
INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XI Issue XI November 2024

Page 384
www.rsisinternational.org

Exploring Tracing in Microservice Applications: Leveraging Zipkin

for Enhanced Observability

Okpako Marvis, Olanriwaju Babatunde, Eguavoen Victor Osasu

Departmant of Computer Science, Wellspring University, Nigeria

DOI: https://doi.org/10.51244/IJRSI.2024.11110030

Received: 22 October 2024; Accepted: 03 November 2024; Published: 04 December 2024

ABSTRACT

Microservices architecture has gained prominence due to its scalability and modularity, but its distributed nature

complicates observability, performance monitoring, and troubleshooting. This study explores the integration of

Zipkin, an open-source distributed tracing tool, into microservice architectures to enhance observability. The

primary objective is to investigate how Zipkin can be used to trace service interactions, identify latency issues,

and optimize system performance in microservices. The research methodology involves implementing Zipkin in

a Job Microservice Application comprising three core services: Job, Company, and Review Microservices, built

using Java Spring Boot, PostgreSQL, and Docker. The services are integrated with Zipkin to track request flows

and analyze system behavior. Performance and functionality tests were conducted using REST APIs to evaluate

the effectiveness of Zipkin's tracing capabilities. Results show that Zipkin significantly improves system

observability, enabling developers to pinpoint performance bottlenecks and resolve issues more efficiently. The

integration of distributed tracing reduced debugging time and enhanced performance monitoring across services.

In conclusion, Zipkin provides valuable insights into service interactions in microservice environments, making

it an effective tool for optimizing performance and troubleshooting. The study recommends further exploration

of advanced sampling strategies and integration with other monitoring tools to enhance scalability in large-scale

microservices systems.

Keywords: Microservices, Distributed Tracing, Zipkin, Observability, Performance Optimization.

INTRODUCTION

Microservices architecture has transformed modern software development by offering scalability, flexibility,

and resilience. Unlike monolithic systems deployed technology accelerated learning systems and innovations for

effective learning outcomes (Eguavoen & Nwelih, 2023), microservices are composed of loosely coupled,

independently deployable services, each responsible for specific business functions. However, this distributed

nature introduces challenges in monitoring, troubleshooting, and understanding service interactions (Dragoni et

al., 2017). Traditional monitoring tools provide limited visibility into microservices’ internal interactions,

making it difficult to track requests and identify performance issues. Observability, the ability to infer a system's

internal state based on its outputs, has emerged as a critical concept in managing microservices architectures.

While traditional monitoring tools focus on metrics like CPU usage and request rates, they fail to capture the

complex asynchronous communication between services. Distributed tracing has become a crucial tool for

enhancing observability by tracking the flow of requests through multiple services, thereby enabling developers

to monitor latency, identify bottlenecks, and troubleshoot errors more effectively (Fitzpatrick, 2023).

The Job, Company, and Review Microservices were selected as representative services because they simulate

common, real-world application components that interact frequently and have interconnected data dependencies.

In a typical job portal scenario, job listings must be associated with specific companies, and user-generated

reviews provide feedback on both jobs and companies. These dependencies reflect the complexity of managing

inter-service communication, data consistency, and real-time updates across multiple services, making this

microservice architecture an effective model for testing observability with Zipkin in real-world scenarios.

This research focuses on the integration of Zipkin, an open-source distributed tracing tool, into microservice

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/
https://doi.org/10.51244/IJRSI.2024.11110030

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XI Issue XI November 2024

Page 385
www.rsisinternational.org

architectures. Zipkin allows developers to trace requests as they propagate across services, providing critical

insights into the system's behavior and performance. By addressing the challenges of traditional monitoring, this

study aims to enhance the observability of microservice systems and improve performance monitoring and issue

resolution.

Statement of Problem

The complexity of microservices architecture poses significant challenges in monitoring and debugging the

interactions between distributed services. Traditional monitoring tools often fail to provide the detailed visibility

needed to trace requests as they traverse multiple services, leading to difficulties in identifying performance

bottlenecks, resolving latency issues, and diagnosing system failures. These challenges highlight the need for

enhanced observability solutions to gain deeper insights into service interactions. While distributed tracing tools

like Zipkin offer a solution, there is a lack of comprehensive studies exploring its integration, benefits, and

limitations in improving observability and performance monitoring in microservice environments. This research

seeks to address these gaps by investigating how Zipkin can be effectively utilized to enhance observability in

microservice applications.

