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ABSTRACT 
 

In order to minimize risks and create a safe investing environment, financial risk management is becoming 

more and more crucial for individuals, financial organizations, and even entire nations. Accurately assessing 

financial risks and using that information to inform wise investment choices can give an investor a 

competitive edge as well as significant returns. In actuality, real-world financial variables limit the ability to 

estimate financial risks. On the other hand, a wealth of data indicates that financial variables typically have  

asymmetric dependency, skewness, and fat tails. In three ways, the conventional approaches to financial risk 

management based on normally distributed hypotheses are put to the test by these stylized characteristics of 

financial variables. First, the univariate normal distribution or other elliptical distributions are unable to  

adequately fit the distribution of the univariate variable. Second, despite their straightforward tractability,  

multivariate variables’ extra kurtosis and skewness are not captured by their normal distribution. As a result,  

the dependence risks associated with multivariate financial variables may be underestimated. Finally, when 

the joint distribution of various variables is non-elliptical, linear correlation which is typically employed to 

characterize the dependence of various variables in traditional portfolio risk management is likewise 

insufficient. This research uses a promising technique based on copulas in conjunction with GARCH and 

realized volatility models to examine the risks associated with multivariate financial variables in order to 

address these issues. The multivariate distributions are constructed using copulas in conjunction with 

GARCH and Realized Volatility models which are then utilized to evaluate portfolio risks in financial  

market. The findings demonstrate that copula-based models outperform conventional models in fitting 

financial data. Second, a variety of marginal models have a notable impact on the value at risk of the  

portfolio, including the GARCH and realized volatility models. Lastly, both the dependence structure and 

the marginal distribution exhibit notable skewness. Consequently, compared to the normal or Student-t 

distribution, the skewed Student-t distribution fits some datasets better. 

 

Key Terms: Copulas, Value at Risk, Financial Risk Management, viability and profitability 

 

INTRODUCTION 
 
Over the past few decades, financial risk management has gained popularity and significance as a concept  

that focuses on ways to use financial instruments to hedging risk exposure. A number of factors have 

contributed to the emergence of financial risk management as a discipline, including the exponential growth 

in trading activity since the late 1960s, the massive increases in the variety of instruments traded in the 

markets, and so on. The rapid growth in trading activity and instrument types has occurred in an 

environment that is frequently volatile, which exposes firms to higher levels of financial risk that is, the 

possibility of financial gain or loss due to unanticipated changes in underlying risk factors risk management 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/
https://doi.org/10.51244/IJRSI.2024.1105042


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XI Issue V May 2024 

Page 675 

www.rsisinternational.org 

 

 

 
 

 

 

(Dowd, 2023). The measurement of one specific type of financial risk market risk,  or more specifically, 

equity risk is the focus of this paper. 

 

Financial risk is something that anybody involved in investing, be it an individual, a financial institution, or 

a corporation. Investors can only make money while making prudent financial risk management decisions; 

otherwise, their investments could result in losses rather than gains. Due to inadequate risk management,  

many organisations failed due to bankruptcy. This includes the Royal Bank which faced liquidity changes in 

2012, Trust bank in which the license was revoked in 2017, Interfin Bank, Genesis Investment, Renaissance 

Merchant bank failed due to improper financial risk management practices. As a result, investors should 

actively plan for the ramifications of unfavourable results, employ effective risk management techniques to 

reduce their exposure to risk, and generally improve their readiness for the unavoidable uncertainty 

(Mazambara, 2022). The main issue in finance risk quantification is the main issue with financial risk  

management. The Value at Risk (VaR) model is one of the most popular risk measurements and has evolved 

into a standard for aggregating hazards across several elements. Several risk measuring techniques have 

been developed in the past. VaR, which was created in reaction to the early 1990s spike in financial market 

volatility, is being utilized by both financial and non-financial organizations more and more. 

 

This risk measure’s enormous popularity is mostly because to its straight forward conceptualization, 

simplicity in computation, and immediate application. Value at Risk (VaR), which is easily employed by  

banks, brokerage firms, investment funds, and even non-financial entities, reduces the (market) risk 

associated with any portfolio to simply one monetary value, i.e. the loss linked to a certain likelihood. 

Nonetheless, condensing a large number of complicated and undesirable results into a single figure 

inevitably entails some trade-off between the demands of many consumers (Engle,2020). 

 

LITERATURE REVIEW 
 

The joint multivariate distribution and copula 
 

It is necessary to understand the relationship between these variables when modelling the multivariate  

variables. Because linear correlation, also known as Pearson’s correlation, is typically easy to compute and 

has the naturalness as a measure of dependency in multivariate normal distribution, which is typically 

utilized in theory and practice, it is traditionally used to explain the link between variables. Nonetheless, the 

existing body of financial research has extensively documented instances of non-normality. As a result, 

when normality is altered, the dependency between variables is not well described by linear correlation. As 

a result, stronger substitute correlations are suggested, including rank correlation, which is invariant under 

monotonic transformations and in the sense of perfect dependency. Examples of these correlations are 

Kendall’s rank correlation and Spearman’s rank correlation. However, in contrast to linear correlations, they 

are not moment-based correlations and do not lend themselves to the same sophisticated variance- 

covariance manipulations. 
 

The copula is designed to flexibly describe the relationship between variables. A useful and effective 

technique for describing dependent risks is the copula function. It divides a multivariate vector’s joint  

distribution into its boundaries and dependencies. The copula idea has advanced quickly in the last many 

years. Sklar (1959) first proposed this, demonstrating that any n-dimensional joint distribution function 

could be broken down into its n marginal distributions, which fully describe the shape, location, and scale 

parameters of the n variables (i.e., skewness, kurtosis, mean, and standard deviation), and a copula, which 

fully describes the dependence between the n variables n variables, and proves the well-known. Embrechts 

et al. (1999) introduced this concept to the finance literature. Copulas have already been widely applied in  

various fields of finance, such as risk management, derivative assets pricing, option valuation, and so on.  

However, the copula methodology used in initial researches only dealt with unconditional distributions, 
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meaning that the earlier applications using the copula methodology just focus on constant scenarios and do 

not include time-varying features. The constant copula applications have been reviewed by Cherubini, et al.  

(2017). Patton (2018) expanded the constant copula theory. 
 

After Patton (2017) expanded the constant copula into the conditional copula by allowing the first and 

second conditional moments to vary on time, the conditional copula gained traction in the finance industry. 

Jondeau (2021) investigated the time-varying dependency between international stock market returns using 

GARCH-based copula, while Bartram et al. (2020) used GJR-GARCH-based copula to examine the effect 

of the introduction of the Euro on the time-varying dependence between 17 European stock markets. 
 

It has also been applied to portfolio risk management, encompassing VaR estimation. For instance, portfolio 

VaR under unconditional distributions has been measured explicitly using constant copulas by Bouyé et al. 

(2018). Later, for the purpose of estimating VaR under conditional distributions, Fantazzini (2008) extended 

the constant copula to time-varying copula. He estimated the value at risk (VaR) of three portfolios 

consisting of the Standard and Poor 500 stock index, the Dax index, and the Nikkei 225 index using the 

Normal and Student-t copula, taking into account that copula parameters alter over time. Few academics 

have, nevertheless, thought of using copulas to calculate VaR in the energy market. Alexander (2020) 

discovered that there is a substantial correlation between the prices of platinum futures and platinum prices,  

which makes a bivariate Normal distribution an inappropriate model to use. Therefore, in order to fit the  

time-series data of the energy market, more suitable multivariate distributions must be found. Copula 

functions may be able to help with this issue. 
 

