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ABSTRACT 
 
To meet human needs on a global and financial scale, energy storage is essential. Supercapacitors (SCs) 

have become a focal point of attention because of their improved electrochemical capabilities, extended 

cycling durability, elevated specific power, and swift charge/discharge rates, outperforming conventional 

capacitors and batteries. Many compounds, including as metal oxides, carbon-based materials, and metal- 

organic frameworks (MOFs), have been researched as possible supercapacitor electrode materials. The 

current review article covers conductive polymers, conductive polymer composites, and carbon materials 

used in supercapacitors. The development process, characteristics, and uses of different electrode materials 

such as activated carbon, metal or metal oxide, graphene or graphene oxide, and conductive polymers based 

on carbon cloth electrodes for supercapacitors are also covered in the current review article. 
 

Keywords: Supercapacitors, Electrode materials, Conductive polymer, Hybrid materials, Carbon cloth. 

 

INTRODUCTION 
 

The increasing need to create renewable and eco-friendly energy sources, such as solar energy, stems from 

the extensive use of limited fossil fuel reserves, contributing to environmental pollution and energy 

challenges [1, 2]. The sun’s strength, however, differs from place to place on Earth; it is strongest at the  

equator and is weaker as one approaches the Polar Regions. It also changes with the time of day; for 

example, it is stronger in the afternoon and unavailable at night [3, 4]. Devices that use wind energy or other 

renewable energy sources that produce inconsistent power also have similar problems. This could result in 

an inadequate power supply, which could cause electrical appliances to malfunction and make it more 

difficult to provide a consistent power supply across longer distances. Storing energy from fluctuating 

renewable sources in electrical or electrochemical formats is crucial for efficient supply and utilization, 

aiming to mitigate associated issues. These considerations have sparked significant interest in technologies 

such as supercapacitors and batteries, which excel in storing electrical and electrochemical energy derived 

from renewable sources [5]. 
 

Supercapacitors (SCs) are categorized into three classifications depending on how they store energy: 

electrostatic double layer capacitors, pseudo-capacitors, and hybrid capacitors [6]. Electrostatic double layer 
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capacitors consist of an electrolyte, two carbon-based electrode materials, and a separator. These capacitors 

can store charges either electrostatically or through a non-Faradic process that does not involve charge 

transfer between the electrolyte and electrode [6, 7]. Electrostatic double layer capacitors utilize the 

principle of the electrochemical double layer for energy storage, while pseudo-capacitors employ electrodes 

made of metal oxides or conducting polymers with significant electrochemical pseudo-capacitance. Charge 

storage in pseudo-capacitors occurs through a Faradaic mechanism, such as oxidation-reduction reactions, 

which involve the transfer of charges between the electrolyte and electrode [6, 8]. Hybrid capacitors utilize 

electrodes with an asymmetrical configuration, where one electrode primarily exhibits electrostatic 

capacitance, while the other demonstrates electrochemical capacitance. These hybrid capacitors represent a 

fusion of performance characteristics that were previously inaccessible, combining the strengths of both 

pseudo-capacitors and electrostatic double layer capacitors. By integrating the desirable traits of pseudo- 

capacitors and electrostatic double layer capacitors, hybrid capacitors form a unified supercapacitor with 

enhanced capabilities [6]. 
 

Other terms for supercapacitors that are used in different situations include large-capacitors, energy-storage, 

electric double-layer, and farad capacitors. Exploring carbon materials derived from naturally available 

lignocellulose biomass as electrode materials for flexible or wearable electronic devices represents a 

forthcoming fashion that has been under development for many years, albeit with existing technological 

challenges yet to be overcome [9, 10]. Several carbon-based materials, such as graphene integrated with 

carbon fabric, activated carbons (AC), and carbon with nitrogen doping, have been extensively studied due 

to their widespread availability and cost-effectiveness [11, 12]. They do not, however, have a really strong 

performance. Researchers are becoming more aware of the practical uses of supercapacitors. An electrode 

