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ABSTRACT  

Immunization has come to play a key role in our primary health care as it has saved millions of lives yearly 

since it came into existence. The Coronavirus disease (COVID-19) pandemic brought about an urgent need 

for Covid-19 vaccines. Various researches have been done and are still ongoing to help produce vaccines to 

help protect people by creating an immune response without the potentially severe illness or post-COVID 

conditions associated with COVID-19 infection. In this work, vaccine deployment strategies and their impact 

using a deterministic 𝑆𝐸𝐼𝑉𝑅 model was examined. This consists of investigating the disease-free and endemic 

equilibria, basic reproduction number and stability. The local stability of the disease-free equilibrium was 

determined by solving the Jacobian matrix of the system of the system of differential equations. The study 

calculated the basic reproduction number, 𝑅0, using the next generation matrix method and found it to be 

𝑅0 = 1.1251426𝑒−10. This low value suggests that vaccination efforts can be effective in reducing the spread 

of COVID-19.  
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INTRODUCTION 

The Coronavirus also known as COVID-19 which is caused by a novel virus severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2). In December 2019, the first cases of the disease were reported in 

Wuhan, China. By January 2020, the disease had spread to other countries, and the World Health Organization 

(WHO) declared the COVID-19 outbreak as a global health emergency. It was later declared as a pandemic 

by WHO on March 11, 2020 [1]. It is believed to have originated from a seafood and wet animal market in 

which the first victims contacted the disease. The virus spreads mainly between people who are in close 

contact with each other, for example a conversational distance. The virus can spread from an infected person’s 

mouth or nose in small liquid particles when they cough, sneeze, speak, sing or breathe. To help build 

immunity against the disease various vaccines have been researched upon and some have been authorized and 

approved for administration to the public. The COVIS-19 vaccines available are: Pfizer-BioNTech COVID-

19 vaccine which are available for people age 6 months and older, Moderna COVID-19 vaccine available for 

people age 6 months and older and Novavax COVID-19 vaccine available for people age 12 years and older 

[2]. Although the emergency phase of COVID-19 is over, the virus continues to spread and endanger people’s 

lives particularly those who are older, have chronic diseases are immunocompromised or pregnant. Safe and 

effective vaccines help ensure that COVID-19 does not result in severe disease and death. In 2021 alone, 

COVID-19 vaccines saved an estimated 14.4 million lives worldwide. Strict precautions have also been put 
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in place to ensure the safety of all COVID-19 vaccines. Since 2021, more than 13 billion COVID-19 vaccine 

doses have been administered globally [3]. 

The issue of the deployment of the vaccines remains a challenge however, several researchers have been able 

to suggest ways to go about it. Bilgin et al. [4] explored strategies to address COVID-19 vaccine coverage 

challenges in Sierra Leone by developing a compartmental model of transmission. The study showed that 

prioritizing booster doses for older adults and those with comorbidities could reduce severe disease by 23% 

and deaths by 34%. Booster doses for pregnant women during antenatal care could prevent 38% of neonatal 

deaths from COVID-19. Vaccination of children should only occur if there are sufficient doses for adults. The 

conclusions aligned with WHO SAGE guidelines, advocating prioritization for those at high risk and 

opportunistic vaccination in areas with limited capacity. Reference [5] used a calibrated deterministic 

SEIRD+V model to simulate the spread and containment of COVID-19, comparing the effectiveness of 

vaccination and social distancing. The study found that vaccination significantly reduced total deaths, total 

infections, and peak infections, while social distancing played a role in reducing these outcomes but was less 

impactful when vaccine efficacy and vaccination fraction were high. The impact of social distancing on total 

deaths and peak infections was reduced in the presence of effective vaccination. The research used a 

thresholding approach to evaluate the conditions required to maintain total COVID-19 deaths and peak 

infections below a 5% threshold. The findings contribute to public health policies for managing COVID-19 

and can guide responses to future outbreaks or evolving SARS-CoV-2 variants.  

Due to the significant challenges faced by low and middle income countries in accessing COVID-19 vaccines 

during the early stages of the pandemic, [6] examined vaccine strategies in Thailand, an upper-middle-income 

country facing COVID-19 vaccine shortages. Using an age-structured model, they compared different 

vaccination approaches, including heterologous vaccination where CoronaVac (CV) was followed by 

ChAdOx1 nCoV-19 (AZ), against traditional AZ homologous vaccination. Results showed that combined CV 

and AZ vaccines, whether in parallel or heterologous schemes, were more effective than solely relying on AZ 

homologous vaccination. Prioritizing vaccination for the elderly aged 60 and above was most effective in 

reducing mortality, while prioritizing workers aged 20-59 lowered COVID-19 cases. Rapid vaccine rollout 

speeds were crucial to reducing infections and deaths, suggesting that low- and middle-income countries 

should use any available vaccines early in combination with others, instead of waiting for higher-efficacy 

vaccines. As optimal distribution of vaccines to achieve high population immunity levels is an aim in 

infectious disease epidemiology, [7] looked into the optimal vaccination strategies using a distributed model 

applied to COVID-19. The model took into account the heterogeneity of the infected sub-population with 

respect to the time since infection based on which they analyzed several vaccination scenarios and an optimal 

vaccination policy. They also considered random vaccination over the whole population and the prioritization 

of age groups such as the elderly and compared the effects with the optimal solution. Numerical results of the 

model showed that random vaccination is efficient in reducing the overall number of infected individuals and 

prioritization of the elderly leads to lower mortality. The optimal strategy in terms of total deaths is early 

prioritization of those groups having the highest contact rates.  

