
INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XI Issue XI November 2024 

Page 664 
www.rsisinternational.org 

  

   

 

 

Remarks on the Limitations of the Third Romberg Integration 

Method in Numerical Extrapolation 

Grace O. AKINLABI1*, George S. NDUKA2 

1Department of Mathematics, Covenant University, Ota, Nigeria 

2Department of Mathematics, Dennis Osadebay University, Asaba, Nigeria 

*Corresponding Author 

DOI: https://doi.org/10.51244/IJRSI.2024.11110052 

Received: 20 October 2024; Accepted: 28 October 2024; Published: 13 December 2024 

ABSTRACT  

The Romberg extrapolation method (REM) is a powerful numerical integration tool that uses successive 

applications of the trapezoidal rule and Richardson extrapolation to obtain highly precise estimates of definite 

integrals. While the third Romberg extrapolates, in particular, produces a refined output by canceling higher-

order error words, it has inherent restrictions in its use. This work investigates these limits, which include 

assumptions about function smoothness, computational complexity, and inefficiencies in dealing with 

discontinuities or highly oscillatory functions. Two worked examples are offered to exemplify the behaviour 

and performance of the third Romberg extrapolate in real applications, illustrating both its strengths and 

weaknesses. 
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INTRODUCTION 

Numerical integration, also known as quadrature, is an essential tool in applied mathematics, engineering, and 

physical sciences. It enables us to approximate the values of definite integrals when precise analytical solutions 

are difficult or impossible to get. This occurs frequently in real-world applications where functions do not have 

a simple closed-form integral or when the integrals require sophisticated physical models [1-4]. Over the years, 

a variety of numerical integration approaches have been created, ranging from fundamental methods such as 

the trapezoidal rule and Simpson's rule to more complex adaptive techniques. 

Romberg extrapolation stands out among these methods because it can greatly increase the accuracy of 

estimations derived using simpler quadrature methods. Romberg integration is based on the trapezoidal rule, a 

classical technique for estimating the area under a curve by dividing the integration interval into subintervals 

and adding the areas of trapezoids created between consecutive points on the function. While the trapezoidal 

rule is simple to use, it suffers from an error term that gradually reduces with smaller subintervals, particularly 

for non-smooth functions. [5-6]. 

To address this, Richardson extrapolation can be used to lower the error term gradually. Richardson 

extrapolation takes data from the trapezoidal rule at ever finer step sizes and combines them so that higher-

order error terms cancel out, resulting in more accurate conclusions. Romberg extrapolation builds on this 

concept by applying various layers of Richardson extrapolation to a series of trapezoidal rule calculations. This 

results in an improved approximation of the integral with much lower error [7-9]. 

The third Romberg extrapolate represents the result after applying two successive Richardson extrapolations. 

This yields an approximation that has a much higher accuracy than the original trapezoidal estimates, 

especially for smooth and well-behaved functions where higher-order error terms can be effectively canceled. 

As such, Romberg integration is often regarded as one of the most efficient techniques for achieving high-

precision numerical integration with a relatively low number of function evaluations [10-12]. 
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However, despite its efficiency, the Romberg technique, particularly the third Romberg extrapolate, has several 

limitations. The method is based on the assumption that the function being integrated is smooth and continuous 

throughout the integration interval. When this assumption is not met—as in the case of functions with 

discontinuities, steep gradients, or high-frequency oscillations—the approach may struggle to produce correct 

findings. In such instances, the trapezoidal rule's accuracy suffers, and Richardson extrapolation becomes 

ineffective since it cannot efficiently cancel higher-order mistakes. Furthermore, as the third Romberg 

extrapolates improves accuracy, it also increases processing complexity. Each additional phase of Richardson 

extrapolation necessitates more trapezoidal estimates, and the procedure may become computationally 

expensive, particularly for integrals spanning vast intervals or functions that are computationally demanding to 

assess. Furthermore, the method is prone to numerical instability, especially when working with functions with 

small values or requiring high-precision calculations. This can result in the accumulation of round-off errors, 

further reducing the accuracy of the extrapolated result [13-15]. 

This paper will investigate these limitations in depth, concentrating on the unique issues found when 

employing the third Romberg extrapolate. We will demonstrate the method's effectiveness in practice under 

both ideal and challenging conditions using two worked examples. These examples will show both the 

method's strengths, such as its rapid convergence for smooth functions, and its limitations, which include slow 

convergence or failure in the presence of discontinuities or oscillatory activity. We present a balanced review 

of the third Romberg extrapolate's utility in numerical integration [16-19]. 