assembly, an electrolyte solution, and a separator make up a supercapacitor. The type of electrode material 

used has a big influence on how well supercapacitors work [9, 13]. A wide variety of composite materials 

have been created, encompassing advanced porous three-dimensional structures, which include carbon- 

based materials [14], carbon materials doped with elements [15], metallic compounds [16], multi-metal 

compounds [17], and polymers [18]. An increasing number of wearable, highly flexible electrodes with 

strong plasticity have been sought for as civilization has advanced. Carbon cloth has garnered acclaim as an 

excellent electrode material, offering high performance while being cost-effective, flexible, and highly 

conductive [9, 19–21]. The research interest in carbon cloth (CC) has surged due to its suitability as an 

electrode material in flexible supercapacitors, particularly for applications in wearable and portable devices. 

Electrode materials for flexible supercapacitors based on CC show great promise. CC offers many benefits, 

including high conductivity, porosity, big surface area, low weight, high cost, and outstanding flexibility [9,  

22]. It is also very simple to create an electrode material with structural advantages [9]. 

 

Polyaniline (PANI) stands out as a commonly utilized material in pseudo-capacitors (PCs), known for its 

excellent conductivity among conductive polymers. Its widespread adoption is due to easy synthesis, 

affordability, remarkable conductivity, distinctive doping mechanism, high theoretical specific capacitance 

(around 1200 F g−1), impressive wave absorption capabilities, and outstanding electrochemical performance 

[23]. Since its first synthesis in 1886, PANI has established itself as the leading conductive polymer with 

promising attributes [23, 24]. An aniline monomer is oxidized by an electrochemical or chemical process to 

produce PANI [25]. Aniline, a prominent amine, finds extensive use in dye production, pharmaceuticals, 

resin manufacturing, and as a rubber vulcanization accelerator. Consequently, PANI emerges as the most 

cost-effective and thermally stable inherently conductive polymer [23, 26]. The utilization of PANI as a 

common material in pseudo-capacitors has led to significant advancements in supercapacitor research, 

leveraging its aforementioned benefits [23, 27]. PANI exhibits a considerable total surface charge potential 

during charge and discharge cycles as it transitions between different oxidation states, contributing to its 

high capacitance. However, extended charging/discharging periods can lead to structural degradation of the 

main chain in PANI, causing expansion, contraction, or degradation, ultimately affecting conductivity and 

stability negatively [26]. A promising approach involves the design of structured PANI nanorods and 
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nanoparticles to mitigate these issues [23, 28]. Compared to randomly arranged structures, well-organized 

PANI nanostructures demonstrate enhanced rate capability, increased specific surface area, excellent cycle 

stability, and superior energy storage capacity [23, 29]. Additionally, significant research efforts have 

focused on synergistic composite strategies involving PANI and other active materials. By addressing 

PANI’s stability concerns, increasing metal oxide conductivity, and improving the specific capacitance of 

carbon materials, this strategy hopes to boost overall electrochemical performance [23]. To achieve these 

qualities in all composites with PANI, carbon cloth materials are one of the possible materials. PANI and 

CC-based electrodes together provide a high-performance energy storage device, for this reason. The 

conductive polymers, conductive polymer composites, and carbon materials utilized in supercapacitors are 

the main topics of this review. As indicated in Table 2, PANI-containing composite materials are presented 

in the field of supercapacitors in this article. Lastly, Table 3 illustrates the improved carbon cloth-based 

supercapacitor electrode that is included in this research. 
 

 

 

 
Fig. 1: Types of supercapacitors according to the energy storage mechanism [6]. 