A study on the early rollout of the COVID-19 vaccine in New York City showed that low-income areas with 

high proportions of older adults had lower vaccination rates and higher COVID-19 mortality rates, while 

wealthier areas saw many younger people receiving vaccines ahead of schedule. The researchers suggested 

prioritizing vaccine rollout in low-income areas with more older residents to help reduce overall COVID-19 

mortality and urged policymakers to consider local contexts for future vaccine distribution [8]. An age-

structured SEIR model was used by [9] to evaluate COVID-19 vaccine allocation strategies in India. The 

simulations examined different strategies for reducing mortality and morbidity by prioritizing age groups and  

 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XI Issue IV April 2024 

 

Page 633 

www.rsisinternational.org 

  

 

 

considered the impact of non-pharmaceutical interventions. The study found that prioritizing vaccines for 

those over 60 resulted in the greatest reduction in deaths, despite varying vaccine efficacy, rollout speed, or 

immunity dynamics. However, this strategy also led to higher total symptomatic infections and more 

pronounced peak incidences compared to other strategies. The research supports global recommendations to 

prioritize COVID-19 vaccine allocation for older age groups, with the speed of vaccine rollout being a 

significant factor in determining overall strategy effectiveness. Risk communication plays a critical role in 

managing risks during the COVID-19 pandemic. As European nations prepare to roll out vaccines to address 

high death rates and lockdowns in 2020, public willingness to get vaccinated becomes crucial since vaccines 

are not mandatory [10] examined communication strategies for vaccine rollouts in five European countries: 

the UK, France, Germany, Sweden, and Switzerland. It identified two key focus areas: communicating the 

vaccine rollout timeline and expectations, and detailing which groups are prioritized for vaccination. To 

encourage high vaccine uptake and maintain public trust, they suggested promoting informed consent, 

following scientific advice, managing expectations carefully, and ensuring transparency about vaccine 

distribution and uncertainties. 

During the COVID-19 pandemic in Italy, various measures were implemented to contain the spread, including 

non-pharmaceutical interventions and a mass vaccination campaign. Here [11] analyzed the impact of these 

measures from March 2020 to October 2021 through a time-trend analysis of new confirmed COVID-19 

cases, hospitalizations, and deaths. The results showed that with increased immunization coverage starting in 

March 2021, there was a noticeable decline in COVID-19 cases, hospitalizations, and deaths. Despite 

differences in implementation, vaccine coverage grew at a similar rate across regions, suggesting that the 

mass vaccination campaign had a major impact on controlling the pandemic. Additionally, non-

pharmaceutical measures like face masks and requiring a green pass for indoor entry were also effective in 

containing the virus before vaccines became widely available. Reference [12] introduced a panel dataset of 

COVID-19 vaccine policies from 185 countries and several subnational jurisdictions, documenting 

vaccination prioritization, eligibility, costs, and mandatory policies using 52 standardized categories. It 

reveals that "eliminator" countries prioritized border workers and economic sectors, while "mitigator" 

countries prioritized the elderly and healthcare sectors, with high-income countries typically publishing plans 

and starting vaccinations earlier than low- and middle-income countries. Furthermore, 55 countries 

implemented at least one mandatory vaccination policy, showcasing diverse approaches to vaccination 

strategy and rollout worldwide. Other works by researchers with regards to vaccine and vaccination includes 

[13], [14], [15] amongst others. 

MATHEMATICAL/PROBLEM FORMULATION 

In this study, we propose a model which will be based on the SEIVR framework which divides the population 

into compartments: Susceptible (𝑆),  Exposed (𝐸),  Infectious (𝐼), Vaccinated (𝑉) and Recovered (𝑅).  This 

model incorporates vaccine deployment strategies and their impact on the dynamics of COVID-19 as the 

model extends the basic 𝑆𝐸𝐼𝑅 framework to include compartments for vaccinated individuals and considers 

parameters related to vaccination deployment and efficacy. 

Assumptions: Taking all the subclasses enumerated above into consideration, we assume the following: 

1. Recovered population could still become susceptible 

2. Exposed persons could either become infected or get vaccinated after exposure.  

3. Susceptible individuals can get vaccinated 
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4. Vaccinated individuals could still become infected as the immunity wanes 

5. Infected humans could recover or die due to the disease, every other person in the system could die a natural 

death. 

Owing to the above assumptions, the compartmental block diagram presented below, shows the interaction 

within the community. 

 

Fig. 1 Compartmental Diagram 

Mathematically these interactions are described by a system of ordinary differential equations as shown 

below: 

𝑑𝑆

𝑑𝑡
= 𝑏 −

𝛽𝑆𝐼

𝑁
− 𝜑𝑆 − 𝜇𝑆 + 𝜏𝑅                                                (1) 

𝑑𝐸

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
− 𝑛𝜎𝐸 − (1 − 𝑛)𝜎𝐸 − 𝜇𝐸                                      (2) 

𝑑𝐼

𝑑𝑡
= 𝑛𝜎𝐸 + 𝑛𝜙𝑉 − 𝛾𝐼 − 𝜆𝐼 − 𝜌𝐼 − µ𝐼                                   (3) 

𝑑𝑉

𝑑𝑡
= 𝜑𝑆 + (1 − 𝑛)𝜎𝐸 + 𝜌𝐼 − 𝑛𝜙𝑉 − (1 − 𝑛)𝜙𝑉 − µ𝑉   (4) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 + (1 − 𝑛)𝜙𝑉 − µ𝑅 − 𝜏𝑅                                           (5) 

Subject to these assumed initial conditions 

𝑆(0) =  9000,𝐸(0) =  400, 𝐽(0) =  50,
𝑉(0) = 1000, 𝑅(0) =  550                         

                              (6) 

with 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑉(𝑡) + 𝑅(𝑡)                  (7)  

Table I Biological Description of Model Parameters  
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Parameters Biological Significance Values [16] 

b birth rate 0.00018 

µ natural death rate 0.1724 

𝛽 transmission rate without interventions 0.00414 

𝜑 rate of vaccination deployment 0.0115 

𝜎 rate of transition from exposed to 

infectious class 

0.09 

𝛾  recovery rate  0.15 

λ disease-induced death rate 0.0018 

𝜏 rate of transition from recovered to 

susceptible class 

0.075 

𝜙 waning rate of immunity 0.25 

𝜌 rate of infected individuals getting 

vaccinated 

0.5 

The assumed values include those of 𝜆, 𝜏, 𝜙 and 𝜌. 

METHOD OF SOLUTION 

A. Positivity or non-negativity of Solutions 

For the model of equations to be epidemiologically meaningful and mathematically well posed, it is necessary 

to establish that all solutions of system with positive initial data will remain positive for all times 𝑡 >  0. This 

will be established in the following theorem.  