For instance, Grégoire et al. (2018) modelled price dependency in energy markets using copulas. Under  

constant parameter settings, they discover that the Student-t copula outperforms the Normal copula in 

capturing the heavy-tail behaviour of log-returns distributions of energy futures prices. Copulas have been 

specifically used by Bastianin (2009) to estimate VaR in the energy market in more recent times. According 

to the findings, asymmetric copula models with Student-t marginal, like symmetrized Joe-Clayton copula 

(also referred to as SJC by Patton, 2006), produce the best VaR forecasts. The significance of non- 

normalities and asymmetries in log-return distributions in the energy market is further supported by his 

findings. 
 

Copula Application to Financial Risk Management 
 

The theory and applications of copulas have advanced quickly in the last several years. Copulas are a  

valuable tool for financial market risk asset modelling. As previously mentioned, skewness and kurtosis of 

underlying assets in financial markets typically contradict the premise of normalcy. By avoiding the curse of 

dimensionality, the copula can assist users in avoiding this conundrum and flexibly design numerous 

multivariate distributions to fit financial assets. Furthermore, while the normal distribution assumes zero 

extreme dependency, copulas can readily capture extreme dependencies, such as tail dependence. Extreme 

co-movement instances for instance are frequently noted (Mendes, 2019). This indicates that positive and 

negative extreme events are not entirely independent from one another. But this kind of relationship cannot  

be captured by the multivariate normal distribution-based Pearson’s correlation. This kind of reliance, 

however, is beyond the scope of the multivariate normal distribution-based Pearson’s correlation. The 

copula of the underlying random variables remains invariant under non-linear strictly increasing 

transformations, such as the conversion of asset returns into log-returns in financial time series, which is 

another significant property of copulas. Nevertheless, non-linear strictly increasing transformations cannot 

maintain the invariance of linear correlation based on multivariate elliptical distributions, particularly the 

normal distribution that is most commonly employed in practice. Thus, despite its widespread use, linear  

correlation is frequently a misinterpreted measure of reliance, as noted by Embrecthes et al. (2020). A brief 

introduction to the ideas and characteristics of copulas is given in the ensuing subsection. To ensure 

accuracy, please define the notations as follows. The conditional variable, W, may be a vector, and the 
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variables of interest are X and Y. 
 

Let FX W| and FY W| stand for the conditional marginal distributions of X W| and Y W|, respectively. 

Patton (2006a) defines FXYW as the joint distribution of (,, ) XYW and FXY W| as the conditional 

distribution of (,) X Y given W. Remember that F yw F yw Y W = ∞ XY W and | | (| ) (, | ) F xw F x w X 

W = ∞ XY W. The distribution function FXYW in this paper is continuous, and FX W|, FY W|, and FXY 

W| are sufficiently smooth for all necessary derivatives to exist. The notation is the same for unconditional  

distribution. The conditional variable is just disregarded in this instance. Throughout the paper, the standard 

practice is to use an uppercase letter to represent the cumulative distribution function (c.d.f.) of a random 

variable and a lowercase letter to represent the corresponding density (p.d.f.). Additionally, write ℜ = ℜ 

±∞ { } for the extended real line, Xt and Yt for the random variables in upper case, and t x and t y for the 

corresponding realizations in lower case. 
 

Copula Estimation 
 

Initially, it has been demonstrated that copula and conventional rank correlations are related. Nelsen (1999) 

to the end, the partnership is represented by 

 

 
 

As a result, rank correlations make it simple to determine copula parameters. Additionally, it has been 

demonstrated that inversion of Kendall’s τ produces a consistent estimate of the copula’s dependence 

parameter under weak regularity conditions (Genest, 2018). To keep things simple, this paper solely 

discusses the particular link that exists between copula and Kendall’s τ. Seven copulas that are frequently 

used are used in this paper: the symmetric Joe-Clayton (SJC) copula, the Gumbel copula, the Rotated- 

Gumbel copula, the Student-t copula, the Clayton copula, the Rotated-Clayton copula, and the Gaussian 

copula (also known as the Normal copula) (for the form of these copulas see Appendix τ). Table 1 lists the 

correlations between these seven copulas and Kendall’s τ. 
 

Table 1. The relationship between copula parameters and Kendall’s τ 

 

 
 

As previously demonstrated, tail dependency is crucial to copulas. Equations (11) and (12) now reveal the 
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correlations between the parameters of the seven copulas and tail dependency in Table 2.  

Table 2. Upper and tail dependences 

 

Copula selection: goodness-of-fit tests 
 

The specification of the theoretical or true copula remains an important unresolved subject in the literature, 

despite the fact that copulas have become a popular and important tool to represent dependence structures in 

financial time series. Stated differently, choosing the appropriate copula to either describe the dependence 

structure within the data under consideration satisfactorily or to converge to the true dependence structure 

underlying the data is a challenge when dealing with financial data in practice. According to Durrleman et 

al. (2021), if the copula chosen is inappropriate, the outcomes could be drastically different. Therefore, it is 

crucial to select a copula that will fit the data. The so-called “empirical copula,” which is actually a function 

of ranks of observations of random variables and is seriously not a copula, was constructed by Deheuvels 

(2019), who also proposed the initial method for choosing the appropriate copula. It is believed that the 

optimal copula is the one that minimizes the distance between the empirical copula and the hypothesized 

copula. He decided to measure the distance using the discrete L norm. Utilizing a criterion such as 

Schwarz’s Bayesian information criterion (SBIC) (1978) or Akaike’s information criterion (AIC) (1973) is  

another recommendation. These criteria are described as follows: 

 

 
where n is the number of observations, M is the number of parameters being estimated, and LL is the value 

of the greatest likelihood function at the ideal parameter setting. When choosing the best copula function, 

LL can be found using log (, ; ) cuv κ, and M is the number of copula parameters if models for marginal 

distributions are taken into consideration. Similar to this, M is the number of marginal parameters when 

choosing marginal distributions, and LL can be found using log (; ) Xf x υ or log (; ) Yf y γ. These methods 

for choosing the underlying true copula are useful in determining which copula to use, but they are unable to  

shed light on the decision rule’s level of power. On the other hand, numerous scholars have suggested using 

Goodness-of-fit (GOF) assessments. These tests are recommended because they have the ability to reject or  

fail to reject a parametric copula (Berg and Bakken, 2021). Genest et al. (2022) conducted a brief review of 

GOF tests of copula models and broadly categorized the literature on the topic into three groups: procedures 
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designed to test particular dependence structures are included in the first group; statistics that can be used to  

test the GOF of any class of copulas but whose application is still restricted to specific copulas are included 

in the second group; and the last group is referred to as “Blanket tests,” which can be applied to any copula  

structure and don’t require a strategic decision. Their results indicate that an effective combination of  their 

results show that the Cramér-von Mises (CVM) statistic offers a reasonable balance between conceptual 

simplicity and power: 

 
 

This statistic, as adjusted by Fermanian (2005), quantifies the degree of similarity between the empirical  

copula Cn and the fitted copula (,;)ˆ C uv κ t t κ. To be more precise, this statistic examines the hypothesis 0 

0 HCC: ∈ that a certain parametric family C0 of copulas accurately represents the dependence structure of a 

multivariate distribution. The definition of the modified empirical copula is: 

 
 

where Ui and Vi are the pseudo-observations deduced from the ranks, viz. 

