

methods of treating missing data as incorrect, person mean imputation, two-way imputation, and expectation-maximization 

algorithm imputation.  

Graham (2009) noted that most missing data are due to survey non-response, which can vary from an intentional decision 

(discarding a survey or skipping sensitive items) to a rather more complex reason(s). The problem of missing data is relatively 

common in almost all researches and can have significant effects on the conclusions that can be drawn from the data. 

Pigott (2001) reviewed methods of handling missing data in a research study. He observed that many researchers use ad hoc methods 

such as complete case analysis, available case analysis (pairwise deletion), or single-value imputation. Though these methods are 

easily implemented, they require assumptions about the data that rarely hold in practice. Model-based methods such as maximum 

likelihood using the EM algorithm and multiple imputation hold more promise for dealing with difficulties caused by missing data.  

Rubin (1976) introduced the term “Missing Completely At Random “(MCAR) to describe data where the complete cases are a 

random sample of the originally identified set of cases. 

Little and Rubin, Schafer (1997) discuss methods that can be used for non-ignorable missing data. They observed that ruling out a 

non-ignorable response mechanism can simplify survey items. 

Schafer (1997) reports on simulation studies that provide evidence of the robustness with missing data and using missing variable 

code as a predictor in a regression model. Penny et al (2012 stated in their book that the simplest approach to missing data, and the 

one that is the default in virtually all statistical packages is the method known to statistician as complete case analysis but more 

commonly known among social scientist as listwise deletion, in this method, cases are deleted from the sample if they have missing 

data on any of the variables in the analysis to be conducted.  

Peter et al (2015) observed that Missing data are part of almost all researches and introduce an element of ambiguity into data 

analysis. It follows that there is need to consider them appropriately in order to provide an efficient and valid analysis. they compared 

6 different imputation methods: Mean, K-nearest neighbors (KNN), fuzzy K-means (FKM), singular value decomposition (SVD), 

Bayesian principal component analysis (bPCA) and multiple imputations by chained equations (MICE). Comparison was performed 

on four real datasets of various sizes (from 4 to 65 variables), under a missing completely at random (MCAR) assumption, and 

based on four evaluation criteria: Root mean squared error (RMSE), unsupervised classification error (UCE), supervised 

classification error (SCE) and execution time. Our results suggest that bPCA and FKM are two imputation methods of interest 

which deserve further consideration in practice.  

Nakai and Weiming (2011), observed that in well-controlled situations, missing data always occur in longitudinal data analysis. 

Missing data may degrade the performance of confidence intervals, reduce statistical power and bias parameter estimate. They 

review and discuss general approaches for handling miss data in longitudinal studies. They started by first illustrating the mechanism 

of missing data. Then focused on the methods for handling missing values in longitudinal data analysis. In the end, they summarized 

and discussed the characteristics of each method 

Howell (2000) observed that the treatment of missing data has been an issue in statistics for some time, but it has come to the fore 

in recent years. He noted that the current interest in missing data stems mostly from the problems caused in surveys and census 

data. He suggested several methods of treating missing values and elaborately gave some examples of how to deal with missingness.  

Allison (2001) uses the example of ‘missingness’ for data on income being dependent on marital status. Perhaps unmarried couples 

are less likely to report their income than married ones. Unmarried couples probably have lower incomes than married ones, and it 
would at first appear that missingness on income is related to the value of income itself. But the data would still be MAR if the 

conditional probability of missingness were unrelated to the value of income within each marital category. Here the real question is 

whether the value of the dependent variable determines the probability that it will be reported, or whether there is some other 

variable (X) where the probability of missingness on Y is conditional on the levels of X. To put it more formally, data are MAR if 

p(Y missing |Y,X) = p(Y missing | X). 

Dempster, Laird and Rubin (1977). Although, this method was considered to be more superior to the previous adhoc methods in 

that they produced better estimates with smaller and acceptable standard errors. Finally, in the late 80’s, more superior methods 
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such as Multiple Imputation, were developed. These methods were proved to be flexible and produced smaller standard errors as 

compared to earlier methods. 

