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ABSTRACT 

Star coloring of an undirected graph 𝐺 is a proper vertex coloring such that any path of length 3 in 𝐺 is not 

bicolored and the notion of star chromatic number implies the minimum number of colors needed to star 

coloring of 𝐺. In this paper, we explore the concept of star coloring, star chromatic number, and a powerful 

probabilistic lemma known as the Lovasz Local Lemma and establish an improved upper bound for the star 

chromatic number, which is ⌈6𝑑
3

2⌉ where 𝑑 is the maximum degree of the graph. 

Keywords— Star coloring, Star chromatic number, Proper vertex coloring, Lovasz Local Lemma 

INTRODUCTION 

Graph theory is a branch of mathematics that explores the relationships and connections between objects. 

These objects, represented as vertices or nodes, are connected by edges. In graph theory, graph coloring is an 

assignment of labels traditionally called ”colors” to elements of a graph subject to certain constraints. In its 

simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same 

color, this is called vertex coloring. Similarly, edge coloring and face coloring are defined. 

 Star coloring is a concept that extends the notion of vertex coloring by adding an additional constraint. In 

1973 the concept of star coloring and the notion of star chromatic number 𝑋𝑆(𝐺) were introduced by Branko 

Grunbaum [5]. After that star coloring and star chromatic number of graphs have been studied extensively by 

several authors. Some of them have introduced values for the star chromatic number of some types of graphs, 

such as 

1. Cycle Graphs (𝑛 ≥  3)  = {
4 𝑖𝑓 𝑛 = 5

3  𝑜/𝑤
 [8] 

2. Complete Graphs (𝑛 ≥  3)  =  𝑛 [8] 

3. Path Graphs (𝑛 ≥  4)  =  3 [8] 

As well as, over the years numerous studies have been conducted introducing upper bounds for the star 

chromatic number. 

In 2004, Albertson, Chappell, Kierstead, Kundgen, and Ramamurth [1] introduced the upper bound which 

is 𝑑2 − 𝑑 + 2. In 2003, Guillaume Fertin, Andre Raspaud, and Bruce Reed [3] proved that for any graph of 

order 𝑛 and maximum degree 𝑑, 𝑋𝑆(𝐺) ≤ ⌈ 20𝑑
3

2⌉. In 2010 Hong Yong Fu, De Zheng Xie [10] decreased 

above upper bound furthermore and introduced a new upper bound, which is 𝑋𝑆(𝐺) ≤ ⌈ 7𝑑
3

2⌉. Both of these 

two proofs rely heavily on a probabilistic lemma called Lovasz Local Lemma. In this paper, we extend those 

above results with the help of Lovasz Local Lemma and give a better upper bound for 𝑋𝑆(𝐺), 𝑖. 𝑒, we show 

that if 𝐺 is a graph with maximum degree 𝑑, then 𝑋𝑆(𝐺) ≤ ⌈ 6𝑑
3

2⌉. 
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In the following all the graphs we have taken to be is undirected. 

Definition 1.1 (Path) Let 𝐺 =  (𝑉, 𝐸) be a graph. A walk is an alternating sequence of vertices and edges 

in 𝑉 and 𝐸. A path is a walk with no repeated edges and vertices. 

Definition 1.2 (Proper Vertex Coloring)[8] A proper vertex coloring of a graph is a mapping 𝑐 ∶  𝑉 (𝐺)  →
 {1, 2, 3. . . 𝑘} ({1, 2, 3. . . 𝑘} denotes the set of colors) such that 𝑐(𝑢) ≠  𝑐(𝑣) for all arbitrary adjacent vertices 

𝑢, 𝑣 ∈  𝑉 (𝐺). 

Definition 1.3 (Chromatic Number)[8] If 𝐺 has a proper vertex coloring then the chromatic number of 𝐺 is 

the minimum number of colors needed to color 𝐺. 

STAR COLORING AND STAR CHROMATIC NUMBER 

A. Star Coloring 

In star coloring theme every path involving four vertices necessitates the use of at least three different colors. 

Alternatively, in the context of star coloring, the subgraphs induced by vertices of any two distinct colors 

exhibit connected components that manifest as star graphs. 

Definition 2.1 (Star Coloring) [8] A star coloring of a graph 𝐺 is a proper vertex coloring of 𝐺 such that no 

path of length 3 in 𝐺 is bicolored. 