 
 

The distribution of this statistic depends on the unknown value of the copula parameter κ under the null 

hypothesis that C belongs to class Cκ since the definition of n S involves κˆ. As a result, the test's P-value 

needs to be determined using the parametric bootstrap method as outlined by Genest et al. (2009). The 

following method is used in this paper to determine which copula is appropriate for examining portfolio risk 

management in the equity market. The set of parametric family C0 of copulas, which includes the Gaussian 

copula, Student-t copula, Clayton copula, Rotated-Clayton copula, Gumbel copula, Rotated Gumbel copula, 

and Symmetrized Joe-Clayton (SJC) copula with constant and time-varying parameters, is first thought to 

comprise the commonly used copulas. Secondly, information criteria like AIC/SBIC and the log-likelihood 

(LL) value are used to determine which copulas best suit our data. Subsequently, in the third phase, the GOF 

statistic is employed to evaluate if the chosen copulas successfully or unsuccessfully refute the null 

hypothesis that the chosen copula represents the genuine copula. In order to determine whether the 

multivariate model based on copula is accurate, the VaR of the portfolio in the equity market using the 

chosen copulas is finally evaluated. Back testing techniques are then used. 

 

MODEL, DATA AND METHODOLOGICAL FRAMEWORK 
 
The study uses a log-linear model in the following manner to evaluate the association between stock 

markets and the use of copula methods in financial risk management. The ARMA model is applied to the  

conditional mean model. Volatility models, such as realized volatility models and GARCH-type models, are 

used for the conditional variance model. The Normal, Student-t, and skewed Student-t distributions (SKST) 

are used to determine the innovation distribution. The stylized features of asset return and financial market  

volatility are taken into account when estimating the marginal distribution in this research. 
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GJR-GARCH model based on daily asset returns 
 

Stylized facts of asset returns have been documented in numerous studies, as was covered in the previous  

section. In order to suit the daily asset returns of interest, this study used a GJR-GARCH model, which 

adequately accounts for the stylized asset return facts. Additionally, the Autoregressive Moving Average 

model is fitted to the conditional mean model of variables because daily returns are known to show 

considerable serial autocorrelation. 
 

 

where L is the lag operator,  
 

 is the conditional mean of variables and used to demean the asset returns, including n1 

explanatory variables? 
 

Here it is specified as a constant µ without explanatory variables. εis the innovation of the process (also 

called residual), with  . 

his the conditional variance of ε. 
 

η is an independently and identically distributed (i.i.d.) process, i.e. the standard residual with zero 

mean and unit variance. 
 

I is an indicator function that equals 1 if εt <, and 0 otherwise. 
 

That is to say, good news εt − > and bad news εt − < have different effects on conditional variance in GJR-

GARCH model. Specifically, good news has an impact of α, while bad news has an impact of α γ + . If γ ≠ 

0, the leverage effect exists, while if γ = 0, the GJR-GARCH model degenerates into standard GARCH 

model.  and 

 

 
 

f (0,1) is the density function for η, which belongs to Normal distribution, Student-t distribution and 

skewed Student-t (SKST) distribution employed. 
 

As previously mentioned, asymmetry and fat-tails are the two most common deviations from normalcy. To 

capture excess kurtosis, the Student-t distribution is thus typically chosen. But the Student-t distribution is 

unable to describe asymmetry. Further, if a random variable Z has a skewed Student t density f z (|,) υ λ, one 
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can write Z (, ) 〺 SKST υ λ with zero mean and unit variance. Density functions of standardized versions of 

two variants of the skewed Student t distribution are referred to in this way. 
 

ARFIMA model based on intraday asset returns 
 

Realized volatility is a novel measure of return volatility that has been developed as a result of the growing 

availability of high-frequency intraday data. As an unbiased and model-free ex post measure for the 

integrated latent volatility, realized volatility can be generated by summing sufficiently finely sampled high- 

frequency returns, according to the theoretical reason and definition provided by Andersen et al. (2001). It  

converges uniformly in probability, under weak regularity conditions and without jumps, to the quadratic 

variation process, also known as integrated volatility, which is the integral of instantaneous (or spot) 

volatility of an underlying continuous time process over a brief duration. This occurs as the sampling 

frequency of the intraday data approaches infinity. Realized volatility has gained popularity in extensive  

empirical finance studies due to its observability, ease of computation, and strong forecasting performance.  

Andersen et al. (2017) state that a diffusion process is followed by the logarithmic price of a financial asset,  

represented by log( ) t t p P =. 

 

 
 

where µ()t denotes the drift, σ ( )t is the instantaneous or spot volatility (or standard deviation) and W t( ) 

refers to a standard Brownian motion. Let the discretely sampled ∆ − period compounded returns be denoted 

by 

 
 

For ease of notation, the daily time interval is normalized to unity (i.e. one trading day) and the 

corresponding discretely sampled daily compounded returns are labelled by a single time subscript, i.e. 

 

Then for the one-period daily return 

 
 

Therefore, conditional on the sample path realization of µ( )t and σ ( ) 

 

 

where,   is the so-called integrated variance (volatility). Denote the i − th return of day t by 

, where is assumed to be an integer and means the number of equally-

spaced intraday returns). According to the definition by Andersen et al. (2001a, b), the realized variance over 

day t, denoted by  (for ease of notation, also denoted as , is expressed as
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By the theory of quadratic variation of a martingale, daily realized variance converges uniformly in 

probability to the daily latent integrated volatility under weak regularity conditions, when ∆ → 0 

 
 

More precisely, under suitable conditions (i.e. absence of jumps and serial correlations in intraday returns),  

the realized volatility (hereafter, the terms realized volatility or realized variance is used interchangeably) is 

consistent for integrated volatility in the sense that when ∆ → 0, ( ) RVt ∆ measures the latent integrated 

volatility perfectly. 
 

Meanwhile, the purpose is to make the results of realized volatility model comparable with those obtained  

from GARCH model. 

 

RESULTS 
 
In the mineral markets, portfolio VaR is estimated using time-varying copula-GARCH models. The findings 

indicate that the dependence structure is time-varying and that non-normality and asymmetry are relevant in 

returns on platinum and platinum. Improving portfolio VaR forecasts is impacted significantly by time- 

varying copula-GARCH models. When compared to constant copula-GARCH models the forecasting 

abilities of time-varying copula-GARCH models are at most restricted. Consistent with the normal findings 

that the Student-t copula often provides a much better fit to multivariate financial returns data, it is found 

that the constant Student-t copula-GARCH model can better fit the time series in the energy market. Second,  

both the dependency structure and the marginal distribution exhibit notable skewness. The skewed Student-t 

distribution is therefore preferable. Consequently, compared to normal or Student-t distributions, the skewed 

Student-t distribution fits some datasets better. Finally, the leverage effect is present in returns on platinum 

but not in returns on nickel. 
 