Cohen and Cohen (1983), have suggested that when the missing data is on the dependent variable, the subject may be dropped from 

the analysis. However, if the missing data is among the independent variables, it might be intrusive to determine what proportion 

of the data is missing. 

Truxillo (2005) has suggested that the EM covariance matrix and vector of means can also be used as input for procedures that 

entail inference, but that one must then use a nominal sample size that properly accounts for the fact that some data are missing. 

In Little’s test of MCAR (Little 1988), the data yi, (i = 1, 2,...,n) are modeled as p-dimensional multivariate normal with mean vector 
μ and covariance matrix Σ, with part of the components in yi’s missing. When the normality is not satisfied, Little’s test still works 

in the asymptotic sense for quantitative random vectors yi’s but is not suitable for categorical variables 

De Silva et al (2007) observed that the presence of missing values in rainfall data is a common problem in the process of data 

analysis. They suggested ways of treating missing data in temperature and rainfall data so as to obtain the best method.  

III. Method 

Data for this study were simulated from four different distributions. Two discrete and two continuous distributions were considered. 

The distributions considered are Binomial, Geometric, Normal and Exponential distributions. The following specifications were 

used  

i. Binomial (p= 0.25, n=15, 25, 50, 100) 

ii. Geometric (p = 0.5, n=15, 25, 50, 100) 

iii. Normal (µ = 9.7, 𝜎 = 1.3, n=15, 25, 50, 100) 

iv. Exponential (µ = 6.9, n=15, 25, 50, 100) 

Level of missingness considered 

The computations and analysis were done for distributions at various level of missingness. The level of missingness considered 

varied from 5% to 35%. To be specific, the different level of missingness are; 5%, 10%, 25% and 35%.  

Missing Data Method considered. 

Two methods of handling missing data were considered in other to examine their effect on the parameters of a Multiple Regression 

Model (MRM). The two methods considered are Mean Imputation and listwise deletion methods 

Multiple Regression Model.  

Regression Models are statistical procedures that deals with the nature of relationship between dependent variable(s) and 

Independent Variable(s). Multiple regression model that deals with one dependent and more than one independent variables.  

Model specification 

𝑌𝑖  =  𝛽0  +  𝛽1𝑥1  +  𝛽2𝑥2 . . . 𝛽𝑛𝑥𝑛  +  𝑒𝑖 . . . . . (1) 

Where  

Y1 is the dependent variable  

Β0 is the intercept  

βi are the regression coefficients that represent the changes in y relative to a ne – unit change in xi’s 

ei is the residual term. 

The parameters of the model βi ae estimated using  

𝛽 =  (𝑋′𝑋)−1(𝑋′𝑌)  . . . . . . . . (2) 

Where  
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Model Performance  

The performances of the MR model were determined using Regression Analysis of Variance ANOVA given in Table 1. 

Table 1: Regression ANOVA for model adequacy 

Source of Variation Dere of Freedom Sum of Squares Mean Squares (MS) F-Ratio 

Regression k-1 SSR 
𝑀𝑆𝑅 =  

𝑆𝑆𝑅

𝐾 − 1
 𝐹 =  

𝑀𝑆𝑅

𝑀𝑆𝐸
 

Error N-K SSE 
𝑀𝑆𝐸 =  

𝑆𝑆𝐸

𝑁 − 𝐾
 

 

Total N-1 SST   

 

𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 𝑜𝑓 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (𝑆𝑆𝑅)  =  𝛽′𝑋′𝑌 −  𝑛𝑌̅2 . . .              3 

𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 𝑜𝑓 𝐸𝑟𝑟𝑜𝑟 (𝑆𝑆𝐸)  =  𝑌′𝑌 −  𝛽′𝑋′𝑌  . . . .               4 

𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 (𝑆𝑆𝑇)  =  𝑌′𝑌 −  𝑛𝑌̅2 . . . . . 5 

Mean Sum of Squares Regression (MSR)  

 

𝑀𝑆𝑅 =  
𝑆𝑆𝑅

𝐾 − 1
 .             .                 .               .                 .             .                . 6 

Mean Sum of Squares Error (MSE)  

