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ABSTRACT 

In the paper published by the authors in the International Journal of Research and Scientific Innovation 

(IJRSI), in September 2024, titled Hyperplane-Open Weak Topologies in Rn, a general procedure for 

constructing hyperplane-open weak topology on Rn was revealed. The process led to, among other things, the 

formulation of matrix-open weak topology on the Cartesian plane. In the present work, we are to construct a 

matrix-closed topology on the Cartesian plane. Also, in the first work we constructed horizontal and vertical 

line-open weak topologies of the plane and showed that the usual topology (of the plane) is actually weaker 

than the intersection of these two topologies. Then we made a conjecture that the usual topology is actually 

equal to this intersection; and our reviewers opined that a definite proof (or disproof) of that conjecture was 

necessarily important, in order to answer an unsettled question regarding the entire work. This task is what we 

have in addition undertaken in the present work: We have supplied here a definite proof that the usual topology 

of R2 and indeed of Rn is actually the intersection of the horizontal line and the vertical line-open weak 

topologies of R2 (or Rn).  
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INTRODUCTION 

This paper is a follow-up on our first one that was published in the international journal or research and 

scientific innovation (IJRSI). 

We recall the following definition of the cofinite topology. 

Definition 1.1 Let X be an infinite set and let C = {A ⊂ X: Ac is finite}∪{∅}. Then C is a topology on X, 

called the cofinite topology on X. 

Even though one may loosely say that open sets of a cofiniteType equation here. topology are either finite or 

have finite complement, it is not quite correct to say that the cofinite topology on an infinite set X is a 

collection of all subsets of X which are either finite or have finite complement. Reason: Consider the set R of 

real numbers. If we define cofinite topology on IR using the loose definition above, then a problem will occur 

as follows. Suppose C is the family of all subsets of R which are either finite or have finite complement. For 

each natural number n, let Gn = {n}, the singleton of n. Then each Gn belongs to C, as a finite set. Take the 

union ∪n=1
∞ Gn

 of all such sets. Then this union does not belong to C since it is infinite and its complement, 

, is infinite because it includes (among others) all the irrational numbers, which are 

themselves even uncountable. 

Some of the well known properties of the cofinite topology C on a set X are as follows: 

1. For an infinite set X, the complement of every C-open set (apart from the empty set) is finite—this is the 

actual complement finite or co-finite property. 

2. If X is infinite, then C has infinitely many open sets. 

3. If X is infinite, then C is not closed under arbitrary intersections. 
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4. There is one and only one cofinite topology C on a set X. 

5. The cofinite topology C on a set X is always T1. 

Main Results—Matrix-Closed Weak Topologies in Rn 

Construction 1 Let us reconsider the projection maps pi : R
2 → R, where 1 ≤ i ≤ 2, such that p1(x, y) = x and 

p2(x, y) = y. We wish to find the weak topology, induced by the projection maps on R2 when the two factor 

spaces of R2 are endowed with the cofinite topology of R. 

Let TCR denote the cofinite topology on the set R of real numbers. Let G ∈ TCR be a nonempty open subset of R 

in the cofinite topology. Then we know that the complement of G is a finite subset of R, say Gc = {g1, . . . , gn}. 

The inverse image of G under the first projection map  

{(x, y) ∈ R2 : p1((x, y)) ∈ G} 

= {(x, y) ∈ R2 : p1((x, y)) ∈ R and p1((x, y)) ∉ Gc} 

= {(x, y) ∈ R2 : p1((x, y)) ∉ { g1,g2, · · ·, gn} 

= {(x, y) ∈ R2 : x ∉  Gc} 

= {R2, without a finite number of infinite vertical lines } 

= {R2, without exactly n vertical infinite lines through the points g1, g2, · · ·, gn on the horizontal axis}. 

In a similar way, the inverse image of G under the second projection map is p2
-1

 (G) =   {(x, y) ∈ R2 : p2((x, y)) 

∈ G} 

= {(x, y) ∈ R2 : p2((x, y)) ∈ R and p2((x, y)) ∉ Gc} 

= {(x, y) ∈ R2 : p2((x, y)) ∉ { g1, g2, · · ·, gn} 

= {(x, y) ∈ R2 : y ∉ Gc,} 

= {R2, without a finite number of infinite horizontal lines } 

= {R2, without exactly n horizontal infinite lines through the points g1, g2, · · ·, gn on the vertical axis}. 

The sets ) and ) are among the sub-basic sets of this weak topology on R2 generated by the 

projection maps. It follows that the base (or basis) for this weak topology includes, among other sets, the set      

  

{(x, y) ∈ R2 : x, y ∉ {g1, · · ·, gn}} = 

{(x, y) ∈ R2 : x ∉ {g1, · · ·, gn} and y ∉ {g1, · · ·, gn}} = {(x, y) ∈ R2 : x ∈ Gc and y ∈ Gc} = R2 − (Gc × Gc). 