In order to analyse the VaR of a weighted portfolio that is equally distributed among platinum and nickel  

futures that are traded on the NYMEX, closing futures prices are gathered over the period of March 2010 to 

March, 2024, with daily observations. On the contracts with various maturities are actually traded. The 

target dataset in this case is one-month maturity contracts (designated Contract 1 on the NYMEX, a futures 

contract indicating the earliest delivery date). The following shows that, with T = 2999 log-returns, returns 

are traditionally represented by variations in price value logarithms. The final 505 data (from March 20210 

to March 2024) are set aside for an out-of-sample assessment of the models. 
 

Descriptive statistics of the two return series are presented. 
 

Table 3. Descriptive statistics 
 

 Full Sample Estimation Sample Forecasting Sample 

 Platinum Nickel Platinum Nickel Platinum Nickel 

Mean 0.000505 0.000317 0.000684 0.000500 -0.000377 -0.000584 

Median 0.001269 0.000000 0.001420 0.000000 0.000272 0.000000 
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Min -0.165445 -0.197997 -0.165445 -0.197997 -0.130654 -0.097832 

Max 0.164097 0.324077 0.142309 0.324077 0.164097 0.268737 

Std. Dev. 0.026397 0.038411 0.023749 0.038193 0.036797 0.039497 

5% VaR 0.040970 0.058684 0.037274 0.058373 0.059956 0.059962 

1% VaR 0.076821 0.094051 0.057966 0.096303 0.103435 0.088520 

Skewness -0.123276 0.593258 -0.319427 0.479783 0.196153 1.105355 

Kurtosis 6.817222 8.192984 6.170075 8.199213 5.476272 8.205871 

Jarque-Bera 1828.387 3545.681 1086.710 2904.739 132.2643 673.0879 

P-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

ADF -41.2367 -59.0726 -49.9049 -52.9548 -23.7606 -26.2611 

P-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

PP -55.9781 -59.1067 -50.1489 -53.0229 -23.9058 -26.1164 

P-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Correlation 0.283192 0.287260 0.287763 
 

Initially, it can be observed that, over three periods, the average returns of contracts for platinum are 

marginally higher than those of contracts for nickel, despite the fact that volatilities are the opposite. This is  

in contrast to the customary phenomenon that assets with high returns are accompanied by high risk, and it 

suggests, in part, that the returns offered by platinum futures are higher than those offered by nickel futures.  

This paper focuses on the relationship between these two assets. In the meantime, average returns in the full 

sample and the estimation sample are positive, whereas they are negative in the forecasting sample. 

Allowing for structural breakdowns in the returns-generating process may improve portfolio decisions, as 

suggested by changes in the comparative average returns of in-sample and out-of-sample periods. Average 

returns are not permitted to have any structural breaks due to computational limitations. Platinum has a  

negative skewness in the complete sample and estimate sample, but a positive skewness in the forecasting 

sample. There are three times in which platinum futures show positive skewness. Excessive kurtosis is  

present in both time series. The unconditional normalcy null hypothesis is severely rejected by the Jarque- 

Bera statistic. A further indication of a positive degree of linear dependency is the unconditional correlation 

coefficient. The negative of the fifth and first empirical percentiles of returns, or 1 ˆ (;0.05 or 0.01) (0.05 or  

0.01) VaR X Fn − ≡ −, is the definition of the empirical 5% and 1% VaRs, where ˆ Fn is the empirical  

distribution of returns based on n observations. The unit root tests PP (Philips-Perron) and ADF 

(Augmented Dickey-Fuller) are used to evaluate the non-stationarity of time series hypotheses. Every series 

is stationary if the P-values for all-time series are less than 0.05. As previously said, there is typically more 

correlation between financial data during market downturns than during market upturns. Using the 

“exceedance correlation” measure developed by Longin and Solnik (2011) and Hong et al. (2007), the  

existence of an asymmetric connection between platinum and nickel futures is examined. It is defined as ( ) 

e ρ q, where X and Y are random variables. 

 
 

where the q-th quantiles of X and Y are, respectively, ( ) Q q x and ( ) Q q y. After eliminating all  

asymmetries in marginal distributions, if X and Y are standardized returns, one can use the exceedance 

correlation to assess the level of asymmetry in their unconditional copula. The exceedance correlation is 

then described as follows: 
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In addition, the null hypothesis of symmetric correlation is tested using a few regression models. Table 4 

displays the results. 
 

Table 4. Empirical exceedance correlation 

 

 
 

The null hypothesis of symmetric correlation is evidently rejected by both F-tests based on raw log-returns 

(Table 4). Furthermore, at exceedance levels c = 0, 0.5, 1.0, and 1.5, empirical exceedance correlations 

based on transformed standardized residuals for two indices are not comparable. These findings verify that,  

even when all marginal distribution asymmetry is eliminated, there is still asymmetry in the reliance. 
 

Marginal distribution modelling 
 

To obtain greater variances and parameters, log-returns are multiplied by 100 in the following. The 

univariate time series of both indices are fitted with AR-GARCH-type models in order to capture the 

features commonly found in financial markets, such as auto regression in mean values, volatility clustering 

in variances, and leverage effects from exogenous information. Every series is stationary at the 0.05 

significance level, as Table 3 demonstrates. This suggests that models of the AR-GARCH type should be 

able to fit these data. Both in-sample series exhibit autocorrelation and partial autocorrelation, according to 

the correlogram analysis. 
 

With a corresponding p-value of 0.075, the platinum futures Ljung-Box test on the 34th lag has a Q-statistic 

of about 47. This suggests that autocorrelation exists and that the null hypothesis is rejected at the 0.1 level 

of significance. Platinum futures have a Q-statistic of around 8.7 on the first lag and a matching p-value of 

0.003. This suggests that at the 0.05 level of significance, the autocorrelation coefficient is non-zero. The 

first order autoregressive model (AR (1) is applied to the conditional mean of log-returns for each series in 

order to fit the autocorrelation of both time series. The model test indicates that the AR (1) model is 

adequate to fit the mean of each series. I leave it out for the sake of conciseness. The author can provide it  

upon request. The Lagrange multiplier (LM) test of Engle (1982) is used to determine if the residuals of 
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both in-sample series exhibit heteroscedasticity after fitting the mean model. The findings presented in 

Table 5 demonstrate that both in-sample series have higher lag ARCH effects. This suggests that the 

heteroscedasticity of residuals of mean equations of the two in-sample series can be captured by GARCH- 

type models. 
 

Table 5. ARCH test of in-sample 
 

 Lag 1 Lag 5 Lag 10 

LM stat. of Platinum 19.188285 (0.0000) 64.120898 (0.0000) 64.919302 (0.0000) 

LM stat. of Natural gas 17.499281 (0.0000) 94.762974 (0.0000) 112.033832 (0.0000) 

 

Values in parentheses are p-values. That all of them are less than 0.05 indicates that they all reject the null  

hypothesis of homoscedasticity. 
 

Models employed for marginal distributions are the AR(1)-GJR-GARCH(1, 51 1) model and the AR(1)- 

GARCH(1, 1) model, assuming three different density functions f (0,1): Normal, Student T and SKST, 

given by Equations (31), (32) and (33), respectively. The specific form of AR(1)-GJR-GARCH(1, 1) is 

expressed by 

 

 
 

Initially, it is required to ascertain if AR (1)-GJR-GARCH (1, 1) or AR (1)-GARCH (1, 1) is more suitable 

for both univariate time series under the same density functions of innovations. Table 6 presents the results. 