 

ELECTRODE MATERIALS 
 
Carbon Materials in Supercapacitor 

 

Carbon materials were among the earliest materials investigated and utilized as electrodes, particularly in 

supercapacitors [9]. Beck et al., (2001) [30] pioneered the development of industrial carbon black (CB) 

electrodes in 12M H2SO4 using polytetrafluoroethylene (PTFE) as a binder, achieving the highest observed 

capacitance of 250 F g-1. Li et al., (2002) [31] combined cresol, catechol, and formaldehyde to create mixed 

carbon aerogels with a high specific capacitance of 77 F cm-3 (104 F g-1), attributed to their highly porous 

structure. Additionally, Pan et al., (2007) [32] discovered that multi-walled carbon nanotubes with an 

average outer diameter of 50 nm and an internal diameter ranging from 3 to 10 nm displayed a specific 

capacitance of 135 F g-1 due to their unique structural characteristics. 

 
The most attractive aspect of CC, as opposed to other carbon materials, is its remarkable mechanical 
strength combined with its increased flexibility and mechanical integrity. Moreover, CC can be incorporated 
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into microdevices of various forms and sizes in addition to being used directly as a flexible, freestanding 

electrode for supercapacitors. Yu et al., (2015) synthesized a high-rate fiber-shaped supercapacitor utilizing 

activated carbon, which has the potential to be sewn into a glove or woven into a dragonfly knot [33, 34]. 
 

Conductive Polymers 
 

Research in the field of conductive polymers has experienced significant growth. Arbizzian et al., (1996) 

[35] developed three types of supercapacitors: a symmetric supercapacitor utilizing p-doped poly(pyrrole), 

an asymmetric supercapacitor based on poly(3-methylthiophene), and p- and n-doped poly(dithieno [3,4- 

b:3’,4’-d] thiophene) with a high working potential. Fusalba et al., (1999) [36] developed poly(cyclopenta 

[2,1-b;3,4-b’] dithiophen-4-one) (PCDT) with an open and porous structure, exhibiting a low-frequency 

capacitance of approximately 70 F g-1 for both the p-type and n-type doped states. However, despite their 

advantages, conductive polymers face challenges such as limited cycle stability and mechanical strength 

over extended periods. Strategies like optimizing their structure, and form, or integrating them with other 

carbon materials are crucial for overcoming these drawbacks and enhancing their performance [9]. Because 

of their wide surface area and micropore distribution, polyacrylonitrile (PAN) microcellular foam thin films 

work exceptionally well on carbon fibers, as demonstrated by Gouerec et al., (2001) [37]. Using 

functionalized carbon nanotubes (f-CNTs) as electrode materials, Jyothibasu et al., (2020) [38] fabricated 

polypyrrole (PPy) tubes through one-step in situ chemical oxidative polymerization combined with 

curcumin as a template. 

Table 1. The capacitance performance and capacitance retention rate of pure conductive polymers at 0.3 A g 
-1 reported at [39] 

 

Conducting Polymer 
Capacitance (F g-1 

) 
Capacitance Retention Rate (%) 

PANI 642.6 64.0 

PPy 586.2 56.4 

PTh 697.1 51.6 

PEDOT 718.2 54.3 

Conductive Polymer Composite for Supercapacitor Application 
 

Conductive polymer composites, with a distinctive combination of electrical conductivity, processing 

simplicity, and flexibility, have generated a lot of interest for their possible use in supercapacitors. 

Supercapacitors, sometimes referred to as electrochemical capacitors or ultracapacitors, are energy-storage 

devices that fill the gap between batteries and conventional capacitors with their high power density and 

quick charge/discharge times. For a number of reasons, conductive polymer composites are important in the 

field of supercapacitor applications. The conductive polymers such as polyaniline (PANI), polypyrrole 