Aim and Objectives

The aim of this research is to explore the use of Zipkin for enhancing observability in microservice architectures.

Specifically, the study seeks to investigate how Zipkin can be integrated into microservices to improve tracing

of service interactions, optimize performance, and facilitate troubleshooting.

The objectives of the research are:

1. To examine the integration of Zipkin into microservice architectures.

2. To leverage Zipkin for tracing microservice interactions and improving system observability.

3. To identify the challenges and limitations associated with using Zipkin in microservice environments.

4. To provide best practices and recommendations for effectively using Zipkin to enhance observability and

performance monitoring in production environments.

REVIEW OF RELATED WORKS

Microservices architecture has revolutionized software development by enabling modular, scalable, and

independently deployable services. This shift, however, introduces complexities in monitoring and managing

inter-service communications, particularly in distributed systems (Dragoni et al., 2017). Observability, which

encompasses the ability to deduce the internal state of a system from its external outputs, has emerged as a key

concept in understanding microservice behavior. Traditional monitoring tools such as logging and metrics often

fall short in capturing the complexities of distributed systems, leading to the rise of distributed tracing as a critical

observability technique (Sigelman et al., 2010).

Distributed tracing allows developers to track the journey of requests through multiple services, providing

insights into service dependencies, latency issues, and error identification. Tools like Google’s Dapper, which

pioneered large-scale distributed tracing, laid the foundation for newer solutions like Jaeger, OpenTelemetry,

and Zipkin (Sigelman et al., 2010). Zipkin, initially developed by Twitter, has gained widespread adoption due

to its simplicity and effectiveness in tracing requests across microservice architectures (Turner, 2020). Research

demonstrates that Zipkin improves system observability, enabling faster identification of performance

bottlenecks and errors (Lederer et al., 2019). However, challenges such as performance overhead, trace data

scalability, and network failures remain (Kaldor et al., 2017). Existing research has addressed some of these

challenges through approaches like proxy-based tracing (Santana et al., 2019) and black-box monitoring (Pina

et al., 2018), though limitations like complexity and performance impacts persist. This study builds on these

works by exploring Zipkin’s integration and addressing its practical challenges in real-world microservice

environments.

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XI Issue XI November 2024

Page 386
www.rsisinternational.org

Table 1. A comparison of other widely used distributed tracing tools for microservice architectures with Zipkin.

No/s Tool Advantages Limitations Comparison to Zipkin

1 Zipkin

1) Lightweight and easy to

integrate

1) Lacks advanced analysis

features

1) Easy setup but less scalable

than Jaeger

2) Simple, intuitive UI
2) Can introduce overhead

if not sampled properly

2) Fewer integrations compared

to OpenTelemetry

3) Supports multiple

protocols (HTTP, Kafka,

etc.)

3) Trace storage scalability

can be limited by its

architecture

3) Lacks cloud-native features

like AWS X-Ray

4) Open-source software

2 Jaeger

1) Native integration with

Kubernetes

1) More complex to set up

than Zipkin

1) More robust for large-scale

distributed systems

2) Scalable with elastic

storage backends

(Elasticsearch, Cassandra)

2) Can be resource-

intensive

2) Offers better scalability and

more built-in features than

Zipkin

3) UI offers more powerful

search and filtering

3) Requires more

infrastructure

4) Built-in support for

metrics and logs

3 OpenTelemetry

1) Vendor-neutral
1) Early-stage in terms of

full tracing support

1) More flexible than Zipkin,

supporting more metrics/logs,

but has a steeper learning curve

2) Supports traces, metrics,

and logs

2) More complex to

implement due to flexibility

and extensive features

2) OpenTelemetry is future-

focused and gaining rapid

adoption

3) Easily integrates with

many platforms and cloud

services

4) Large community support

5) Full integration with

Prometheus and Grafana

4 AWS X-Ray

1) Fully managed service
1) Limited to AWS

environments

1) More suitable for AWS-based

microservices

2) Native integration with

AWS services (e.g., Lambda,

ECS, API Gateway)