The KS tests, as indicated in Table 6, reject the normality null hypothesis but do not reject the Student-t and 

SKST distribution of either return null hypothesis. This suggests that there is also non-normality in the 

filtered standardized residuals. According to the LR testing, in the instance of the identical innovation in 

Platinum, the null hypothesis that there is no importance of restriction is rejected. This suggests that, 

compared to GARCH models with the same innovation, GJR-GARCH models are better. For this reason, 

platinum returns are fitted using GJR-GARCH models. The results are different for nickel, where it is not 

possible to reject the null hypothesis that there is no significant constraint in the case of the same invention. 

GARCH models are used to fit nickel returns because the leverage impact is negligible. Additionally, the 

log-likelihood values AIC and SBIC findings demonstrate that, when it comes to platinum, the GJR- 

GARCH model with SKST innovation consistently outperforms other models, but the GARCH model with 

SKST innovation performs best when it comes to nickel. As a result, the AR(1)-GJR-GARCH(1, 1) with 

SKST innovation is chosen to suit the nickel futures marginal distribution, while the AR(1)-GARCH(1,1) 

with SKST innovation is chosen to match the platinum futures marginal distribution. 
 

Table 6. Comparison between AR(1)-GARCH(1,1) and GJR-GARCH(1,1) 
 

Models KS Test LL AIC SBIC LR Test 

Platinum:      

GARCH-Normal 0.031562 -5629.35 4.520316 4.531811  

 (0.013596)     
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GJR-Normal 0.027720 -5623.64 4.516355 4.530365 11.43 

 (0.042556)    (0.000724) 

GARCH-T 0.020632 -5578.61 4.480231 4.494242  

 (0.236583)     

GJR-T 0.020652 -5574.06 4.477387 4.493733 9.09 

 (0.235637)    (0.002570) 

GARCH-SKST 0.014480 -5574.55 4.477780 4.494125  

 (0.669716)     

GJR-SKST 0.014248 -5569.15 4.474249 4.492929 10.80 

 (0.689229)    (0.001013) 

Nickel:      

GARCH-Normal 0.041840 -6727.91 5.401449 5.413124 

 (0.000310)    

GJR-Normal 0.042296 -6727.53 5.401952 5.415962 0.7457 

 (0.000256)   (0.387835) 

GARCH-T 0.014828 -6641.98 5.333319 5.347329 

 (0.640331)    

GJR-T 0.015102 -6641.93 5.334083 5.350428 0.0952 

 (0.617289)   (0.757720) 

GARCH-SKST 0.011790 -6638.48 5.331313 5.347659 

 (0.877079)    

GJR-SKST 0.011928 6638.42 5.332064 5.350745 0.1273 

 (0.868215)    (0.721239) 
 

Notes: Values in parentheses are p-values. KS (Kolmogorov-Smirnov) tests the null hypothesis that 

standardized residuals of GARCH-type models are from a specified distribution. LR (Likelihood Ratio) test 

compares specifications of nested models by assessing the significance of restrictions to an extended model  

with unrestricted parameters. LL is the log-likelihood value of the specified model. 
 

The p-values indicate that, with the exception of the GJR-GARCH model with skewed-t innovations for 

platinum futures, these models do not reject the null hypothesis of ARCH effects at lags 1, 5, and 10 at the  

5% significance level. The null hypothesis of ARCH effects at lag 5 at 5% significance level is rejected by 

the GJR-GARCH model with skewed-t innovations for platinum futures, however the null hypothesis of 

ARCH effects at lag 5 at 1% significance level and at lag 10 at 5% significance level is not. The model is 

also sufficient since it allows for degrees of freedom and skewness, both of which are significant at the 5% 

significance level. In nickel, the leverage effect is not statistically significant, but it is in Platinum. This 

suggests that while good or bad news will asymptotically symmetrically affect nickel prices, negative news 

will likely result in higher volatility in platinum prices. In other words, the marginal distributions of the two- 

time series are well-fitted to all of the models. 
 

Copulas modelling 
 

Copula parameters can be determined using Equation in the following manner after the parameters of 

marginal distributions {,} F F Xt Yt have been estimated using the Equations discussed in the paper. Initial  

steps involve fitting the standardized residuals of the best pair of marginal distributions found in Subsection 

4.4.2 using the seven constant copulas (Gaussian copula, Student-t copula, Clayton copula, Rotated-Clayton 

http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XI Issue V May 2024 

Page 687 

www.rsisinternational.org 

 

 

 
 

 

 

copula, Gumbel copula, Rotated Gumbel copula, and Symmetrized Joe-Clayton (SJC) copula). Table 8 

displays the results. 
 

Model Parameter LL AIC SBIC Upper Tail Lower Tail 

Normal 0.330215 143.8992 -0.114640 -0.112305 0 0 

Student-t       

Correlation 0.334497 145.6411 -0.115236 -0.110565 0.000521 0.000521 

D.o.F 29.2376      

Clayton 0.379802 102.5989 -0.081507 -0.079172 0 0.161055 

Rotated Clayton 0.387761 107.1606 -0.085167 -0.082832 0.167226 0 

Gumbel 1.239475 122.6218 -0.097571 -0.095236 0.250689 0 

Rotated Gumbel 1.238084 121.5453 -0.096707 -0.094372 0 0.249589 

SJC–Upper Tail 0.146384 131.0582 -0.102526 -0.098866 0.146384 0.130251 

SJC–Lower Tail 0.130251      

 

Table 8. Constant copula specification and estimation 
 

Notes: The table shows estimators of constant parameters of seven copulas, based on Skew-t marginal for 

platinum and nickel futures. LL is the copula log-likelihood at the optimum. Also presented are values of the 

Akaike information criteria (AIC) and the Schwarz’s Bayesian information criteria (SBIC) at the optima. 
 

Remember that at exceedance levels c = 0, 0.5, 1.0, and 1.5, the majority of empirical lower exceedance  

correlations are marginally bigger than the empirical upper exceedance correlations, as shown in Table 4. 

The SJC copula in Table 8 reveals a somewhat different story, though, with the coefficient of upper tail  

dependency being marginally greater than the coefficient of lower tail dependence. This contradicts widely  

held beliefs in the equity markets, which hold that stock returns are more closely associated with market 

declines than with market advances. The distinctive features of the energy market may decide this. For  

example, heating and the production of electricity are two uses for nickel and Platinum. Bitumen from tar 

sands is also extracted using nickel (Grégoire et al., 2018). Table 8 reveals an intriguing finding: copulas 

exhibiting a greater upper tail dependence or symmetric tail dependence consistently outperform those 

exhibiting a greater lower tail dependence. In other words, the coefficient of upper tail dependence is 

marginally greater than the coefficient of lower tail dependence. 
 

This contradicts widely held beliefs in the equity markets, which hold that stock returns are more closely 

associated with market declines than with market advances. The distinctive features of the energy market 

may decide this. For example, heating and the production of electricity are two uses for nickel and Platinum.  

Bitumen from tar sands is also extracted using nickel (Grégoire et al., 2008). Table 8 reveals an interesting 

finding: copulas with a bigger upper tail reliance Table 8 presents an interesting finding: based on the 

maximal log-likelihood values, AIC and SBIC, copulas with larger upper tail reliance or symmetric tail 

dependency are always better than those with bigger lower tail dependence. According to Breymann et al.  