= R2 − ({g1,· · ·, gn} × {g1, . . ., gn}) 

= R2−{(g1,g1),(g1,g2),···,(g1,gn),(g2,g1),(g2,g2),···,(g2,gn),···,(gn,gn)}. = the entire plane without a square n × n 

matrix of coordinate points So the basic open set U equals the entire plane minus a finite square n × n matrix of 

coordinate points. Since a set is open if and only if its complement is closed (in any topological space), the 

closed complement of the open set U is the set Uc = M, an n × n matrix of coordinate points in the plane. The 

closed matrix M is shown below. 
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If G, H ∈ TCR are two open sets in the cofinite topology of R such that G ≠ H, Hc = {h1, · · ·, hm},  Gc = {g1, · · 

·, gn} and m ≠ n, then following the steps we have taken before we shall have a basis element as 

V = p−
1
1(G)∩p−

2
1(H) = {(x, y) ∈ R2 : x ∈ Gc and y ∈ Hc} = R2 − (Gc × Hc). 

= R2 − ({g1, · · ·, gn} × {h1, . . ., hm}) 

= R2−{(g1,h1),(g1,h2),···,(g1,hm),(g2,h1),(g2,h2),···,(g2,hm),···,(gn,hm)}. Then the closed set which is the 

complement of V is the n×m matrix M shown below. 

M = (
(g1, hm) ⋯ (gn, hm)

⋮ ⋱ ⋮
(g1, h1) ⋯ (gn, h1)

) 

In fact all kinds of matrices (column, row vectors, and others) of coordinate points are closed sets of this 

topological space. 

If we endow the three factor spaces of R3 with the cofinite topology, the product topology (i.e. the weak 

topology generated by the projection maps) that would result on R3 will include cuboids of finite number of 

coordinate points: One can see this as the result of taking a matrix of coordinate points already formed in the 

plane through a distance along a line segment parallel to the third coordinate axis. We will still regard this as a 

matrix-closed topology because R2 in the cofinite topology-induced weak topology is a subspace of R3 in the 

cofinite topology-induced weak topology. In the same way R4, R5, etc., Rn in the cofinite topology-induced 

weak topology are matrix-closed topological spaces.  

Main Results—The Intersection of the Line-Open Topologies of Rn 

First, we recast how we constructed the vertical line-open and the horizontal line-open topologies of the 

Cartesian plane. 

Construction 2 Consider R2. Let the horizontal factor space be endowed the discrete topology (R, D) and the 

vertical factor space be endowed with the usual topology   (R, u) of R. Then the coarsest topology on R2 with 

respect to which the projection maps p1 and p2 are continuous is called the vertical line open topology of R2 

because vertical lines (of all lengths) are among the basic open sets of this topology. 

Construction 3 Consider R2 but now with the horizontal factor space R1 endowed with the usual topology and 

the vertical factor space R2 endowed with the discrete topology. Then the horizontal line open topology results. 

Proposition 3.1 Let τu, τv  and τh denote respectively the usual topology, the vertical line-open topology, and 

the horizontal line-open topology of the Cartesian plane R2. Then τu = τv ∩ τh 

Proof: 

Let τ = τv∩τh and let B∗ be a basis for τ. Let D represent the discrete topology on R and E the usual topology of 

R. Let B ∈ B∗ be a basis element for τ. Then B is τ-open. This implies that B ∈ τv and B ∈ τh. Now, since B ∈ 

τv, it is of the form B = U × V where U is an open set in the horizontal factor space of R2 (which has the 

discrete topology of R under τv), and V is an open set in the vertical factor space that is endowed with the usual 

topology E of R. Also, since B ∈ τh, it is of the form B = U′ ×V ′ where U′ is an open set in the horizontal factor 

space (which now has the usual topology of R under τu), and V ′ is an open set in the vertical factor space 

which is endowed with the discrete topology of R. Then we have 
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U × V = B = U′ × V ′. 

=⇒ U × V = U′ × V ′. 

It is known that two vectors are equal if and only if their corresponding components are equal. Likewise two 

Cartesian products of sets are equal if and only if their corresponding factors are equal. It follows from the last 

equality, therefore, that U = U′ and V = V ′. Since (remember) U is an open set in the discrete topology of R 

and U′ is an open set in the usual topology of R, it follows that the subset U = U′ of R is open in both the 

discrete and the usual topologies of R. The only subsets of R that are open in these two topologies on R are the 

usual topology-open sets, because E is strictly weaker than D. This means that U = U′ is an open set in the 

usual topology E on R. In a similar way, V = V ′ is an E-open subset of R. Therefore B = U × V is a basis 

element in the usual topology τu of R2. Since B ∈ B∗ is an arbitrary basis element for τ, it follows that every τ-

open set is τu-open. Because we have proved in our first paper on this topic that every τu-open set is τ-open, we 

now have τu ≤ τ ≤ τu. That is, τu ≤ τv ∩ τh ≤ τu. Hence τu = τv ∩ τh. 

REMARK 

1. If we appropriately vary the topologies endowed the factor spaces of R3, R4, or Rn between the usual 

and the discrete topologies of R—as we did in constructions 2 and 3—we would get the line-open 

topologies of R3, R4, or Rn respectively. 

2. If we copiously follow the steps in the proof above and write an arbitrary basic element of the 

intersection of the various line-open topologies of Rn in two ways as done above, we would find that the 

usual topology of Rn equals this intersection of the various line-open topologies of Rn. In other words, 

the usual euclidean topology of Rn is the intersection of the various line-open topologies of Rn if the 

factor spaces are appropriately varied between the discrete and the usual topologies of R. 

3. Further research may now be carried out on finding a well-known topology (on any set) that emerges as 

the intersection of several other topologies on the set. 
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