THE ROMBERG EXTRAPOLATION METHOD 

Overview 

Romberg extrapolation relies on successive applications of the trapezoidal rule to approximate the integral of a 

function f(x) over an interval [a, b]. The trapezoidal rule is computed for successively smaller step sizes ℎ1 =
(𝑏 − 𝑎)/𝑛1, ℎ2 = (𝑏 − 𝑎)/𝑛2, ℎ3 = (𝑏 − 𝑎)/𝑛3, , etc., where 𝑛1,, 𝑛2, … are powers of 2. The results are then 

used to eliminate error terms through Richardson extrapolation [20-22]. 

The general Romberg formula at step k for the j th−  column of extrapolates is given by: 

𝑅𝑘,𝑗 =
4𝑗𝑅𝑘+1,𝑗−1−𝑅𝑘,𝑗−1

4𝑗−1
.                                     (1) 

For the third Romberg extrapolate, this process is applied twice, refining the trapezoidal approximations 

through two levels of extrapolation. 

Trapezoidal Rule Approximation 

Given a function f(x), the trapezoidal rule for step size h is: 

𝑇(ℎ) =
ℎ

2
[𝑓(𝑎) + 2 ∑ 𝑓𝑛−1

𝑖=1 (𝑥𝑖) + 𝑓(𝑏)],              (2) 

where ℎ =
𝑏−𝑎

𝑛
 and 𝑥𝑖 = 𝑎 + 𝑖 ⋅ ℎ. The Romberg table begins by applying this rule for different step sizes. 

It is worth noting that, as a numerical integration approach, the Third Romberg Extrapolate can be used well in 

conjunction with semi-analytical methods such as the Adomian Decomposition Method (ADM) and the 

Homotopy Perturbation Method (HPM). This combination improves the accuracy of integral assessments 

during the iterative solution procedure [23–28]. Such an approach is especially useful for complicated 

differential models with difficult analytical integration, resulting in higher convergence rates and precision—

particularly when dealing with nonlinear terms or boundary conditions [29-32]. 

Limitations of the Third Romberg Extrapolate 

Despite its strengths, the third Romberg extrapolate has notable limitations, these include smoothness  
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requirement, oscillatory, and rapidly varying functions, computational cost, and sensitivity to round-off errors. 

We make reference to the following hints [16-23].  

Smoothness Requirement 

Romberg extrapolation assumes that the integrand 𝑓(𝑥) is sufficiently smooth, typically requiring continuity 

and differentiability over the integration interval. If 𝑓(𝑥) has discontinuities or sharp changes, the convergence 

of Romberg extrapolation slows significantly, or the method may fail to improve the accuracy at all. 

Oscillatory and Rapidly Varying Functions 

Highly oscillatory or rapidly varying functions present significant challenges for Romberg extrapolation. The 

trapezoidal rule, which forms the basis of Romberg's method, relies on linear interpolation between integration 

points. For functions that exhibit frequent oscillations or sharp variations, this interpolation becomes 

inadequate, as the method fails to capture the intricate behavior of the function between points. As a result, the 

error associated with the trapezoidal approximation becomes larger, leading to less accurate estimates of the 

integral, even after Richardson extrapolation is applied. 

In these cases, the higher-order error terms, which Romberg extrapolation is designed to reduce, remain 

significant and difficult to eliminate. This reduces the overall efficiency of the method, as the convergence rate 

slows down or fails entirely. Instead of achieving rapid convergence, the third Romberg extrapolate may 

produce inaccurate results for oscillatory functions, as the underlying assumption that the error diminishes 

predictably with finer step sizes no longer holds. In such cases, alternative methods, such as Gaussian 

quadrature or specialized techniques for oscillatory integrals, may be more appropriate for accurately 

approximating the integral. 

Computational Cost 

The Romberg method’s reliance on multiple function evaluations increases its computational complexity, 

especially as higher-order extrapolates are computed. For each level of Richardson extrapolation, additional 

trapezoidal estimates must be generated, which means performing more function evaluations at progressively 

finer step sizes. The third Romberg extrapolate, in particular, involves several layers of these recursive 

calculations, leading to a substantial increase in the total number of function evaluations required. This can 

become particularly burdensome when the function being integrated is costly to evaluate or when the 

integration is performed over a large interval. 