𝑀𝑆𝐸 =  
𝑆𝑆𝐸

𝑁 − 𝐾
             .                 .               .                 .             .                .      7 

IV. Results 

Multiple regression models were fitted for the data simulated at different sample sizes. The F-Values, MSR, MSE and P-Values 

where obtained. The model with the lowest MSE is considered as the best.  
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Table 2: Estimation Results for Complete Data Sets by Distribution 

Sample 

size 

Distribution B0 B1 B2 F-Values MSR MSE P-

Value 

15 Binomial 7.69 -0.435 -0.073 0.62 2.9360 4.7107 0.553 

25  4.71 -0.056 0.131 0.18 0.7702 4.2863 0.837 

50  5.168 -0.067 -0.029 1.14 0.3655 2.5908 0.869 

100  5.224 0.0038 -0.017 0.02 0.0643 3.6630 0.983 

         

15 Geometric 1.59 0.741 -0.362 3.28 15.010 4.576 0.075 

25  2.57 -0.133 0.092 0.37 1.7995 4.8437 0.694 

50  2.887 0.016 -0.194 1.21 4.11227 3.40629 0.308 

100  2.618 -0.014 -0.070 0.35 0.91717 2.60336 0.704 

         

15 Normal 4.96 0.358 0.182 1.03 1.7354 1.6896 0.387 

25  9.08 0.121 -0.042 0.17 0.21985 1.26686 0.842 

50  9.12 0.101 -0.023 0.28 0.44113 1.56528 0.756 

100  8.58 0.0238 0.083 0.38 0.56528 1.49900 0.687 

         

15 Exponential 6.29 0.034 -0.105 0.10 59.08 58.573 0.905 

25  8.05 -0.281 0.106 0.97 46.38 47.83 0.395 

50  7.74 -0.184 -0.034 1.23 62.820 51.223 0.303 

100  6.22 -0.128 0.0108 0.83 31.937 38.5476 0.440 

 

For the Complete data set, the Parameters of the Multiple Regression were estimated for all the distributions and their MSE obtained. 
The results showed that the Normal distribution at the sample size of 25 had the least MSE of 1.26686. It was also noticed that at 

all sample sizes, the Normal distribution had the least MSE. This buttressed the fact that some assumptions guiding Multiple 

regression has some link to Normal distribution.  

Table 3: Estimation Results for Binomial Data Sets by degree of missingness and method of handling 

Level Method Sample 

Size 

β0 β1 β2 F-Values MSR MSE P-Value 

5% Listwise 12 9.89 -0.775 -0.246 1.94 7.832 4.0373 0.199 

    22 3.99 -0.063 0.243 0.5 2.2406 4.4914 0.615 

    41 4.25 0.104 -0.029 0.23 0.58254 2.4892 0.792 

    85 4.995 0.0187 0.035 0.06 0.2167 3.8277 0.945 

  Mean 

Imputation 

15 8.91 -0.617 -0.19 2.3 6.8138 3.3644 0.175 

    25 4.47 -0.064 0.178 0.32 1.322 4.1916 0.733 

    50 4.518 0.068 -0.021 0.12 0.27552 2.26351 0.886 

    100 5.199 0.0052 -0.016 0.02 0.06112 3.60634 0.983 

10% Listwise 10 7.01 -0.387 -0.0044 0.32 1.93746 6.01787 0.735 

    18 4.83 -0.095 0.167 0.25 0.913 3.6449 0.782 

    37 5.11 -0.079 -0.025 0.11 0.35105 3.0652 0.892 

    71 5.023 -0.018 0.056 0.14 0.58401 4.05987 0.866 
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  Mean 