Theorem 1 Suppose 𝛤 = {(𝑆, 𝐸, 𝐼, 𝑉, 𝑅) ∈ 𝑅5 ∶ 𝑆(0) > 0, 𝐸(0) > 0, 𝐼(0) > 0, 𝑉(0) > 0, 𝑅(0) > 0}, then 

the solution set {𝑆, 𝐸, 𝐼, 𝑉, 𝑅 } is positive for all 𝑡 ≥  0. 

Proof: Observe that from the (2) equation,  

𝑑𝐸(𝑡)

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
− 𝑛𝜎𝐸 − (1 − 𝑛)𝜎𝐸 − 𝜇𝐸 ≥ −(𝜎 + 𝜇)𝐸                         (8)       

That is 

𝑑𝐸(𝑡)

𝐸(𝑡)
≥ −(𝜎 + 𝜇)𝑑𝑡            (9)     

Integrating the above, 

ln 𝐸(𝑡) ≥ −(𝜎 + 𝜇)𝑡 + 𝑘          (10) 

Imposing the initial conditions gives 
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𝐸(𝑡) ≥ 𝐸(0)𝑒−(𝜎+𝜇)𝑡                                                           (11) 

From equation (3), we have  

𝑑𝐼(𝑡)

𝑑𝑡
= 𝑛𝜎𝐸 + 𝑛𝜙𝑉 − 𝛾𝐼 − 𝜆𝐼 − 𝜌𝐼 − µ𝐼 ≥ −(𝛾 + 𝜆 + 𝜌 + µ)𝐼         (12) 

That is 

𝑑𝐼(𝑡)

𝑑𝑡
≥ −(𝛾 + 𝜆 + 𝜌 + µ)𝐼         (13) 

Integrating the above,  

ln 𝐼(𝑡) ≥ −(𝛾 + 𝜆 + 𝜌 + µ)𝑡 + 𝑘         (14) 

Imposing the initial condition gives 

𝐼(𝑡) ≥ 𝐼(0)𝑒−(𝛾+𝜆+𝜌+µ)𝑡                                                           (15) 

From equation (1)  

𝑑𝑆

𝑑𝑡
= 𝑏 −

𝛽𝑆𝐼

𝑁
− 𝜑𝑆 − 𝜇𝑆 + 𝜏𝑅 ≥ −

𝛽𝑆𝐼

𝑁
− (𝜑 + 𝜇)𝑆      (16) 

That is  

𝑑𝑆

𝑆(𝑡)
≥ −(

𝛽𝐼(𝑡)

𝑁
− (𝜑 + 𝜇)) 𝑑𝑡         (17) 

Substituting for 𝐼(𝑡) and integrating gives  

𝑆(𝑡) ≥  𝑆(0)𝑒
(

𝛽𝐼(0)
𝑁(𝛾+𝜆+𝜌+µ)

𝑒(−(𝛾+𝜆+𝜌+µ)𝑡))
𝑒−(𝜑+𝜇)𝑡             (18) 

Also, using the same procedure equation (4) becomes 

𝑑𝑉

𝑑𝑡
= 𝜑𝑆 + (1 − 𝑛)𝜎𝐸 + 𝜌𝐼 − 𝑛𝜙𝑉 − (1 − 𝑛)𝜙𝑉 − µ𝑉 ≥ −𝑛𝜙𝑉 − (1 − 𝑛)𝜙𝑉 − µ𝑉         (19) 

𝑑𝑉

𝑉(𝑡)
≥ −(𝜙 + µ)𝑑𝑡         (20) 

Integrating the above, 

ln 𝑉(𝑡) ≥ −(𝜙 + µ)𝑡 + 𝑘         (21) 

Imposing the initial conditions gives 
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𝑉(𝑡) ≥ 𝑉(0)𝑒−(𝜙+µ)𝑡                                                            (22) 

Equation (5) becomes 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 + (1 − 𝑛)𝜙𝑉 − µ𝑅 − 𝜏𝑅 ≥ −µ𝑅 − 𝜏𝑅         (23) 

𝑑𝑅

𝑅(𝑡)
≥ −(𝜏 + µ)𝑑𝑡         (24) 

Integrating the above, 

ln 𝑅(𝑡) ≥ −(𝜏 + µ)𝑡 + 𝑘         (25) 

Imposing the initial conditions gives 

𝑅(𝑡) ≥ 𝑅(0)𝑒−(𝜏+µ)𝑡                                                     (26) 

It could be observed from equations (7)-(11) that,  

(1) 𝑆(𝑡) ≥ 𝑆(0), 𝐸(𝑡) ≥ 𝐸(0), 𝐼(𝑡) ≥ 𝐼(0),𝑉(𝑡) ≥ 𝑉(0),   

𝑅(𝑡) ≥ 𝑅(0) when 𝑡 = 0 

(2) max
𝑖

𝜙(𝑡)𝑖 = 𝜙(0)𝑖 ∀ 𝑖 at 𝑡 ≥ 0,𝑤ℎ𝑒𝑟𝑒 𝑖 = 1⋯5,  

𝜙 = (𝑆, 𝐸, 𝐼, 𝑉, 𝑅) 

It follows that all solutions of the model are non-negative. This completes the proof. 

B. Feasible Region for System Solutions 

Let us discuss the region in which the total population size exists. It is important to show the region where 

every solution of the model exists, and all such solutions must be bounded. We shall obtain such bound for 

the total population size. This is shown in the proof of the theorem below. 

Theorem 2 The sets  

𝛤1 =  {(𝑆, 𝐸, 𝐼, 𝑉, 𝑅) ∈ 𝑅+
5 ∶  0 ≤  𝑆 +  𝐸 +  𝐼 + 𝑉 +  𝑅 =  𝑁 ≤

𝛼

𝛿
}                                       (27) 

 
are feasible solution sets for the model (1)-(5) subject to (6). 