The computational cost of the third Romberg extrapolate is further compounded when dealing with complex or 

expensive functions, such as those requiring intensive numerical simulations or evaluations of complex 

mathematical models. In these cases, the added precision gained from higher-order extrapolations may not 

justify the increased computational expense. Additionally, as the interval size grows, the number of necessary 

function evaluations increases dramatically, making the method impractical for certain applications, where 

faster or more efficient numerical integration techniques, like adaptive quadrature, might be preferred. 

Sensitivity to Round-off Errors 

The third Romberg extrapolate, while effective for improving the accuracy of numerical integration, is 

particularly sensitive to round-off errors due to its iterative nature. Each level of Richardson extrapolation 

involves subtracting trapezoidal estimates that are close in value, which can amplify small numerical 

inaccuracies in floating-point arithmetic. This sensitivity increases as finer step sizes are used, causing even 

minor rounding errors to grow larger through successive extrapolations. 

The accumulation of these errors becomes problematic when computing higher-order extrapolates, such as the 

third Romberg extrapolate. Small inaccuracies introduced in earlier stages of the trapezoidal rule can 

compound through the multiple layers of Richardson extrapolation, leading to numerical instability. In some 

cases, this results in catastrophic cancellation, where significant digits are lost during subtraction, further 

reducing the precision of the final result. 
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This issue is exacerbated when the function being integrated has small values or when high-precision results 

are required. For functions with values on the order of 6(10 )−  or smaller, the limitations of floating-point 

representation can result in large relative errors. When these small values are fed into the Romberg table, the 

extrapolated results may fail to converge, as the round-off errors overwhelm the accuracy gains from 

Richardson extrapolation. 

To mitigate these round-off errors, strategies such as using higher-precision arithmetic, limiting the depth of 

extrapolation, or employing adaptive methods can help maintain stability. These approaches reduce the risk of 

numerical instability and improve the accuracy of the Romberg method when faced with functions requiring 

high precision or containing small values. 

Considered Worked Cases/Examples 

To illustrate the limitations discussed, this section presents two worked examples that demonstrate the 

challenges faced by the third Romberg extrapolate under different conditions, highlighting how these 

limitations impact the accuracy and efficiency of the method. 

Case 1: Integration of a Smooth Function 

Consider the integral: 

𝐼 = ∫ 𝑒𝑥1

0
𝑑𝑥.                            (3) 

The exact solution is: 

 𝐼 =  𝑒 − 1 .                  (4) 

Using Romberg extrapolation, we compute the third extrapolate for this integral. 

I. Trapezoidal rule estimates are computed for step sizes ℎ1 = 1, ℎ2 = 0.5 and ℎ3 = 0.25. 

II. The first-level Richardson extrapolation eliminates the 𝑂(ℎ2) error, and the second-level extrapolation 

refines the approximation further. 

The result in this case is presented as follows: 

(i) The third Romberg extrapolate yields an estimate with an error on the order of 10−6, demonstrating rapid 

convergence for this smooth function. 

Case 2: Integration of a Discontinuous Function 

Now, consider the integral: 

𝐼 = ∫ sgn
1

0
(𝑥 − 0.5)𝑑𝑥,                           (5) 

where sgn(𝑥 − 0.5) is the sign function, which is discontinuous at  𝑥 = 0.5. 

Applying the same procedure as in the previous example, we compute the trapezoidal rule estimates and 

perform two levels of Richardson extrapolation. 

The results in this case are presented as follows: 

I. The third Romberg extrapolate fails to significantly improve the accuracy of the integral due to the 

discontinuity at 𝑥 = 0.5. 

II. The method converges very slowly, and the error remains large even after multiple refinements. 
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Concluding Remarks 

The third Romberg extrapolate is a powerful tool for numerical integration, particularly when dealing with 

smooth, well-behaved functions. However, it encounters limitations when applied to functions with 

discontinuities or rapid oscillations, and the computational cost can be prohibitive for large-scale problems. 

The method's sensitivity to round-off errors also makes it less suitable for high-precision requirements. While 

Romberg extrapolation provides excellent accuracy in ideal conditions, alternative methods such as Gaussian 

quadrature or adaptive integration techniques may be more effective for challenging integrals.  

In summary, while the third Romberg extrapolate is a powerful tool for improving the accuracy of numerical 

integration, it is highly sensitive to round-off errors, particularly in cases involving small function values or 

high-precision requirements. Users must be cautious when applying the method to ensure that numerical 

instabilities do not weaken the potential benefits of extrapolation. 
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