(2003), the Student-t copula is the first copula and is consistent with the normal observations that it 

frequently offers a significantly better fit of multivariate financial return data. 
 

Gumbel copulas and SJC copulas are ranked higher than the Normal copula. The worst copulas are the 

rotating Gumbel and Clayton copulas, which are placed bottom. The worst copulas are the rotating Gumbel 

and Clayton copulas, which are placed bottom. These findings lead to the selection of the four best copulas 

Student-t, Normal, SJC, and Gumbel copulas to forecast the value at risk (VaR) of the portfolio made up of  

futures contracts for nickel and Platinum. Patton (2016) discovered that asset dependencies typically change 

over time. The four best copulas are extended to the time-varying situations by using his evolution equation 
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to measure the time variation of copula parameters. Four time-varying copulas are fitted to standardized 

residuals of AR (1)-GJR-GARCH(1, 1) for nickel futures and AR(1)-GARCH(1, 1) for platinum futures, 

both with skewed Student-t innovations. The evolution equations of the four copula parameters are referred 

to in Table 9 lists the outcomes. 
 

Table 9. Time-varying copula specification and estimation 

 

 
 

As per the maximal log-likelihood values, AIC and SBIC, the time-varying Student-t copula is the optimal 

copula. No. 2 is the time-varying Normal copula. According to LL and AIC, the time-varying SJC copula is 

the third best copula; however, SBIC ranks it as the fourth best. Time-varying copulas consistently 

outperform their comparable constant copulas, as seen by a comparison of Tables 8 and 9. This suggests that  

copula parameter dynamics are real and have a significant impact on how well copulas suit the two energy  

commodities. The assumed time path of conditional dependence between these two assets is generated in 

order to easily visualize the dynamics of copula parameters. 
 

Table 10. The Goodness-of-fit tests for different copula models 
 

Constant Copulas Normal Student-t Gumbel SJC 

CVM stat. 0.053620 0.056076 0.143249 0.138600 

P-value 0.014310 0.038246 0.000000 0.000000 

Time-varying Copulas   Normal Student-t Gumbel SJC 

CVM stat. 0.167089 0.173276 0.349284 0.352775 

P-value 0.002567 0.012931 0.000000 0.000573 

 

Three models constant Student-t, constant Normal, and time-varying Student-t copulas pass the goodness-of- 

fit tests at the 0.01 significance level, according to Table 10’s one-sided P-values, which indicate that all of 

these copula models are rejected at the 0.05 significance level. To summarize, the dependence between 

nickel and platinum can typically be adequately described by Student-t, constant, and time-varying copula. 

These results are in line with the outcomes of maximal log-likelihood values, AIC, and SBIC. Due to the 
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strong similarity of CVM data, there are still not many distinctions between these models. As a result, in the  

part that follows, the performance of each of these copulas is compared in order to forecast the VaR of the 

relevant portfolio. 
 

Every statistical test is passed by the remaining copula models. With these statistical tests, it’s challenging 

to It is hard to say which copula is superior to other copula models using these statistical tests. Therefore, 

the loss functions given in Table 12 are acceptable. Gumbel copula models are first excluded using the  

general method for selecting the superior VaR model described. But the results are not strong enough to use 

the loss functions to determine which copula model is the best. 
 

It is concluded that the constant Student-t copula should be a good compromise for fitting the dependence 

structure between nickel and platinum futures well, taking into account the forecasting performances of  

copulas and their GoF tests. Furthermore, time-varying Student-t copula parameters are possible, although 

few predicting performances are improved by parameter dynamics. 
 

Table 11. Back testing of VaR forecasts: statistical test 
 

95% 99% 

Copulas Z/T LRUC LRCC DQ Z/T LRUC LRCC DQ 

Constant: 

Normal 0.063366 

 
1.757644 

 
2.355868 

 
0.023166 

 
0.005941 

 
0.983739 1.031595 0.070219 

P-value  0.184919 0.307914 0.999933  0.321278 0.597024 0.999398 

Student-t 0.065347 2.292848 2.442138 0.024789 0.003960 2.413605 2.437486 0.014348 

P-value  0.129971 0.294915 0.999924  0.120285 0.295602 0.999974 

Gumbel 0.073267 5.064949 5.250837 0.026432 0.007921 0.237453 0.317374 0.058878 

P-value  0.024414 0.072409 0.999913  0.626052 0.853263 0.999575 

SJC 0.065347 2.292848 2.442138 0.024945 0.003960 2.413605 2.437486 0.004367 

P-value 0.129971 0.294915 0.999923  0.120285 0.295602 0.999998 

Time-varying: 
 

Normal 0.063366 

 
1.757644 

 
2.355868 

 
0.020232 

 
0.005941 

 
0.983739 

 
1.031595 

 
0.070492 

P-value 0.184919 0.307914 0.999949  0.321278 0.597024 0.999393 

Student-t 0.067327 2.892905 3.263401 0.022958 0.007921 0.237454 0.317374 0.059680 

P-value 0.088970 0.195597 0.999935  0.626052 0.853263 0.999564 

Gumbel 0.069307 3.556040 3.844677 0.022790 0.007921 0.237453 0.317374 0.060632 

P-value 0.059329 0.146265 0.999936  0.626052 0.853263 0.999550 

SJC 0.067327 2.892905 3.263401 0.022223 0.005941 0.983739 1.031595 0.069993 

P-value 0.088970 0.195597 0.999939  0.321278 0.597024 0.999402 

 

Notes: The table shows results of three statistical tests, based on skewed-t marginal for platinum futures and 

nickel futures, at 95% and 99% confidence level. Z/T denotes the ratio of VaR exceedances. DQ tests are  

implemented with p=4. Also, I try other values of p, where the results are similar to those with p=4. 
 

The interrelationship between two stock index series (the VSE and the ZSE) in the financial market of 

Zimbabwe, using two distinct volatility models modelling univariate marginal asset returns. Two models are 
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used: the ARFIMA model employs high-frequency intraday returns, while the GJR-GARCH model uses 

daily returns. Next, while calculating the one-step forward VaR measure, the performance of a copula-GJR- 

GARCH model is compared with a copula-ARFIMA model. Based on intraday results, the ARFIMA model 
 

Table 13. Descriptive statistics: daily log-returns 
 

Stock VFEC  SZSEC  

Mean 0.012057  0.038572  

Std. Dev. 1.783718  1.934354  

Median 0.063989  0.074554  

Skewness -0.095599 (0.069700) -0.141523 (0.007248) 

Kurtosis 6.564614 (0.000000) 5.982259 (0.000000) 

Jarque-Bera 1145.280 (0.000000) 806.5369 (0.000000) 

ADF -45.92371 (0.0001) -44.31375 (0.0001) 

PP -45.94725 (0.0001) -44.38312 (0.0001) 

Q(5) 12.0799 (0.033736) 16.9768 (0.004544) 

Q(22) 48.9851 (0.000803) 44.1873 (0.003360) 

Q(5)2 145.878 (0.000000) 159.756 (0.000000) 

Q(22)2 435.729 (0.000000) 551.638 (0.000000) 

 

Correlation (Pearson) 0.937242 (0.000000) 
 

Evidently, both series’ Jarque-Bera (JB) statistics strongly reject the premise of normalcy, which is in line 

with findings that are frequently seen in the financial literature. The kurtosis’s, depict tails that are fatter 

than the normal distribution, while the skewness shows that both series are slightly skewed to the left. Both 

return series are stationary, according to the unit root tests ADF and PP, which reject the null hypothesis of 

non-stationarity. Next, the Ljung-Box test is applied to serial correlations up to fifth order, or approximately 

one week, and twenty second order, or approximately one month. The findings suggest that the serial  

correlation feature in log-returns, such as the ARMA model, can be fitted by the autoregressive model; for 

the serial correlation feature in squared log-returns, such as the GARCH-type model based on daily returns 

or the RV model based on high-frequency intraday returns, the heteroskedastic model can be used. 
 