Proof: We recall that the total human population size at time t is given by 

 

𝑁(𝑡) =  𝑆(𝑡) +  𝐸(𝑡) +  𝐼(𝑡) + 𝑉(𝑡) +  𝑅(𝑡) 

Differentiating this with respect to time, we obtain 
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𝑑𝑁(𝑡)

𝑑𝑡
 =  

𝑑𝑆

𝑑𝑡
+

𝑑𝐸

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑉

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
         (28) 

= 𝑏 − 𝜇𝑆 − 𝜇𝐸 − 𝜇𝐼 − 𝜆𝐼 − µ𝑉 − µ𝑅         (29) 

= −𝜇(𝑆 +  𝐸 +  𝐼 + 𝑉 +  𝑅) + 𝑏 − 𝜆𝐼 ≤ 𝑏 − 𝜇𝑁         (30) 

𝑑𝑁(𝑡)

𝑑𝑡
 ≤ 𝑏 − 𝜇𝑁         (31) 

and solving for N(t) gives  

𝑁(𝑡) ≤
𝑏

𝜇
 +  𝑁(0)𝑒−𝜇𝑡          (32) 

As 𝑡 →  ∞, we obtain 

𝑁(𝑡) ≤
𝑏

𝜇
                                                   (33) 

Therefore, the threshold human population level is 𝑏 𝜇⁄  . It follows that the feasible solution sets of the model 

remain in the regions: Γ1 = {(𝑆, 𝐸, 𝐼, 𝑉, 𝑅) ∈ 𝑅+
5 ∶ 0 ≤  𝑆 + 𝐸 + 𝐼 + 𝑉 + 𝑅 = 𝑁 ≤  𝑏 𝜇⁄ }. Observe that if 

the population is higher than the threshold level, the population reduces to the carrying capacity. If the 

population is less than the threshold level, then the solutions of the model remain in the invariant region for 

all 𝑡 >  0. Therefore, the regions Γ1 are positively invariant.  

This completes the proof. 

C. Equilibrium Point 

An equilibrium point refers to a stable state in the dynamics of an infectious disease within a population. It 

represents a situation where the prevalence of the disease remains constant over time, with no significant 

changes occurring in the number of infected individuals.  

I) The Disease-free Equilibrium Point (DFEP): This represents the average size of each of the 

compartments when the entire population is free from the infection. It is denoted by 𝔼0. We obtain 𝔼0 by 

equating the right-hand side of the model (1) to zero and solving the resulting algebraic system of equations. 

Since we are considering the disease-free equilibrium point, we put 𝐼 = 0, and which when substituted into 

the equations gives 𝐸 = 𝑉 = 𝑅 = 0. We then have: 

𝑆 =
𝑏

µ + 𝜑
                 (34) 

Therefore, 

𝔼0 = (
𝑏

µ + 𝜑
, 0,0,0,0) 

II) The Endemic Equilibrium Point (EEP): The endemic equilibrium point is the average size of each of 

the model compartments, when the disease has become part of the human population. The model admits an 

endemic equilibrium 𝔼e = (S, 𝐸, 𝐼, 𝑉, 𝑅)e when 𝐼 > 0. 𝔼e is obtained by equating the right-hand side of the 

model (1) to zero and solving the corresponding system. Thus, we obtain the following result: 
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𝔼e =

(

 
 
 
 
 
  

𝑁𝐼𝑒𝑏1(−𝑛𝜙𝑒 + 𝑐1𝑑1)

𝑛 (((1 − 𝑛)𝜙 + 𝑑1)𝛽𝜎𝐼𝑒)
, −

((𝑎1𝑐1𝑑1𝑒1 − 𝑎1𝑛𝜌𝑒1 + 𝜑𝜏((𝑐1 − 𝛾)𝑛 − 𝑐1))𝜙) (𝐼𝑒 − 𝑏𝑛𝜙𝜑𝑒1)

𝑛(𝜑𝑏1𝑒1 + 𝜎(𝑎1𝑒1 − 𝜑𝜏)(𝑛 − 1))𝜙 − 𝜎𝑎1𝑑1𝑒1

,

−√

(𝑓1𝜏((𝑛 − 1)(𝛾 + 𝜌) − 𝑛𝑐1 − 𝑑1) + 𝛽𝑛𝜙(2𝜎𝜏𝑐1 − 𝜌𝑏1𝑒1) − 𝛽𝑐1(𝜙𝜎𝜏 + 𝑏1𝑑1𝑒1)) 𝑍2

+(𝑁𝑎1𝑏1𝑒1(𝑐1𝑑1 − 𝑛𝜙𝜌) + 𝑔1𝜑𝑏1(𝑐1 − 𝛾) − 𝑁𝜙𝜏𝜑𝑐1𝑏1 + 𝑓1𝑏𝑒1(𝑛 − 1 − 𝑑1)) 𝑍

−𝑁𝑏𝑛𝜙𝜑𝑒1𝑏1

, 

−
(((−𝑎1𝑛𝜌𝑒1 + 𝜑𝜏((𝑐1 − 𝛾)𝑛 − 𝑐1))𝜙 + 𝑎1𝑐1𝑑1𝑒1)(𝐼𝑒 − 𝑏𝑛𝜙𝜑𝑒1)

𝑛 (((𝜑𝑏1 + 𝑎1𝜎(𝑛 − 1))𝑒1 − 𝜑𝜏𝜎(𝑛 − 1)))𝜙 − 𝜎𝑎1𝑑1𝑒1

,

((−𝑎1((𝑐1 − 𝜌 − 𝛾)𝑛 − 𝑐1)(𝑛 − 1)𝜎 − 𝑏1𝜑((𝑐1 − 𝛾)𝑛 − 𝑐1))𝜙 − 𝑎1𝑑1𝑛𝛾𝜎(𝐼𝑒 + 𝑏𝑛𝜙𝜑(𝑛 − 1)))

𝑛((−(𝑛 − 1)(𝜏𝜑 − 𝑎1𝑒1)𝜎 + 𝜑𝑏1𝑒1)𝜙 − 𝜎𝑎1𝑑1𝑒1 )

 
 
 
 

Where: 𝑎1 = 𝜑 + µ, 𝑏1 = 𝜎 + µ, 𝑐1 = γ + λ + ρ + µ, 𝑑1 = ϕ + µ, 𝑒1 = µ + τ, 𝑓1 = βnϕσ, 𝑔1 = Nnϕτ 

D. Local Stability of the Disease-free Equilibrium 

We shall use the Jacobian matrix J(𝔼0) in establishing the local stability of the disease-free equilibrium. The 

Jacobian matrix which is evaluated at the disease-free equilibrium, is given by 

Theorem 3 The disease-free equilibrium (DFE) is locally asymptotically stable if 𝑅0 < 1 and unstable if 

𝑅0 > 1. 