(PPy), and polythiophene (PTh) are commonly employed due to their favorable electrochemical properties 

and electrical conductivity characteristics [40, 41]. The scientist will gain from choosing suitable conductive 

polymers to produce high-performance supercapacitor applications. Composite structures that enhance both 

electrical conductivity and capacitance of the composite material are typically created by blending 

conductive polymers with other substances such as metal oxides or carbon-based materials (like carbon 

nanotubes, graphene, and carbon black). This combination results in improved electron transport speed and 

enhanced charge storage capacity compared to pure conductive polymers, leading to better electrochemical 
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performance [41, 42]. Xu et al., (2020) [39] synthesized a ternary composite supercapacitor using zinc 

sulfide/reduced graphene oxide (ZnS/RGO) via a hydrothermal technique, then incorporating various 

conductive polymers (PANI, PPy, PTh, and PEDOT) through in situ polymerization. They subsequently 

assessed the capacitor’s reliability and capacitance performance. The results showed a remarkable 

enhancement, with values reaching 160% at 1 A g-1 and 1045.3 F g-1 after 1000 cycles, along with power 

densities of 18.0 k W kg-1 and 349.7 W h kg-1. Among these, the PANI ZnS/RGO ternary electrode 
composite exhibited the most superior cycle stability and capacitance performance, as concluded from the 

findings [41]. 

 

CHARACTERISTICS AND USES OF VARIOUS COMPOSITE MATERIALS FOR 

ADVANCED SUPERCAPACITORS 

Activated Carbon/Polyaniline Hybrids 
 

Activated carbon (AC) is mainly non-crystalline and contains a minimum of 80% carbon content, making it 

a carbon-based material. Amorphous carbon’s intrinsically low conductivity, but it will inevitably impede 

its advancement in the realm of energy storage. Researchers typically employ high-temperature local 

graphitization and synthetic graphite coatings to increase amorphous carbon’s conductivity to increase the 

applicability of ACs [23, 43]. Due to its huge specific surface area, AC is generally well-suited for the 

adsorption of solid particles from gases and liquids [44]. Prior research has indicated that the coupling of 

PANI and AC in composite materials results in a favorable combination of increased PANI pseudo- 

capacitance and considerable carbon porosity [23, 45–46]. An inevitable challenge in developing conductive 

polymer materials lies in the interface resistance within nanostructures [47]. To get over these drawbacks,  

numerous researchers have cleverly mixed PANI molecules with AC materials, making them the most 

promising options for supercapacitors. Lyu et al., (2018) [48] synthesized carbon spheres by utilizing yeast 

as a structural template and carbon source. The research utilized in situ polymerization to produce hybrids of 

yeast-derived N-doped carbon microspheres (YCs) combined with PANI. The resulting YCs’ electrical 

conductivity is excellent. In a three-electrode setup, the YC/PANI composite demonstrated a significant 

specific capacitance of 500 F g-1 at a current density of 1 A g-1. 

Table 2. The electrochemical behavior of different supercapacitors made using PANI composite materials. 
 

 
Material 

Electrode 

system 

Specific 

capacitance 

Discharge 

specific 

capacitance 

Cycle 

stability 

 
Cycles 

Current 

density 

Charge- 

transfer 

resistance 

Capacitance 

retention 

 
Ref. 

ZnS/RGO/PANI 3 
1045.3 F g- 
1 1662 F g-1 160% 1000 1 A g-1 0.21 Ω 63.9% 39 

GO/PANI 2 425 F g-1 – 83% 500 
0.2 A g 
-1 – 83% 49 

PANI/Zn2+ 3 738 F g-1 – 65.4% 500 
5 mA 

cm-2 0.3 Ω – 50 

rGO/Fe3O4 

/PANI 
3 283.4 F g-1 – 78% 1000 1 A g-1 – – 51 

SnS2/ 

NRGO/PANI 
3 

1021.7 F g- 

1 – 82% 1000 1 A g-1 – 71.4% 52 

O-MoS2 

/PANI/rGO-160 
HNSs 

 
3 752.0 F g-1 

 
– 

 
– 

 
50,000 1 A g-1 

 
– 

 
80.4 % 

 
53 

PANI-S-a/GO- 

10% 
– 535 F g-1 – – 10,000 

0.5 A g 
-1 – 93.6% 54 
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Graphene or Graphene Oxide/Polyaniline Hybrids 

 
Graphene is the thinnest known two-dimensional material with a unique honeycomb lattice structure 

composed of carbon atoms in the sp2 hybrid orbital [55]. Due to its distinctive crystal arrangement, 

graphene exhibits remarkable characteristics like high electron mobility (~2.5 × 105 cm2 V-1 s-1), a high 

Young’s modulus (~1 TPa), excellent physicochemical stability, and exceptional tensile strength (~42 N m-1 

). These characteristics make it highly promising for a wide range of applications including biomaterials, 

energy storage, sensing, semiconductors, and medicine, positioning it as a revolutionary material [56]. 
 