Imputation 

15 7.12 -0.378 0.064 0.53 2.1816 4.1364 0.603 

    25 5.67 -0.154 0.054 0.29 1.003 3.4481 0.75 

    50 5.466 -0.082 -0.07 0.31 0.7397 2.378 0.734 

    100 5.152 -0.022 0.026 0.08 0.2577 3.2576 0.924 

25% Listwise 3 7.8 0 -0.4 0 1.333 0   

    9 2.55 -0.273 1.182 1.23 7.2727 5.9091 0.357 

    17 7.65 -0.149 -0.389 0.8 2.7014 3.3956 0.417 

    34 4.75 0.128 0.034 0.38 1.4899 3.9162 0.687 

  Mean 

Imputation 

15 7.59 -0.169 -0.241 0.62 1.7215 0.27737 0.554 

    25 5.58 -0.26 0.168 0.81 2.865 3.519 0.456 

    50 4.94 0.006 -0.004 0 0.00205 1.74229 0.999 

    100 5.332 0.0039 -0.0011 0 0.00295 2.52558 0.999 

35% Listwise 3 7.7 0.189 0.62 0.07 1.451 19.841 0.934 

    4 4.1 -0.15 0.4   1     

    13 7.61 -0.3 -0.143 0.92 1.5774 1.7153 0.43 

    22 5.4 -0.18 0.109 0.52 2.7248 5.2371 0.603 

  Mean 

Imputation 

15 7.66 -0.432 0.101 0.41 1.0207 2.4632 0.67 

    25 3.94 0.178 -0.026 0.21 0.51317 2.48744 0.815 

    50 5.12 -0.018 -0.037 0.05 0.07132 1.53353 0.955 

    100 5.233 -0.0583 0.059 0.44 1.173 2.6775 0.647 

 

For the Binomial data set, the Parameters of the Multiple Regression were also estimated for all the distributions and their MSE 

also obtained. It was observed that when listwise deletion was used, the least MSE of 1.7153 was obtained at 35% level of 

Missingness. When mean imputation was used, the least MSE of 1.53353 was obtained at 35% level of Missingness. Overall, The 

Mean Imputation method gave the least MSE of 1.53353 for the Binomial Distribution. This shows that missingness of data can 

affect the significant of the model.  

Table 4: Estimation Results for Geometric Data Sets by degree of missingness and method of handling 

Level Method Sample 

Size 

β0 β1 β2 F-Values MSR MSE P-Value 

5% Listwise 12 1.25 0.845 -0.452 0.2 1.0964 5.4277 0.819 

    22 2.31 -0.071 0.1 0.2 1.0964 5.4277 0.819 

    41 2.269 -0.03 -0.089 0.76 0.9951 1.3135 0.476 

    86 2.669 -0.075 -0.053 0.35 0.7827 2.2473 0.707 

  Mean 

Imputation 

15 1.75 0.77 -0.447 4.24 16.638 3.923 0.04 

    25 2.31 -0.77 0.116 0.31 1.5317 4.8541 0.734 

    50 2.759 -0.084 -0.104 0.7 2.015 2.889 0.503 

    100 2.574 -0.078 -0.0687 0.41 0.86718 2.09346 0.662 

10% Listwise 9 0.8 -0.0048 -1.082 6.35 24.971 3.935 0.033 

    16 3.6 1.488 0.142 1.33 7.289 5.494 0.299 

    36 2.871 0.025 -0.177 0.62 2.5702 4.117 0.542 

    73 2.603 -0.024 -0.062 0.2 0.58274 2.91877 0.819 
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  Mean 