Proof: For local stability, the Jacobian matrix with respect to the system of equations at the disease-free 

equilibrium is given by:   

[
 
 
 
 
 
 
 −𝑎1 0 −

𝛽𝑏

𝑎1𝑁
0 𝜏

0 −𝑏1

𝛽𝑏

𝑎1𝑁
0 0

0 𝑛𝜎 −𝑐1 𝑛𝜙 0
𝜑 𝑑2 𝜌 −𝑑1 0
0 0 𝛾 𝑒2 −𝑒1]

 
 
 
 
 
 
 

 

Where: 𝑎1 = 𝜑 + µ + 𝛬, 𝑏1 = 𝜎 + µ + 𝛬,   

𝑐1 = γ + λ + ρ + µ + 𝛬, 𝑑1 = ϕ + µ + 𝛬, 

𝑑2 = (1 − n)σ, 𝑒1 = µ + τ, 𝑒2 = (1 − n)ϕ 

The polynomial equation is given by 

√𝐴𝑍5 + 𝐵𝑍4 + 𝐶𝑍3 + 𝐷𝑍2 + 𝐸𝑍 + 𝐹 
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Where, 

 𝐴 = 𝑁𝑎1                                                                                          

𝐵 = 𝑁𝑎1(𝑎1 + 𝑏1 + 𝑐1 + 𝑑1 + 𝑒1), 

𝐶 = 𝑁𝑎1 (𝑎1(𝑏1 + 𝑐1 + 𝑑1 + 𝑒1) + 𝑏1(𝑐1 + 𝑑1 + 𝑒1) + 𝑐1(𝑑1 + 𝑒1) + 𝑑1𝑒1 −
𝑛𝜎𝛽𝑏

𝑁𝑎1
− 𝜌𝑛𝜙), 

𝐷 = 𝑎1
2𝑁(𝑏1(𝑐1 + 𝑑1 + 𝑒1) + 𝑐1(𝑑1 + 𝑒1) + 𝑑1𝑒1)

+ 𝑁𝑎1(𝑏1𝑐1(𝑑1 + 𝑒1) + 𝑑1𝑒1(𝑏1 + 𝑐1) − 𝜌𝑛𝜙(𝑎1 + 𝑏1 + 𝑒1) − 𝑒2𝜑𝜏)

+ 𝛽𝑏𝑛(𝜙(𝜑 − 𝑑2) − 𝜎(𝑎1 + 𝑑1 + 𝑒1)), 

𝐸 = (𝑁𝑎1𝑏1𝑐1𝑑1𝑒1 − 𝑁𝛾𝑛𝜙𝜏𝜑𝑎1 − 𝑁𝑛𝜙𝜌𝑎1
2𝑏1 − 𝑁𝑛𝜙𝜌𝑎1𝑒1(𝑎1 + 𝑏1) − 𝑁𝜏𝑎1𝜑𝑒2(𝑏1 + 𝑐1)

+ 𝑁𝑎1
2(𝑏1𝑐1(𝑑1 + 𝑒1) + (𝑏1 + 𝑐1)𝑑1𝑒1)

+ 𝑏𝛽𝑛(𝜙𝜑(𝑏1 + 𝑒1) − (𝑎1 + 𝑒1)(𝜙𝑑2 − 𝜎𝑑1) − 𝜎𝑎1𝑒1)), 

𝐹 = (𝑁𝑎1
2𝑏1(𝑐1𝑑1 − 𝑛𝜙𝜌)𝑒1 − 𝑁𝜏𝜑𝑎1𝑏1(𝛾𝑛𝜙 + 𝑐1𝑒2) + 𝑏𝛽𝑛(𝜙𝑒1𝜑𝑏1 − 𝜙𝑒1𝑎1𝑎2 − 𝜎𝑎1𝑑1𝑒1 + 𝜎𝜏𝜑𝑒2)) 

By Descartes rule of signs [17], the number of negative real roots of 𝑓(𝑥) is given by the number of sign 

changes of 𝑓(𝑥) or is less than the number of sign changes of 𝑓(−𝑥) by an even number. Here, the sign from 

left to right are + + + + + + 

𝑓(−𝑥) = 𝐴(−𝑍)5 + 𝐵(−𝑍)4 + 𝐶(−𝑍)3 + 𝐷(−𝑍)2 + 𝐸(−𝑍) + 𝐹         (35) 

= −𝐴𝑍5 + 𝐵𝑍4 − 𝐶𝑍3 + 𝐷𝑍2 − 𝐸𝑍 + 𝐹 

Here the sign changes from – to +, + to –, – to +, + to –, – to +  

Therefore, the number of negative solutions is 5. Hence from the above the disease-free equilibrium is locally 

asymptotically stable. This completes the proof. 

E. The Basic Reproduction Number 

The basic reproduction number is the average number of secondary infections caused by a single infectious 

individual in an entirely susceptible population during his/her infective period. The next generation matrix 

approach is used to obtain 𝑅0. Let 𝑋(𝑡) = (𝐸, 𝐼) and obtain that 

𝑋′(𝑡) = ℱ(𝑡) − 𝒱(𝑡)  

where: 

ℱ(𝑡) = (

𝛽𝑆𝐼

𝑁

0
0

)   and 
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𝒱(𝑡) = (

−(𝜎 + 𝜇)𝐸

𝜎𝐸 − (𝛾 + 𝜆 + µ + 𝜌)𝐼 + 𝑛𝜙𝑉
(1 − 𝑛)𝜎 + 𝛾𝐼 − (𝜙 + µ)𝑉

) 

Evaluating the derivatives of F and V at the disease-free equilibrium point obtained above, yields 𝐹𝒱−1  as 

seen below: 

𝐹𝒱−1 = (
−

𝑛𝜎(𝑛𝜙 − 𝜙 − 𝑑1)