To create a hierarchical nanostructure, Ye et al., (2017) [57] developed an ordered PANI nanowire array on 

a graphene sheet derived from a graphite substrate. The incorporation of graphene helps maintain excellent  

cycle stability by mitigating PANI’s expansion and contraction during charge-discharge cycles. The 

resulting ordered PANI nanowire/graphene sheet exhibited impressive performance with a notable 

capacitance retention rate of 80.4% after 10,000 galvanostatic charge-discharge (GCD) cycles and a high 

capacitance of 3.57 F cm-2 (607 F g-1 at 1 A g-1). In another study, Hong et al., (2017) [58] successfully 

developed three-dimensional reduced graphene oxide (rGO) using a diffusion-driven layer-by-layer 

technique. This three-dimensional rGO was employed as a scaffold for in situ polymerization to create the 

rGO/PANI composite. In a three-electrode system, the rGO/PANI composite exhibited   a   remarkable 

specific capacitance of 438.8 F g-1 at 0.5 A g-1. 

Hybrid Materials Utilizing Carbon Cloth for Supercapacitors 
 

Carbon cloths consist of carbon fibers ranging from 5 to 10 µm in diameter [59, 60]. These materials possess 

excellent conductivity, flexibility, mechanical strength, hydrophobicity, cost-effectiveness, and 

environmental friendliness [61]. They have great promise in biological applications due to their high level of 

biocompatibility. Their 3D structures and enhanced ion mobility make carbon cloths desirable materials for 

electrode applications in batteries [59], supercapacitors [62], and solar cells [63]. Notably, carbon cloths 

serve effectively as supercapacitor substrates because of their high conductivity, large surface area, and 

facilitation of ion diffusion. These properties contribute to lower charge transfer resistance and increased 

specific capacitance of the electrodes. When compared to the popular substrate materials for 

supercapacitors, such as Ni foam and Fe nanostructures, these appear quite promising [59, 64-66]. Activated 

carbon cloths (ACC) were made by Degaldo et al., (2019) [67] using jute fibers and natural Henequen as 

precursors. Three different activation procedures, including chemical activation with ZnCl2 and physical 

activation with steam and CO2, were studied throughout the preparation process on henequen and jute 

fibers. It was discovered that the distribution and pore structure of the resultant activated carbon cloths 
(ACCs) were influenced by the activation procedure [59]. Rowlands et al., (1999) [68] reported a specific 

capacitance of 35 F g-1 for carbon cloth (CC). Overcoming the limitations of pure CC, Dai et al., (2020) 

[69] developed hierarchical porous hollow N-doped CC as an electrode material for organic-electrolyte 

supercapacitors, which resulted in excellent stability (98% capacitance retention over 20,000 cycles). Liu et 
al., (2019) [70] successfully synthesized a consistent honeycomb-like NiCo2S4 nanosheet with outstanding 

capacitance of up to 1638 F g-1 at 1 A g-1 on CC. This process involves reducing the length of ion diffusion 

channels within base materials like CC, leading to nano-sized forms that significantly enhance the 

electrochemical performance of electrode materials [9, 71]. Horng et al., (2010) [72] utilized an 

electrochemical method to synthesize nano-sized polyaniline nanowires on carbon cloth (PANI-NWs/CC), 

achieving a specific capacitance of up to 1220 F g-1. This approach also addressed mechanical issues 