Imputation 

15 1.67 0.895 -0.0837 4.82 18.473 3.831 0.029 

    25 2.8 -0.273 0.101 0.7 3.215 4.575 0.506 

    50 2.783 0.024 -0.145 0.65 2.1005 3.2137 0.525 

    100 2.446 0.036 -0.0562 0.31 0.7529 2.4133 0.733 

25% Listwise 6 -3.18 0.529 4.31 24.66 29.615 1.2 0.014 

    8 6.43 -0.669 -0.038 0.78 9.2614 11.8704 0.507 

    20 2.904 -0.229 -0.167 0.84 1.74 2.034 0.448 

    39 2.205 0.06 -0.018 0.1 0.27252 2.66007 0.903 

  Mean 

Imputation 

15 0.88 0.783 0.061 5.09 16.5673 3.2539 0.025 

    25 2.44 -0.174 0.163 0.89 0.3927 4.399 0.424 

    50 3.126 -0.107 -0.152 0.85 2.599 3.065 0.435 

    100 2.177 0.105 -0.0081 0.51 1.1201 2.18309 0.6 

35% Listwise 3 0 2 1   2.33     

    4 2.32 0.113 -0.03318 0.18 0.8784 4.9932 0.86 

    10 1.61 0.325 0.174 1.23 3.8943 3.1931 0.349 

    29 2.504 -0.127 -0.005 0.39 0.67428 1.72267 0.68 

  Mean 

Imputation 

15 3.51 -0.153 0.484 0.24 1.183 4.8778 0.788 

    25 1.79 -0.02 0.165 0.21 0.79883 3.85636 0.814 

    50 2.938 0.073 -0.214 1.67 4.365 2.6201 0.2 

    100 2.496 0.002 -0.06 0.18 0.32027 1.77833 0.835 

 

For the Geometric data set, the Parameters of the Multiple Regression were also estimated for all the distributions and their MSE 

also obtained. It was observed that when listwise deletion was used, the least MSE of 1.200 was obtained at 25% level of 

Missingness. When mean imputation was used, the least MSE of 1.77833 was obtained at 35% level of Missingness. Overall, the 

listwise gave the lowest MSE of 1.200 at the 25% level of missingness. This shows that missingness of data can affect the significant 

of the model.  

Table 5: Estimation Results for Normal Data Sets by degree of missingness and method of handling 

Level Method Sample 

Size 

β0 β1 β2 F-Values MSR MSE P-Value 

5% Listwise 12 4.44 0.285 0.308 0.61 1.19 1.16 0.563 

    21 9.16 0.231 -0.154 0.42 0.5923 1.4129 0.663 

    41 9.85 0.051 -0.049 0.12 0.1758 1.4358 0.885 

    87 8.75 -0.0034 0.095 0.41 0.61767 1.51295 0.666 

  Mean 

Imputation 

15 7.22 0.225 0.089 0.4 0.706 1.764 0.679 

    25 9.34 0.175 -0.122 0.31 0.3816 1.2509 0.74 

    50 9.73 0.05 -0.037 0.11 0.1675 1.5335 0.897 

    100 8.59 0.0137 0.09 0.41 0.60858 1.47203 0.663 

10% Listwise 9 4.69 0.54 0.052 0.75 1.55829 2.08069 0.512 

    16 10.28 0.177 -0.223 0.27 0.4011 1.5009 0.77 

    35 9.86 0.132 -0.134 0.82 1.3109 1.6003 0.45 
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    71 9.15 -0.013 0.061 0.14 0.21896 1.54941 0.868 

  Mean 

Imputation 

15 5.79 0.475 -0.02 1.73 210286 1.21738 0.0219 

    25 9.61 0.167 -0.154 0.38 0.4456 1.1688 0.687 

    50 9.4 0.128 -0.086 0.65 0.9669 1.4905 0.527 

    100 8.98 0.0079 0.0571 0.17 0.22786 1.30281 0.84 

25% Listwise 3 -13.3 1.949 0.1591   2.82954     

    10 12.2 -0.09 -0.142 0.26 0.18536 0.71218 0.778 

    17 12.5 -0.236 -0.009 0.64 0.95935 1.50272 0.543 

    45 8 -0.186 0.356 2.67 4.082 1529 0.081 

  Mean 

Imputation 

15 0.31 0.36 0.642 1.71 2.448 1.429 0.221 

    25 9.1 0.16 -0.089 0.43 0.4143 0.9717 0.658 

    50 11.04 -0.158 0.043 0.66 0.7706 1.1663 0.521 

    100 9.23 -0.063 0.091 0.48 0.551 1.1649 0.622 

35% Listwise 3 0.7156 0.9261 0.1097 
 

1.20688     

    4 2.7 0.2066 0.603 14.37 1.9664 0.1369 0.183 

    11 13.79 -0.097 -0.383 2.53 1.0266 0.4375 0.158 

    22 9.87 0.077 -0.098 0.23 0.2625 1.1521 0.798 

  Mean 

Imputation 

15 9.64 0.088 -0.05 0.11 0.17326 1.63866 0.9 

    25 8.81 -0.052 0.181 0.94 0.47171 0.5041 0.407 

    50 7.59 0.228 -0.019 1.33 1.25975 0.94411 0.273 

    100 9.81 0.0227 -0.037 0.1 0.09002 0.90819 0.906 

 

For the Normal data set, the Parameters of the Multiple Regression were also estimated for all the distributions and their MSE also 

obtained. It was observed that when listwise deletion was used, the least MSE of 0.1365 was obtained at 35% level of Missingness. 