𝑏1
𝑘1 𝑑1𝑘1 𝑛𝜙𝑘1

0 0 0
0 0 0

) 

where 
𝛽𝑆

𝑁(𝛾𝑛𝜙−𝑐1𝑑1)
= 𝑘1 

By solving the dominant eigenvalue of the next generation matrix 𝐹𝒱−1, we get the basic reproduction number 

to be 

𝑅0 = −
𝛽𝑆𝑛𝜎(𝑛𝜙 − 𝜙 − 𝑑1)

𝑁𝑏1(𝛾𝑛𝜙 − 𝑐1𝑑1)
         (36) 

Where: 𝑏1 = 𝜎 + µ, 𝑐1 = γ + λ + ρ + µ, 𝑑1 = ϕ + µ, 𝑆 =
𝑏

µ+𝜑
 

Therefore, the basic reproduction number of the given system of equations denoted by 𝑅0 is:  

𝑅0 = −
𝛽𝑏𝑛𝜎(𝑛𝜙 − µ − 2𝜙)

𝑁(µ + 𝜑)(𝜎 + 𝜇)(𝛾𝑛𝜙 − (𝛾 + 𝜆 + µ + 𝜌)(𝜙 + µ))
 

Using the values in table 1 and the initial conditions in equation (6) we get  

𝑅0 = 1.1251426𝑒−10 < 1 

F. Sensitivity Analysis 

Intervention strategies to reduce the mortality and morbidity due to covid 19 perhaps any other epidemiology 

treatment and control should target the parameters that have a high impact on the effective reproduction 

number, 𝑅0. Sensitivity analysis is used to obtain the sensitivity index that is a measure of the relative change 

in a state variable when a parameter changes. We compute the sensitivity indices of 𝑅0 to the model 

parameters with the approach used by [18]. These indices show the importance of each individual parameter 

in the disease transmission dynamics and prevalence. The sensitivity of a parameter, say 𝛽, of 𝑅0 is defined 

as  

 

𝜉𝛽
𝑅0 =

𝜕𝑅0

𝜕𝛽
×

𝛽

𝑅0
                                                         (14) 
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The sensitivity indices of the parameters are thus presented as follows: 

𝜉𝛽
𝑅0 = 1 > 0              𝜉𝑏

𝑅0 = 1 > 0            𝜉𝜎
𝑅0  =  −

𝜎

𝜎 +  µ
< 0           𝜉𝜑

𝑅0  = −
𝜑

 µ +  𝜑
< 0 

𝜉𝜙
𝑅0  =  

(

 
 

𝜙((−µ2 + (−𝜆 − 𝜙 − 𝜌 − 𝛾)µ + 𝜙(𝛾𝑛 − 𝛾 − 𝜆 − 𝜌))(𝑛 − 2)𝐷(𝜎)

((𝑛 − 2)𝜙 − µ) − 𝜎((𝑛 − 2)𝜙 − µ)(𝛾𝑛 − 𝛾 − 𝜆 − µ − 𝜌))

((−µ2 + (−𝜆 − 𝜙 − 𝜌 − 𝛾)µ + 𝜙(𝛾𝑛 − 𝛾 − 𝜆 − 𝜌))𝜎(𝑛 − 2)𝜙 − µ)

)

 
 

< 0 

𝜉𝜆
𝑅0  =  −

(−𝜙 − µ)𝜆

𝛾𝑛𝜙 − (𝛾 + 𝜆 + µ + 𝜌)(𝜙 + µ)
< 0    𝜉𝜌

𝑅0  =  −
(−𝜙 − µ)𝜌

𝛾𝑛𝜙 − (𝛾 + 𝜆 + µ + 𝜌)(𝜙 + µ)
< 0 

𝜉𝛾
𝑅0  =  −

(𝑛𝜙 − µ − 𝜙)𝛾

𝛾𝑛𝜙 − (𝛾 + 𝜆 + µ + 𝜌)(𝜙 + µ)
< 0 

𝜉µ
𝑅0  =  −

(

 
 
 
 
 
 
 

((µ + 𝜑)(−µ2 + (−𝜆 − 𝜙 − 𝜌 − 𝛾)µ + 𝜙((𝑛 − 1)𝛾 − 𝜌 − 𝜆))(𝜎 + µ)𝐷(𝜎)((𝑛 − 2)𝜙 − µ)

+2 (−2µ3 + (−
3

2
𝛾 −

3

2
𝜙 −

3

2
𝜎 −

3

2
𝜑 −

3

2
𝜌 −

3

2
𝜆)µ2 + ((−𝜙 − 𝜎 + (𝑛 − 1)𝛾 − 𝜌 − 𝜆)𝜙)

(−𝛾 − 𝜌 − 𝜎 − 𝜆)𝜑 − 𝜎(𝜆 + 𝛾 + 𝜌))µ + ((−
1

2
𝜎 + (

1

2
𝑛 −

1

2
) 𝛾 −

1

2
𝜆 −

1

2
𝜌)𝜙 +

+
1
2𝜎((𝑛 − 1)𝛾 − 𝜌 − 𝜆))𝜑 −

1
2𝜑𝜎((𝜆 + 𝜌 + 𝛾))𝜎((𝑛 − 2)𝜙 − µ)) µ)

(µ + 𝜑)(−µ2 + (−𝜆 − 𝜙 − 𝜌 − 𝛾)µ + 𝜙((𝑛 − 1)𝛾 − 𝜌 − 𝜆))(𝜎 + µ)𝜎((𝑛 − 2)𝜙 − µ) )

 
 
 
 
 
 
 

< 0

The analysis revealed that the positively sensitive parameters of the basic reproduction number, 𝑅0 are the 

recruitment rate (𝑏) into the susceptible class, the probability (𝛽) that each contact is effective enough to cause 

infection and the waning rate of immunity. Thus, reducing the number of susceptible individuals, reducing or 

eliminating contact with infected persons and the waning immunity rate can greatly lower the value of the 

basic reproduction number (𝑅0) and thereby increasing the stability of the disease-free equilibrium. Increasing 

the values of the positively sensitive parameters has the effect of increasing the value of the basic reproduction 

number (𝑅0), which implies an increase in the endemicity of the disease since the indices have positive signs. 