Table 14. Descriptive statistics: realized volatilities 
 

Stock VFEC log(VFEC) SZSEC log(SZSEC) 

Mean 2.220608 0.219518 2.693876 0.408242 

Std. Dev. 2.992548 1.075595 3.627339 1.078534 

Median 1.210123 0.190722 1.445145 0.368210 

Skewness 4.307932 (0.0000) 0.099540 (0.0589) 4.502953 (0.0000) 0.135682 (0.0000) 

Kurtosis 34.15455 (0.0000) 2.659308 (0.0012) 40.10197 (0.0000) 2.531611 (0.0000) 

Jarque-Bera 93904.9 (0.0000) 13.994 (0.0009) 131007.5 (0.0000) 26.3358 (0.0000) 

ADF -11.82137 (0.0000) -5.948625 (0.0000) -11.23311 (0.0000) -6.9242 (0.0000) 

PP -32.21745 (0.0000) -20.89633 (0.0000) -32.74809 (0.0000) -20.438 (0.0000) 

d(GPH) 0.383677 (0.0000) 0.52015 (0.0000) 0.39109 (0.0000)   0.508714 (0.0000) 

 

The table summarizes the characteristics of realized volatilities for both stock indices. Column 2 and 4 

report summary statistics of RVs, while Column 3 and 5 report summary statistics of logarithmic RVs. P- 
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values are reported in parentheses. The last row shows the long-memory estimate of d obtained from the 

GPH method. 
 

The realized volatility distributions for both return series in Table 14 strongly defy normalcy, with very high 

positive values of sample skewness and kurtosis. Interestingly, in the logarithmic realized volatility 

scenario, these numbers are far smaller. This suggests that in the log-transformation scenario, the 

assumption of near normalcy is clearly far better than the assumption of raw realized volatility. These 

findings are in line with previous empirical research on RV measures (Andersen et al., 2011 for stock 

returns and Andersen et al., 2013 for exchange rate returns, respectively), which served as the impetus for 

the development of the Gaussian ARFIMA model. 
 

Marginal distribution modelling 
 

ARMA models are used to fit the features of daily return series based on the findings presented in the 

previous section. The AR(4) model fits the conditional mean model better, according to the AIC and SBIC 

information criterion (not stated here, but accessible from the author upon request). The following is how 

the particular AR(4) model is stated. 

 

 
 

Table 15. GJR-GARCH (1, 1) model with SKST distribution 
 

Stock VFEC SZSEC 

m -0.030542 (0.4166) -0.015480 (0.7016) 

y 1 0.027173 (0.1856) 0.038630 (0.0748) 

y 2 -0.007018 (0.7569) -0.002242 (0.9224) 

y 3 0.064705 (0.0024) 0.053901 (0.0100) 

y 4 0.047846 (0.0224) 0.043672 (0.0464) 

w0 0.065099 (0.0014) 0.064565 (0.0035) 

a1 0.054290 (0.0003) 0.059789 (0.0002) 

g 0.086826 (0.0035) 0.065614 (0.0066) 

b1 0.889452 (0.0000) 0.897029 (0.0000) 

u 5.112093 (0.0000) 5.487513 (0.0000) 

log (l ) -0.056609 (0.0279) -0.037376 (0.1875) 

ARCH LM(10) 0.34049 (0.9701) 0.42525 (0.9350) 

AIC 3.720595 3.897588  

SC 3.749543 3.926536  

 

The table reports parameter coefficients in AR(4)-GJR-GARCH(1, 1) with SKST innovations. P-values are 

reported in parentheses. ARCH LM(10) is the Engle test of order 10 to test the null hypothesis of ARCH 

effect in residuals. 
 

The results show that the daily return series is best fitted by the AR (4)-GJR-GARCH(1, 1) model. The 

effect of lags 1 and 2 returns on current returns is modest, whereas the effect of lags 3 and 4 returns on 

current returns is substantial. This indicates that the current returns are consistently impacted by the returns  

from the previous three and fourth days. 

They are used to estimate a 1-day-ahead VaR together with the copula approach, which can flexibly capture 
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the dependence between VFEC and SZSEC, after estimating two competing models. The Normal copula,  

Student-t copula, and the symmetrized Joe-Clayton (SJC) copula are the three copulas with constant and 

time-varying characteristics that are primarily considered in this section. Copula parameters using the 

residuals filtered by the two competing models are calculated and presented. 
 

Table 18. Constant copula specification and estimation 
 

Model Parameter LL AIC SBIC Upper Tail Lower Tail 

Panel Ⅰ: Residuals from AR(4)-GJR-GARCH(1, 1) model 

Normal 0.928130 -2127.751 4257.502 4263.177 0 0 

Student-t: Corr 0.931303 -2211.298 4426.596 4437.945 0.678348 0.678348 

D.o.F 4.394339      

SJC-Upper Tail 0.778441 -2120.334 4244.668 4256.017 0.778441 0.820589 

SJC-Lower Tail 0.820589      

Panel Ⅱ: Residuals from AR(4)-RV model 

Normal 0.931626 -2179.082 4360.163 4365.837 0 0 

Student-t: Corr 0.932989 -2232.591 4469.183 4480.531 0.651944 0.651944 

D.o.F 5.447995      

SJC-Upper Tail 0.771758 -2155.007 4314.014 4325.363 0.771758 0.823132 

SJC-Lower Tail 0.823132      

 

The table reports estimators of constant parameters of three copulas, based on SKST residuals filtered by 

two competing models: AR(4)-GJR-GARCH(1, 1) and AR(4)-RV. LL is the copula log-likelihood at the 

optimum. Also presented are values of the Akaike information criteria (AIC) and the Schwarz’s Bayesian  

information criteria (SBIC) at the optima. 
 

After the assets’ dependence dynamics are demonstrated (refer to Patton, 2006), copulas with time-varying 

parameters are also investigated. The ARMA (1, 10) procedure used above to model the parameter 

dynamics is applied, motivated by Patton (2006). The time-varying copulas are fitted with the same 

residuals as constant copulas. 
 

Table 19. Time-varying copula specification and estimation 
 

Model w b a AIC SBIC 

Panel Ⅰ: Residuals from AR(4)-GJR-GARCH(1, 1) model 

Normal 5.087788 -0.223511 -1.692356 4267.144 4284.167 

Student-t: Corr -10.22404 0.003144 14.57052 4432.210 4449.233 

SJC-Upper Tail 1.378826 -4.799149 0.265473 4300.362 4.334410 

SJC-Lower Tail 1.507927 -0.118406 -0.080373   

Panel Ⅱ: Residuals from AR(4)-RV model 

Normal -6.301268 0.133862 10.24072 4380.962 4397.984 

Student-t: Corr -6.885908 0.074818 10.89538 4490.622 4507.645 

SJC-Upper Tail 1.652513 0.096658 -0.431197 4332.385 4366.431 

SJC-Lower Tail 1.538997 -1.144566 0.044217   

 

The table reports estimators of time-varying parameters of three copulas, based on SKST residuals, identical 
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to constant copulas. 
 