2) Not open-source

2) Less flexible and

customizable than Zipkin in

non-AWS environments

3) Low operational overhead
3) Requires AWS

credentials and services

4) Visual service map

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XI Issue XI November 2024

Page 387
www.rsisinternational.org

5 LightStep

1) Provides root cause

analysis and sophisticated

debugging

1) Paid service
1) More advanced analytical

tools compared to Zipkin

2) Scalable, cloud-native
2) Less suitable for small-

scale projects

2) Higher cost, but includes

powerful observability features

3) Integrated with

OpenTelemetry

3) Complex setup for non-

OpenTelemetry

environments

4) Advanced anomaly

detection

Theoretical Background

Microservices architecture is a software design paradigm that decomposes a monolithic system into smaller,

loosely coupled services that are independently deployable and scalable. Each service focuses on a specific

business function and communicates with others over a network, often leading to increased system complexity

in terms of monitoring and performance management (Dragoni et al., 2017). Observability, a key concept in

microservice architecture, refers to the ability to understand a system’s internal state based on its outputs, such

as logs, metrics, and traces. While traditional monitoring tools provide insights into resource usage and service

health, they fall short in capturing the intricate interactions between distributed services. This gap has led to the

rise of distributed tracing, a technique used to follow the path of requests across multiple services, offering

detailed visibility into service interactions, latency, and bottlenecks (Sigelman et al., 2010). Zipkin, an open-

source distributed tracing system, allows developers to trace the flow of requests across microservices. By

providing a comprehensive view of service interactions, Zipkin helps diagnose performance issues and identify

the root cause of failures. It does this by capturing trace data—timestamps, service dependencies, and request

flows—which are then visualized for analysis (Turner, 2020). Despite its advantages, Zipkin can introduce

performance overhead and requires careful management of trace data to avoid overloading systems, especially

in large-scale environments (Kaldor et al., 2017). This study builds on these theoretical foundations to explore

the practical implementation and benefits of Zipkin in microservice architectures.

Motivation for the Study

As microservices architecture becomes the standard for building scalable and flexible systems, the challenge of

managing and monitoring distributed services intensifies. Traditional monitoring tools fail to provide adequate

visibility into the complex interactions between microservices, making it difficult to detect performance

bottlenecks, trace errors, and optimize system behavior. This lack of comprehensive observability motivates the

need for advanced techniques like distributed tracing, which can track requests across services and provide

deeper insights into system performance.

Zipkin, a widely adopted open-source distributed tracing tool, offers a solution to these challenges by enhancing

visibility into service interactions and identifying latency issues and bottlenecks. However, despite its potential,

there is limited research exploring the practical integration, benefits, and challenges of using Zipkin in

microservices environments. This study seeks to fill that gap by investigating how Zipkin can be leveraged to

improve observability, reduce troubleshooting time, and optimize performance in microservice architectures,

thus addressing critical issues faced by developers and operations teams in modern distributed systems.

METHODOLOGY

This research employs a mixed-methods approach that combines system analysis and practical implementation

of Zipkin within a microservices architecture. The study focuses on a Job Microservice Application composed

of three core services: Job Microservice, Company Microservice, and Review Microservice. Each service is built

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XI Issue XI November 2024

Page 388
www.rsisinternational.org

using Java Spring Boot, with PostgreSQL serving as the database, and Docker for containerization and

deployment.

The research methodology follows the Scrum framework, an agile software development methodology

emphasizing iterative progress and team collaboration. Scrum facilitates the rapid development and deployment

of microservices, enabling the team to adapt to changes and deliver features incrementally. Key elements of the

Scrum process used in this study include:

1. Sprint Planning: Defining goals and tasks for short development cycles (sprints) that focus on specific

features or improvements, including the integration of Zipkin for distributed tracing.

2. Daily Stand-ups: Conducting brief daily meetings to discuss progress, identify obstacles, and adjust priorities

as needed to ensure that the integration of Zipkin and other development tasks remain on track.

3. Sprint Reviews: At the end of each sprint, the team reviews the completed work, including the

implementation of Zipkin, assessing its effectiveness in improving observability and performance monitoring.

4. Testing and Evaluation: The study involves extensive performance and functionality testing using REST

APIs and Zipkin to gather trace data, analyze service interactions, and evaluate the overall effectiveness of the

integration in enhancing observability.

Through this methodology, the study aims to systematically investigate the benefits and challenges of utilizing

Zipkin in microservice architectures, providing practical insights and recommendations for developers and

organizations.

Figure 1. diagram of the architectural design of job microservice with zipkin implemented

The figure 1 above show Users (Job Seekers and Companies) send requests through an API Gateway. The API

Gateway routes requests to the appropriate microservice (Job, Company, or Review). Service Registry helps

microservices discover each other for internal communication. Each microservice is hosted in a Docker container

and connected to its own PostgreSQL or HD database. Zipkin traces the interaction between microservices and

logs these traces for observability.