On the other hand, when the parameter values 𝜎, 𝜑, 𝜆, 𝜌, 𝛾 and 𝜇 are decreased while the rest of the parameter 

values are kept fixed, the value of 𝑅0 decreases. This shows a decrease in the disease endemicity because the 

indices have negative signs.  

NUMERICAL SIMULATIONS 

A. Method of Solution 

The 'dsolve' command in computer algebra systems, such as those like Maple or Mathematica, provides a 

method for finding numerical solutions to ordinary differential equations (ODEs)  
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Table II Numerical values of sensitivity indices of 𝑅0 

Parameter Sensitivity Index 

𝛽 1.0000 

𝑏 1.0000 

𝜎 -0.3430 

𝜑 -0.0625 

𝜙 -0.5782 

𝜆 -0.0023 

𝜌 -0.6269 

𝛾 -0.1547 

𝜇 -2.2324 

or systems of ODEs. When used with the 'numeric' or 'type=numeric' option, it computes a numerical solution. 

This command is versatile and can handle both initial value problems (IVPs) and boundary value problems 

(BVPs), as well as initial differential algebraic problems. The maple software was used in this case and a 

function within the 'plots' package, 'odeplot' was used to plot the result while another function 'plots[display]' 

also in the 'plots' package was used to display the graph in two-dimensional plane. The result of the above 

procedure is discussed below. 

B. Discussion of Result 

From Fig. 2 through to 6, we see the effect that the natural death rate has on each of the classes. A higher 

natural death rate can reduce the size of the susceptible population over time as individuals leave the 

population due to natural causes which could slow down the spread of the disease. On the exposed class a 

higher natural death rate reduces the number of individuals in this class before they become infectious which 

leads to a lower number of individuals transitioning to the infectious class. On the infectious class the impact 

of the natural death rate depends on the disease induced death rate as shown in Figure 7. If the death rate from 

the disease is higher than the natural death rate, the infectious class would decline due to deaths but if the 

natural death rate is higher, it may counteract the effect of the disease on the infectious class. The natural 

death rate influences the vaccinated population by potentially reducing the overall vaccinated population size. 

The natural death rate affects the recovered class by contributing to the number of individuals who leave the 

infectious class due to death. Fig. 14 and 15 displays the effect of the rate of infected humans getting 

vaccinated on both the infectious and vaccinated classes respectively. When infected individuals get 

vaccinated, they move from the infected class to the vaccinated class which reduces the number of actively 

infected individuals in the population. On the other hand, the number of vaccinated individuals increases as 

infected individuals receive vaccination which contributes to the growth of the vaccinated class, potentially 

reducing the susceptible population and slowing down the spread of the disease.  
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Fig. 8 displays the effect of waning immunity on the vaccinated class as a higher waning rate means that over 

time individuals lose their immunity to the disease thereby making them more susceptible to reinfection which 

can lead to an outbreak of the disease. The effect of rate of transition from exposed to either infectious or 

vaccinated class on exposed, infectious and vaccinated classes can be seen in Fig. 9, 10 and 11 respectively. 

A faster transition rate from the exposed class to either the infectious or vaccinated classes means that 

individuals spend less time in the exposed state which results in a smaller number of individuals who are 

exposed but not yet showing symptoms or immune responses. If the transition rate from exposed to infected 

is high, it can lead to a quicker progression of the disease within the population resulting in more individuals 

becoming actively infected. Also, a higher transition rate from exposed to vaccinated means that more 

individuals are getting vaccinated after exposure to the disease. This can contribute to a faster increase in the 

vaccinated population, potentially reducing the susceptible population and slowing down the spread of the 

disease.   

Fig. 12 and 13 shows the effect of rate of vaccination deployment on both the susceptible and vaccinated 

classes. As susceptible individuals receive the vaccine, they move to the vaccinated class thereby reducing 

the number of susceptible individuals in the population which helps in decreasing the number of individuals 

who are at risk of getting infected. The rate of susceptible individuals taking the vaccine determines the pace 

at which the vaccinated population grows. A higher rate of vaccination results in a faster increase in the 

vaccinated population thereby providing greater immunity within the population and slowing down the spread 

of the disease. Fig. 14 displays the effect of the rate of infected humans getting vaccinated on the infected 

classes. Increasing the rate of vaccination among infected individuals can reduce the number of infectious 

individuals and potentially decrease the spread of the disease within the population. Fig. 15 shows the effect 

of transition from vaccinated to recovered class. As more individuals transition from the vaccinated to the 

recovered class, the proportion of the population with immunity increases. Vaccinated individuals who 

transition to the recovered class are no longer susceptible to the disease and cannot transmit it to others which 

helps to reduce the number of individuals capable of spreading the infection potentially leading to faster 

control of the disease outbreak. 

 

Fig. 2 Effect of natural death rate on the infected class 
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Fig. 3 Effect of natural death rate on the exposed class 

 

 

Fig. 4 Effect of natural death rate on the susceptible class 

 

Fig. 5 Effect of natural death rate on the vaccinated class 
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Fig. 6 Effect of natural death rate on the recovered class 

 

 

Fig. 7 Effect of disease induced death on infected class 

 

Fig. 8 Effect of waning immunity on the vaccinated class 
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Fig. 9 Effect of rate of transition from exposed to either infectious or vaccinated class on the infected class 

 

Fig. 10 Effect of rate of transition from exposed to either infectious or vaccinated class on the exposed class 

 

Fig. 11 Effect of rate of transition from exposed to either infectious or vaccinated class on the vaccinated class 
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Fig. 12 Effect of rate of vaccination deployment on susceptible class 

 

Fig. 13 Effect of rate of vaccination deployment on vaccinated class 

 

Fig. 14 Effect of  rate of infected humans getting vaccinated on the infected class 
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Fig. 15 Effect of  rate of transition from vaccinated to recovered class on the recovered class 

CONCLUSIONS 

In this paper, we examined a SEIVR model to explore the vaccine deployment strategies and their impact on 

the dynamics of Covid-19. We determined the existence and local stability of the disease-free equilibrium 

along with the existence of the endemic equilibrium. The study calculated the basic reproduction number, 𝑅0, 

using the next generation matrix method and found it to be 𝑅0 = 1.1251426𝑒−10. This low value suggests 

that vaccination efforts can be effective in reducing the spread of COVID-19. Also, from the numerical 

simulations of the model, it was shown that the spread of the disease can be reduced greatly when vaccination 

is being deployed but when the rate of vaccination deployment is low, it leads to an increase in the spread of 

the disease. We recommend that further researchers should consider validating their results with real-world 

data to ensure accuracy. Explore conditions for backward bifurcation and include non-pharmaceutical 

interventions to determine optimal control strategies and also, explore model extensions to account for 

emerging factors like new virus variants and global vaccine distribution challenges. 