When mean imputation was used, the least MSE of 0.5041 was obtained at 35% level of Missingness. Overall, the listwise gave the 

lowest MSE of 0.1365 at the 35% level of missingness. This shows that missingness of data can affect the significant of the model.  

Table 6: Estimation Results for Exponential Data Sets by degree of missingness and method of handling. 

Level Method Sample 

Size 

β0 β1 β2 F-Values MSR MSE P-Value 

5% Listwise 12 6.38 0.021 -0.079 0.04 3.791 76.8096 0.961 

    22 8.7 -0.298 0.128 1.04 51.14 50.09 0.372 

    41 8.32 -0.201 -0.107 1.17 67.21 57.56 0.322 

    85 6.22 -0.124 0.0131 0.63 26.1984 41.9085 0.538 

  Mean 

Imputation 

15 6.26 0.019 -0.091 0.07 4.375 58.6456 0.929 

    25 8.24 -0.298 0.14 1.25 56.3 45.2 0.307 

    50 7.69 -0.184 -0.08 1.14 56.39 49.55 0.327 

    100 6.47 -0.142 0.0022 0.95 36.0933 37.9739 0.39 

10% Listwise 9 8.41 -0.039 -0.336 0.17 17.183 100.461 0.847 

    17 6.78 -0.446 0.456 3.7 161.7 43.7 0.051 

    35 7.15 -0.153 0.001 0.78 32.3982 41.3921 0.466 

    73 6.51 -0.037 -0.104 0.52 19.1319 36.9509 0.598 
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  Mean 

Imputation 

15 6.94 -0.085 -0.058 0.12 6.692 55.317 0.887 

    25 7.67 -0.336 0.183 2.02 86.09 42.62 0.157 

    50 7.74 -0.175 -0.007 1.08 54.549 50.489 0.349 

    100 5.72 -0.013 0.0065 0.01 0.4009 37.4961 0.989 

25% Listwise 5 63.1 -3.939 -12.27 15.75 252.56 16.03 0.06 

    11 8.37 -0.566 0.501 2.58 153.22 59.4 0.137 

    20 8.49 -0.229 0.041 1.4 69.655 49.843 0.274 

    10 11.15 -0.43 -0.207 8.34 33.725 4.043 0.014 

  Mean 

Imputation 

15 6.04 0.204 -0.173 0.37 19.67 52.89 0.697 

    25 6.87 -0.441 0.434 4.31 144.74 33.61 0.026 

    50 8.96 -0.195 -0.011 1.35 60.276 44.658 0.269 

    100 5.594 -0.1257 0.0686 1.81 28.649 15.794 0.168 

35% Listwise 5 1.52 -0.1363 0.904 9.3 28.838 3.102 0.097 

    6 16.68 -1.49 0.211 2.65 65.45 24.66 0.217 

    8 19.4 -1.316 -0.22 0.152 160.67 105.68 0.305 

    27 9.24 -0.078 -0.292 0.043 36.145 84.795 0.658 

  Mean 

Imputation 

15 7.13 -0.163 0.233 0.29 14.51 49.27 0.75 

    25 9.38 -0.367 -0.002 0.41 12.9954 31.3236 0.665 

    50 8.86 -0.211 -0.065 2.03 69.05 .33.938 0.142 

    100 7.38 -0.1544 -0.1379 2.27 64.521 24.442 0.109 

 

For the Exponential data set, the Parameters of the Multiple Regression were also estimated for all the distributions and their MSE 

also obtained. It was observed that when listwise deletion was used, the least MSE of 3.102 was obtained at 35% level of 

Missingness. When mean imputation was used, the least MSE of 15.794 was obtained at 25% level of Missingness. Overall, the 

listwise gave the lowest MSE of 3.102 at the 35% level of missingness. This shows that missingness of data can affect the significant 

of the model.  