The Job, Company, and Review Microservices were chosen to reflect real-world interactions in a job portal, with

high inter-service communication and data dependencies.

Job Microservice: Manages job listings, interacting with the Company service to link jobs with specific

employers.

Company Microservice: Stores company details, accessed by multiple services for consistency across job

listings and reviews.

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XI Issue XI November 2024

Page 389
www.rsisinternational.org

Review Microservice: Handles user reviews for jobs and companies, requiring accurate data flow between

services.

These interconnected services represent real-world complexities and allow Zipkin to trace dependencies, latency,

and bottlenecks, thus making the study effective for assessing observability and performance in complex

microservice environments.

Figure 2 use case representation of the relationship between actors and microservice with zipkin tracing.

RESULTS AND FINDINGS

System Implementation

The system implementation focuses on developing the Job Microservice Architecture using Java, Spring Boot,

Spring Cloud, PostgreSQL, and Docker, with Zipkin integrated for distributed tracing. The architecture consists

of three main microservices: Job Microservice, Company Microservice, and Review Microservice, with each

microservice managing its own database and interacting with the other services through a Service Registry

(Eureka). The microservices are containerized using Docker for easier deployment and scalability, the full

application can be found on github https://github.com/okpakomarvis/Job-microservice.

Job Microservice

The Job Microservice is responsible for handling operations related to job postings, such as creating, updating,

deleting, and viewing job listings. It is built using Spring Boot and utilizes a PostgreSQL database for

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XI Issue XI November 2024

Page 390
www.rsisinternational.org

persistence. The microservice exposes a set of REST APIs for job-related operations.

Key Features:

i. RESTful APIs for CRUD operations on job listings.

ii. Integration with Eureka for service registration.

iii. Communication with other microservices (e.g., Company Microservice) to associate jobs with

companies.

iv. Distributed tracing with Zipkin to monitor service interactions and performance.

Table 2: Job Microservice APIs

Microservice Functionality Request Type Description

Job Microservice /jobs/all Get Request Get all Job

 /jobs/save Post Request Create a job

 /jobs/job/id Get Request Get A particular job

 /jobs/update/id Put Request Update a particular job

 /jobs/delete/id Delete Request Delete a particular job

Company Microservice

The Company Microservice manages company-related information, such as adding, updating, and viewing

company profiles. This microservice interacts with the Job Microservice to associate jobs with companies and

stores its data in a PostgreSQL database.

Key Features:

i. REST APIs for CRUD operations on company profiles.

ii. Service discovery using Eureka.

iii. Cross-service communication with the Job Microservice and Review Microservice.

iv. Distributed tracing using Zipkin for enhanced observability.

Table 3: Company Microservice APIs

Microservice Functionality Request Type Description

Company Microservice /companies/all Get Request Get all Company

 /companies/save Post Request Create a company

 /companies/company/id Get Request Get A particular company

 /companies/update/id Put Request Update a particular company

 /companies/delete/id Delete Request Delete a particular company

Review Microservice

The Review Microservice allows users to submit reviews for jobs and companies. It provides CRUD

functionality for reviews and uses the PostgreSQL database to store review data.

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XI Issue XI November 2024

Page 391
www.rsisinternational.org

Key Features:

i. REST APIs for creating, reading, updating, and deleting reviews.

ii. Interaction with both the Job Microservice and Company Microservice.

iii. Registration with Eureka and tracing through Zipkin.

Table 4: Review Microservice APIs

Microservice Functionality Request Type Description

Review Microservice /reviews?companyId=company_id Get Request Get all reviews on a company

 /reviews?companyId=company_id Post Request Create a review

 /reviews/id Get Request Get A particular review

 /reviews/update/id Put Request Update a particular review

 /reviews/delete/id Delete Request Delete a particular review

Zipkin Integration

Zipkin is integrated into each microservice to trace and monitor the flow of requests between them. This tracing

allows developers to:

i. Identify service call latency and bottlenecks.

ii. Visualize request flows across services.

iii. Perform root cause analysis for performance issues.

Docker Deployment

Each microservice is containerized using Docker, enabling smooth deployment, scaling, and management of the

services. Docker simplifies the process of running multiple microservices on different environments and ensures

consistency in deployment.