Table 19 makes it clear that there are significant variations in the reliance between two assets over time. 

Once more, according to the AIC/SBIC information criteria, the SJC copula matches the data of interest 

better than the others. Regarding the corresponding information requirements, the time-varying copulas do 

not, however, enhance the goodness-of-fit. This indicates that, even if dynamics have a big role in 

dependence parameters the basic copula may be a superior option to represent the dependence between 

various assets. VaRs one day ahead of time with a 5% degree of confidence are calculated based on the joint  

distribution. Table 20’s first panel shows VaRs with a constant copula parameter. VaRs with a 1-day ahead 

of time and the AR (4)-RV marginal are clearly significantly less than those with the AR (4)-GJR-GARCH 

(1, 1) marginal. This suggests that because realized volatility employs more information, it is better suited to 

represent the dynamics of variances in asset returns. The model in the second panel with the copula’s time- 

varying properties likewise confirms this property. 

 

FINDINGS AND DISCUSSIONS 
 

Over the past few decades, the field of financial risk management has quickly developed and is now a key 

component of both finance theory and practice. For a lot of people and organizations, it is now an essential  

function. The financial markets are more erratic than ever due to the growing trading activity and products.  

This puts into question the conventional approaches to financial risk measurement, which rely on the 

presumption of normalcy. In order to address the challenges posed by conventional approaches for capturing  

stylized facts in financial markets, this paper investigates the copula with different volatility models fitted to 

marginal distributions in order to estimate Value at Risk (VaR), a widely used metric in financial risk  

management. After separating dependence from marginal distributions, the copula may flexibly create 

numerous suitable multivariate distributions that are not affected by the curse of dimensionality. Sklar’s 

theorem, which supports the idea that any two univariate distributions, of any kind (not necessarily from the 

same family), may be linked together via any copula to define a valid bivariate distribution as long as the 

information set used remains unchanged, has been briefly reviewed in this paper in relation to copula theory 

and application. To examine how returns on various assets are interdependent, seven frequently used 

copulas are used. This paper uses the conventional GARCH model for daily returns and the emerging 

realized volatility model for the high-frequency intraday returns, taking into account the stylized facts in 

univariate assets, such as auto regression in means, volatility clustering, asymmetry, and long memory in 

volatility that have been widely observed and documented in a large number of works. Furthermore, the 

volatility model is fitted to the filtered innovations by using two forms of skewed Student-t distributions 

(SKST) (Hansen, 1994; and Fernández and Steel, 1998) to capture the skewness and kurtosis of asset 

returns. Monte Carlo simulation is used to forecast 1-day-ahead VaR based on the constructed model. In 

accordance with the VaR forecasting process, two financial risk management instances are examined. 

 

Initially, copula with various GARCH-type models incorporating three types of innovation density functions 

(Normal, Student-t, and SKST distributions) are combined. The 1-day-ahead VaR of an evenly weighted 

portfolio consisting of nickel and platinum futures is then calculated. Second, the performance of a copula - 

GJR model based on daily return series is compared with the performance of a copula-ARFIMA model 

based on intraday return series to estimate the 1-day-ahead VaR of an equally weighted portfolio consisting 

of two assets, namely, VFEC and SZSEC, in the Zimbabwean stock market. The results are shown in the 

following manner. Firstly, in the energy market, it is discovered that a good compromise for fitting the 

dependence structure between nickel and platinum futures is the constant Student-t copula. 
 

Time-varying Student-t copula parameters are possible, although few forecasting performances are 

improved by parameter dynamics. In the energy market, asymmetry in the dependence structure is present, 

but it has minimal bearing on portfolio VaR forecasting. As a result, asymmetric copulas perform poorly 

http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XI Issue V May 2024 

Page 694 

www.rsisinternational.org 

 

 

 
 

 

 

when it comes to forecasting value at risk (VaR) and fitting the dependence structure between platinum and 

nickel futures. The SJC copula performs better in VaR predicting, as would be predicted. This could be as a  

result of the symmetric and asymmetric dependencies it represents. The SJC copula’s fit to the dependence  

structure between nickel and platinum futures, however is less satisfactory than that of the Student-t and 

Normal copulas, according to the GOF test. The significance of defining accurate marginal is confirmed by 

empirical findings. 
 

The significance of defining accurate marginal is confirmed by empirical findings. Specifically, the 

univariate returns of both time series were better fitted by GARCH (1, 1)-type models with SKST 

innovation. The skewness parameter of the SKST distribution indicates a substantial degree of asymmetry in 

the univariate returns. The significant kurtosis in the univariate returns is also indicated by the SKST 

distribution’s degree of freedom parameter. These suggest that the univariate returns of nickel and platinum 

futures cannot be fitted by conventional models that rely on the assumption of normalcy. As a result, it is  

decided not to use GARCH (1, 1) with Normal innovation. The log-likelihood values, AIC and SBIC, show 

that, while the GARCH (1, 1) with Student-t innovation is not rejected, it performs worse appropriately to 

univariate returns than the GARCH (1, 1) with SKST innovation. 
 

To be more precise, the AR (1)-GJR-GARCH (1, 1) with SKST innovation is chosen to fit the nickel futures 

marginal distribution, and the AR (1)-GARCH (1, 1) with SKST innovation is chosen to fit the platinum 

futures marginal distribution due to the substantial leverage effect present in platinum futures. Second, the 

most significant discoveries in the Zimbabwean stock market are that the AR (4)-RV model can generate 

sufficient 1-day-ahead VaR forecasts and typically fits the data of interest better. The symmetric Joe- 

Clayton (SJC) copula with an asymmetric tail reliance, the Normal (or Gaussian) copula with no tail 

dependence, and the Student-t copula with symmetric dependence are the three types of commonly used 

copulas that are depicted. It is clear that in financial terms, the lower and upper tail dependences are 

typically not the same. 
 

Market downturns are more connected than market upturns when the lower tail dependence is larger than 

the upper tail dependence. Our data supports this: for the AR-GJR-GARCH model, it is 0.820589 L τ = and 

0.778441 U τ =; for the AR-RV model, it is 0.823132 L τ = and 0.771758 U τ =. Furthermore, the impact of 

jumps on the realization of volatility is considered, as has been well-documented in the literature (Andersen 

et al, 2018). In the event of jumps, the consistent estimator of integrated volatility is employed rather than 

biased realized volatility. Subsequently, the realized volatility is fitted using a long-memory model, 

ARFIMA (1, d, 0), which represents the dynamics of volatility quite well. 
 

Furthermore, innovations filtered by the volatility models are fitted using the skewed Student-t distribution 

suggested by Steel (1998), which effectively accounts for the skewness and kurtosis of univariate 

distributions. Lastly, the well-known leverage effect is also discussed, showing that the volatility that 

follows is affected differently by positive and negative returns. The findings indicate that in the GJR- 

GARCH and ARFIMA models, negative returns have a greater impact than positive returns. 
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