The summary of the results can be seen in Table 7. 

Table 7: Summary of Results 

SN Distribution Level Method Least MSE Least-best MSE 
Least-Final 

MSE 

1 Complete - - 1.26686 1.26686 1.26686 

2 Binomial  Listwise 1.7153   

3 Binomial  Mean Imputation 1.53353 1.53353  

4 Geometric  Listwise 1.2000 1.2000  

5 Geometric  Mean Imputation 1.77833   

6 Normal  Listwise 0.1365   

7 Normal  Mean Imputation 0.5041 0.5041 0.5041 

8 Exponential  Listwise 3.102 3.102  

9 Exponential  Mean Imputation 15.794   
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The results in Table 7 shows that when Binomial and Geometric distributions were compared, Binomial had a Least MSE of 1.53353 

under mean imputation as against Geometric distribution with MSE of 1.77833. But when Listwise deletion method was used, 

Geometric distribution had the least MSE of 1.2000 as against Binomial MSE of 1.7153.  

 Comparing Binomial and Normal distributions, Normal had a Least MSE of 0.5041 under mean imputation as against Binomial 

distribution with MSE of 1.53353. Also, when Listwise deletion method was used, Normal distribution had the least MSE of 0.1365 

as against Binomial MSE of 1.7153.  

When Binomial and Exponential distributions were compared, Binomial had a Least MSE of 1.53353 under mean imputation as 

against Exponential distribution with MSE of 15.794. While under Listwise deletion method, Binomial distribution had the least 

MSE of 1.7153 as against Exponential distribution with MSE of 3.102.  

 Comparing Geometric and Normal distributions, Normal had a Least MSE of 0.5041 under mean imputation as against Geometric 

distribution with MSE of 1.77833. Also when Listwise deletion method was used, Normal distribution had the least MSE of 0.1365 

as against Geometric with MSE of 1.2000.  

When Geometric and Exponential distributions were compared, Geometric distribution had a Least MSE of 1.77833 under mean 

imputation as against Exponential distribution with MSE of 15.794. While under Listwise deletion method, Geometric distribution 

had the least MSE of 1.2000 as against Exponential distribution with MSE of 3.102.  

 Comparing Exponential and Normal distributions, Normal had a Least MSE of 0.5041 under mean imputation as against 

Exponential distribution with MSE of 15.794. Also when Listwise deletion method was used, Normal distribution had the least 

MSE of 0.1365 as against Exponential distribution with MSE of 3.102.  

V. Conclusion 

The results of the analysis shows that missing data significantly affect the parameters as well as the model significance for various 

distributions. More specifically, for the complete data set, the results showed that the Normal distribution at the sample size of 25 

had the least MSE of 1.26686. It was also noticed that at all sample sizes, the Normal distribution had the least MSE among the 

four distributions considered. Exploring the results of the Binomial Distribution, it was observed that when listwise deletion was 

used, the least MSE of 1.7153 was obtained at 35% level of Missingness. When mean imputation was used, the least MSE of 

1.53353 was obtained at 35% level of Missingness. Overall, The Mean Imputation method gave the least MSE of 1.53353 for the 

Binomial Distribution.  

For the Normal Distribution, it was observed that when listwise deletion was used, the least MSE of 0.1365 was obtained at 35% 

level of Missingness. When mean imputation was used, the least MSE of 0.5041 was obtained at 35% level of Missingness. Overall, 

the listwise gave the lowest MSE of 0.1365 at the 35% level of missingness. For the Exponential Distribution, it was observed that 

when listwise deletion was used, the least MSE of 3.102 was obtained at 35% level of Missingness. When mean imputation was 

used, the least MSE of 15.794 was obtained at 25% level of Missingness. Overall, the listwise gave the lowest MSE of 3.102 at the 

35% level of missingness.  

From the varying values of least MSE’s and the sample size effects, it is very important to handle missing values with care and to 

adhere to the assumptions (if any) on the use of any method of estimations of model parameters so as to obtain consistent and 

unbiased results.  
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