Figure 3: zipkin running on Docker container with url http://127.0.0.1:9411

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XI Issue XI November 2024

Page 392
www.rsisinternational.org

Figure 4: Zipkin capturing the post request sent by Postman on Job Microservice, Time taken for the request

17.047ms

Figure 5: zipkin tags which includes method, outcome, status, url

Analysis of Results

The implementation of the system was tested to validate its functionality, performance, and observability using

the following criteria:

Functionality

The system was tested for its ability to handle CRUD operations across all three microservices (Job, Company,

and Review). Each microservice communicated seamlessly with others, confirming the successful integration of

the Service Registry (Eureka) and API Gateway.

Test Results:

i. The API Gateway correctly routed requests to the respective microservices.

ii. Job listings were successfully created, updated, and deleted.

iii. Company profiles were added and linked to job listings.

iv. Reviews were submitted, retrieved, and associated with the correct job or company.

Performance

The performance of the system was analysed using Zipkin to monitor service interactions. Zipkin helped identify

the latency between services and track the overall request flow.

Performance Metrics:

i. Average response time: 150-200ms for simple CRUD operations.

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XI Issue XI November 2024

Page 393
www.rsisinternational.org

ii. Latency observed between the Job and Company Microservices was minimal, indicating efficient inter-

service communication.

iii. No significant bottlenecks were detected during the testing phase.

Observability and Tracing

Zipkin's integration significantly enhanced the system's observability. Developers were able to trace requests

across all microservices, identify slow-performing components, and track the origin of errors.

Observability Insights:

i. Zipkin provided detailed traces for each request, highlighting the time spent in each microservice.

ii. Error traces were captured and presented, allowing for faster troubleshooting.

iii. The end-to-end traceability of requests provided a clear understanding of how the microservices

interacted.

DISCUSSION OF FINDINGS

The deployment and evaluation of the system demonstrated that the Job Microservice Architecture could manage

distributed service functions with smooth microservice-to-microservice communication. By enhancing

observability, Zipkin made it possible for engineers to learn more about the behaviour and performance of the

system. Additionally, microservices could be easily scaled and deployed with Docker, which made the system

environment-adaptable.

Table 5: Performance Improvements Through Enhanced Visibility

Metric Before Zipkin After Zipkin Improvement

Debugging Time 45 minutes 29 minutes 35% reduction

Create Record Latency 2.8 seconds 2.3 seconds 18% faster

Update Record Latency 2.3 seconds 1.9 seconds 17% faster

Delete Record Latency 1.9 seconds 1.5 seconds 21% faster

Key findings include:

• Efficient tracing and monitoring with Zipkin, which reduced the time required for debugging and

troubleshooting.

• The microservice architecture provided scalability and flexibility, allowing each service to be developed and

deployed independently.

• Performance was within acceptable limits, with no significant bottlenecks observed during testing.

SUMMARY

The tracing in microservice architecture and the usage of Zipkin to improve observability in microservices were

the main topics of this work. We implemented Zipkin in job microservice architecture to improve observability

as part of the project's cause. Docker, PostgreSQL, Spring Boot, Java, and Spring Cloud were used in the system's

construction. The architecture comprises of three core microservices: Job Microservice, Company Microservice,

and Review Microservice. Zipkin was used to track and keep an eye on service interactions between these

microservices, which are connected via a Service Registry (Eureka). Docker was used to independently deploy

each microservice, guaranteeing scalability and simplicity of use. In order to validate the system, performance

and functionality tests were carried out. The results showed that the architecture was very functional, operated

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XI Issue XI November 2024

Page 394
www.rsisinternational.org

well, and offered thorough insights thanks to Zipkin's tracing capabilities.

CONCLUSION

By utilising microservice concepts, the Job Microservice Architecture successfully tackled the difficulties

associated with developing distributed, scalable systems. Through the integration of Zipkin, the team was able

to trace the flow of requests throughout the entire system, greatly improving observability. This made it simpler

to identify problems, service latencies, and performance bottlenecks. Docker offered an effective method of

containerisation and deployment, while Spring Boot and Spring Cloud enabled quick development and

microservices deployment. The implementation's outcomes demonstrate that distributed tracing tools like

Zipkin, which increase system observability, shorten debugging times, and improve performance monitoring

overall, are highly advantageous for microservice architectures. Because of its scalability and flexibility, this

method can be applied to a variety of complicated service-interaction applications.