ACKNOWLEDGEMENTS 

The authors express gratitude to the Federal University of Petroleum Resources for fostering a conducive 

research environment that facilitated the timely and high-quality development of this report. 

REFERENCES 

1. Cennimo, D. J. (2023, June 12). Coronavirus Disease 2019 (COVID-19). Retrieved from A Medscape 

Web site: https://emedicine.medscape.com/article/2500114-overview#a1 

2. Mayo. (2023, November 3). Get the facts about COVID-19 vaccines-Mayo Clinic. Retrieved March 

2024, 2024, from A Mayo Clinic Website: https://www.mayoclinic.org/diseases-

conditions/coronavirus/in-depth/coronavirus-vaccine/art-20484859 

3. WHO. (2023, December 5). COVID-19 Vaccines Advice. Retrieved March 24, 2024, from A WHO 

Web site: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines/ 

advice  

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/
https://emedicine.medscape.com/article/2500114-overview#a1


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XI Issue IV April 2024 

 

Page 650 

www.rsisinternational.org 

  

 

 

4. Bilgin, G. M., Lokuge, K., Jabbie, E., Munira, S. L., & Glass, K. (2023). COVID-19 vaccination 

strategies in settings with limited rollout capacity: a mathematical modelling case study in Sierra 

Leone. BMC Public Health, 2466(2023). doi:https://doi.org/10.1186/s12889-023-17374-0 

5. Alexander, J., & Husham, S. (2022, October 27). A SEIRD+V Model for the Effect of Vaccination 

and Social Distancing on SARS-CoV-2 Infection and Mortality. Journal of Scientific & Technical 

Research, 46(5), 37866-37880. doi:10.26717/BJSTR.2022.46.007413 

6. Anupong S, Chantanasaro T, Wilasang C, Jitsuk NC, Sararat C, Sornbundit K, Pattanasiri B, 

Wannigama DL, Amarasiri M, Chadsuthi S, Modchang C. Modeling vaccination strategies with 

limited early COVID-19 vaccine access in low- and middle-income countries: A case study of 

Thailand. Infect Dis Model. 2023 Nov 15;8(4):1177-1189. doi: 10.1016/j.idm.2023.11.003. PMID: 

38074078; PMCID: PMC10709621. 

7. Angelov, G., Kovacevic, R., Stilianakis, N. I., & Veliov, V. M. (2022). Optimal vaccination strategies 

using a distributed model applied to COVID-19. Central European Journal of Operations Research, 

31(2), 499-521. doi:https://doi.org/10.1007/s10100-022-00819- 

8. Schwalbe, N., Nunes, M. C., Cutland, C., Wahl, B., & Reidpath, D. (2024). Assessing New York 

City’s COVID-19 vaccine rollout strategy: A case for risk-informed distribution. Journal of Urban 

Health, https://doi.org/10.1007/s11524-024-00853-z 

9. Foy, B. H., Wahl, B., Mehta, K., Shet, A., Menon, G. I., & Britto, C. (2021). Comparing COVID-19 

vaccine allocation strategies in India: A mathematical modelling study. _International Journal of 

Infectious Diseases_, 103, 431–438. https://doi.org/10.1016/j.ijid.2020.12.075 

10. Warren, G. W., & Lofstedt, R. (2021). COVID-19 vaccine rollout risk communication strategies in 

Europe: a rapid response. Journal of Risk Research, 24(3–4), 369–379. https:// doi .org/ 10. 1080/ 

13669877.2020.1870533 

11. Reno, C., Sanmarchi, F., Stoto, M. A., Fantini, M. P., Lenzi, J., & Golinelli, D. (2022). The impact of 

health policies and vaccine rollout on the COVID-19 pandemic waves in Italy. _Health Policy and 

Technology_, 11(2), 100604. https://doi.org/10.1016/j.hlpt.2022.100604 

12. Cameron-Blake, E., Tatlow, H., Andretti, B. et al. A panel dataset of COVID-19 vaccination policies 

in 185 countries. Nat Hum Behav 7, 1402–1413 (2023). https://doi.org/10.1038/s41562-023-01615-8 

13. Yang, B., Yu, Z., & Cai, Y. (2022). The impact of vaccination on the spread of COVID-19: Studying 

by a mathematical model. Physica A: Statistical Mechanics and its Applications, 590, 126717. 

14. Wagner, C. E., Saad-Roy, C. M., & Grenfell, B. T. (2022). Modelling vaccination strategies for 

COVID-19. Nature Reviews Immunology, 22(3), 139-141. 

15. Diagne, M. L., Rwezaura, H., Tchoumi, S. Y., & Tchuenche, J. M. (2021). A mathematical model of 

COVID-19 with vaccination and treatment. Computational and Mathematical Methods in 

Medicine, 2021. 

16. Mwalili, S., Kimathi, M., Ojiambo, V., Gathungu, D., & Mbogo, R. (2020). SEIR model for COVID-

19 dynamics incorporating the environment and social distancing. BMC Research Notes, 13(1), 352. 

https://doi.org/10.1186/s13104-020-05192-1 

17. Hosch, W. L. (2011, April 28). Descartes’s rule of signs. Encyclopedia Britannica. https:// www. 

britannica.com/science/Descartess-rule-of-signs 

18. Chitnis, N., Hyman, J., & Cushing, J. (2008). Determining important parameters in the spread of 

malaria through the sensitivity analysis of a mathematical model. Bulletin of Mathematical Biology, 

70 (4), 1272-1296. https://doi.org/10.1007/s11538-008-9299-0 

 

 

 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/
https://doi.org/10.1007/s11538-008-9299-0