leading to cycle degradation. A technique for producing a sheath-core PANI nanowire array on the surface 

of aligned CNF/CF yarn was reported by Mao et al., (2018) [73]. They employed electrospinning to produce 

the precursor of CF yarn@CNF using a solution containing 90% DMF and 10% PAN by weight. The 

precursor was then carbonized for two hours at 800°C in an N2 environment to get CF yarn@CNF. This 

material is highly suitable for flexible electrodes. The resulting solid supercapacitor exhibited high power 
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density (0.52 mW cm-2), energy density (21.4 µWh cm-2), and specific capacitance (234 mF cm-2 at 0.1 

mA cm-2). 

Table 3. Characteristics of supercapacitor materials derived from carbon cloth (CC) using different 

preparation techniques. 

 
 

Materials 

 
 

Method 

Specific 

Capacitance 

 

Specific 

Power 

Density 

 

Specific 

Energy 

Density 

 

Specific 

Capacitance 

Retention 

 
 

Cycles 

 
 

Ref. 

Porous graphene 

film by EPD/CC 

Electrophoretic 

deposition process 
27 F g - 1 at 5 

mV s - 1 

670.0 
Wkg-1 

1.64 W h 

kg-1 > 95% 1000 74 

Graphene film by 

EPD/CC 

Electrophoretic 

deposition process 

9 F g -1 at 5 

mV s -1 

252.2 
Wkg-1 

0.67 W h 

kg-1 > 95% 1000 74 

 
NG-PAA/PANI 

composite coating 

on CC 

Hydrothermal 

reaction, in-situ 

oxidative 

polymerization and 

casting solution 

method 

 
521 F g-1 at 

0.5 A g - 1 

 
 
1.1 

kW/kg 

 
 

5.8Whkg-1 

 

 
83.2% 

 
 

after 

2000 

 

 
75 

 
T-Fe2O3 /PPy 

NAs on CC 

Easy self- 

sacrificingtemplate 

and in situ vapor- 

phase 

polymerization 

method 

382.4 mF 

cm-2 at 0.5 
mA cm-2 

 
165.6 

mWcm-3 

 
0.22 

mWhcm-3 

 
 
97.2% 

 
after 

5000 

 
 
76 

Hierarchical 

hybrid FeCo2O4 
@polypyrrole 

core/shell 

nanowires on CC 

Hydrothermal 

reaction and 

oxidative 

polymerization 

process 

 
2269 F g-1 at 

1 A g-1 

 
 

– 

 
68.8 Wh 

kg-1 

 
 

90.2% 

 
after 

5000 

 
 

77 

N-doped activated 

CC 

Single-step doping 

and etching 
215.9 F g -1 – – – – 69 

Hierarchical 

Co(OH)2@ NiMoS 

4 on CC 

 
Hydrothermal 2229 F g-1 

1000 W 

Kg-1 
159.5 Wh 

kg-1 

 
100% 

 
5000 

 
78 

ACC140_Fe Deposition method 116.8 F g-1 – – – – 79 

 
Hierarchical 

CFC/CoFe2O4 

 

 

Mild hydrothermal 

 

226.2 F g-1 at 

1 A cm-3 

 

 
1151.2 

mW cm-3 

 

 
75.4 mWh 

cm-3 

 

 

95.8% 

 

 
after 

2000 

 

 

80 

 

CONCLUSIONS 

This review thoroughly validates the capability of hybrid materials based on carbon cloth, demonstrating 
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significant performance as supercapacitors. Adding various supporting elements, such as conductive 

polymers, metal, metal oxide, etc., helps to improve the qualities of carbon cloth-based hybrid composites. 

The specific power density, specific capacitance retention, and specific capacitance of carbon cloth 

electrodes modified by various composite particles are all improved. This study describes how the 

hydrothermally synthesized hierarchical Co(OH)2@NiMoS4 on the CC electrode exhibits a good specific 

capacitance and 100% specific capacitance retention. 
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