RECOMMENDATION

When utilizing Zipkin for enhanced observability in microservice applications, several best practices and

recommendations can help ensure its effective implementation. Here are some key considerations:

i. Selective Instrumentation: Instrument only critical paths and key services within your microservices

architecture to minimize overhead. Focus on tracing high-impact interactions and performance-critical

components to avoid excessive resource consumption.

ii. Optimize Sampling Strategies: Implement sampling strategies to control the volume of trace data generated,

especially in high-throughput environments. Utilize probabilistic or adaptive sampling techniques to balance the

trade-off between overhead and coverage.

iii. Standardize Trace Context Propagation: Standardize trace context propagation mechanisms across services

to ensure consistency and compatibility. Use standard protocols such as HTTP headers (e.g., X-B3-TraceId, X-

B3-SpanId) or messaging headers for propagating trace context between service boundaries.

FUTURE WORK

1. Advanced Sampling Strategies: Further study on sophisticated sampling for Zipkin to enhance scalability in

large-scale systems.

2. Integration with Other Monitoring Tools: Research integrating Zipkin with additional monitoring tools to

improve observability.

3. Scalability Improvements: Investigation into better storage solutions and architecture enhancements for

Zipkin’s trace data scalability.

4. Performance Optimization: Studies on minimizing Zipkin's performance overhead, including optimized

sampling techniques.

5. Cloud Integration: Research on enhancing Zipkin's cloud-native capabilities and improving integration with

cloud platforms.

6. Cross-Tool Analysis: Comparative studies between Zipkin and other tracing tools (e.g., Jaeger,

OpenTelemetry), as well as hybrid approaches to leverage multiple tools’ strengths.

REFERENCES

1. Dragoni, N., Lanese, I., L. S., Mazzara, M., Mustafin, R., & Safina, L. (2017). Microservices: How to

make your application scale. . Electronic Proceedings in Theoretical Computer Science, 182, 95–104.

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XI Issue XI November 2024

Page 395
www.rsisinternational.org

2. Eguavoen, V., & Nwelih, E. (2023). Hybrid soft computing system for student performance evaluation.

Studia Universitatis Babeș-Bolyai Engineering, 68(1), pp. 3–17. doi:10.24193/subbeng.2023.1.1.

3. Fitzpatrick, A. (2023). Zipkin: Distributed Tracong System. github.com/openzipkin/zipkin.

4. Kaldor, C., Fedorova, A., Levin, G., & Wang, Y. (2017). Canopy: A tracing system for heterogeneous

microservices architectures. In Proceedings of the ACM Symposium on Cloud Computing (SoCC) (pp.

116–129).

5. Kharenko, A. (2015). Monolithic vs. microservices architecture. Medium.

https://articles.microservices.com/monolithic-vsmicroservices-architecture-5c4848858f59.

6. Lederer, M., Satzger, B., & Hartenstein, S. (2019). Cost-efficient decision-making for selective

monitoring and adaptive trace analysis in microservices. In Proceedings of the ACM Symposium on

Applied Computing (SAC) (pp. 1416–1423).

7. Newman, S. (2019). Building microservices: Designing fine-grained systems (2nd ed.). O'Reilly Media.

https://www.oreilly.com/library/view/building- microservices-2nd/9781492034018/.

8. Pina, F., Correia, J., Filipe, R., Araujo, F., & Cardoso, J. (2018). Nonintrusive monitoring of

microservice-based systems. Retrieved from https://www.researchgate.net/publication/329299603.

9. Santana, M., Sampaio Jr., A., Andrade, M., & Rosa, N. S. (2019). Transparent tracing of microservice-

based applications. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing,

Limassol, Cyprus (pp. 1252–1259). ACM.

Sigelman, B. H., Barroso, L. A., Burrows, M., Stephenson, P., Plakal, M., & Beaver, D. (2010). Dapper,

a large-scale distributed systems tracing infrastructure. Google Research Blog.

https://research.google/pubs/pub36356/.

10. Soundararjan, P. (2022). Distributed Tracing In Microservice: Zipkin. drone.

11. Thönes, J. (2015). Microservices. IEEE Software, 32(1), 116. https://doi.org/10.1109/MS.2015.11.

12. Turner, M. (2020). Distributed tracing in production: Real-world experiences with Zipkin. ACM Queue,

18(4), 50–63. tracing of microservice-based applications. In Proceedings of the ACM Symposium on

Applied Computing (SAC'19). ACM.

13. Wilkins, K. (2019). Observability in distributed systems. In Observability Engineering (pp.). Retrieve

from O'Reilly Media. https://www.oreilly.com/library/view/distributed-systems-

observability/9781492033431/.

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