B. Star Chromatic Number 

The star chromatic number of an undirected graph 𝐺, denoted by 𝑋𝑆(𝐺), is the smallest integer 𝑘 for which 

𝐺 admits a star coloring with 𝑘 colors. Computing the star chromatic number for a graph can be a challenging 

problem, and finding an optimal algorithm for it is an active area of research in graph theory. 

Definition 2.2. (Star Chromatic Number)[8] The star chromatic number is the minimum number of colors 

needed for star color 𝐺.   

LOVASZ LOCAL LEMMA 

The Lovasz Local Lemma was introduced by Erdos and Lovasz in 1975[2] who used it in their article about 

hypergraph coloring. The Lovasz Local Lemma is a probabilistic method of proving the existence of a specific 

object without showing how it looks like. 

The Lovasz Local Lemma states that if we have a set of events in which each of them occurs with probability 

 𝑝 ∈  (0, 1) and is mutually independent of the others with the exception of a few, then there is a nonzero 

probability that none of the events will occur. Here are the main notable versions of the Lovasz Local Lemma. 

1. Symmetric Lovasz Local Lemma 

2. Asymmetric Lovasz Local Lemma 

A. Symmetric Lovasz Local Lemma 

    The symmetric version of the Lovasz Local Lemma deals with a situation where all events are considered 

equally. This version was first introduced by Erdos and Lovasz. 

    Theorem 3.1 (Symmetric Lovasz Local Lemma).[9] Suppose 𝑝 ∈  (0,1), 𝑑 ≥  1 and 𝑈1, 𝑈2, … , 𝑈𝑛 are 

events such that 𝑃[𝑈𝑖 ]  ≤  𝑝 for all 𝑖. If each 𝑈𝑖 is mutually independent of all but 𝑑 other events 𝑈𝑗. If 
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𝑒𝑝(𝑑 +  1)  ≤  1 

 where 𝑒 = 2.71828. .. is Euler’s number, then  

𝑃 𝑟[⋂ 𝑈𝑖

𝑛

𝑖=1

 ]  >  0 

 

B. Asymmetric Lovasz Local Lemma 

    The asymmetric version of the Lovasz Local Lemma allows for a more flexible treatment of events. Unlike 

the symmetric version, it acknowledges that events may have different levels of importance or impact. First 

we need to define a structure which describes a dependency of events in a probability space. 

   Definition 3.1 (Dependency Graph). A directed graph 𝐺′ =  (𝑉 (𝐺′ ), 𝐸(𝐺′ )) is a dependency (di) graph on 

events 𝑈𝑖, where 𝑖 ∈  𝑉 (𝐺′ ) and each event 𝑈𝑖 is mutually independent of its non neighbors. 

   Theorem 3.2 (Asymmetric Lovasz Local Lemma).[2] Suppose 𝐺′ is a dependency graph for events 𝑈𝑖 and 

there exists 𝑥𝑖  ∈  (0, 1) such that  

𝑃 𝑟[𝑈𝑖 ] ≤  𝑥𝑖 ∏ (1 − 𝑥𝑗) 
(𝑖,𝑗)∈𝐸(𝐺′)

𝑓𝑜𝑟 𝑎𝑙𝑙  𝑖 ∈ 𝑉(𝐺′) 

 Then, 

𝑃 𝑟[⋂ 𝑈𝑖

𝑛

𝑖=1

 ] ≥ ∏(1 − 𝑥𝑖) > 0.

𝑛

𝑖=1

 

C. Applications of Lovasz Local Lemma 

1) Lower bound for Ramsey numbers 𝑅(3, 𝑙)[4]; Using the asymmetric version of LLL, following lower 

bound can be obtained. 

 𝑅(𝑘, 𝑙)  ≤ [
𝑘 + 𝑙 − 2

𝑘 − 1
]  

2) An application of frugal graph coloring [7]; 𝑖. 𝑒 If graph 𝐺 has maximum degree 𝑑 ≥  𝛽𝛽 then 𝐺 has 

a 𝛽 -frugal coloring with 16𝑑
1+

1

𝛽 colors. 

3) Existence of a satisfying k-SAT assignment [6]; 𝑖. 𝑒 Any instance 𝜙 of k-SAT in which no variable 

appears in more than 
2𝑘−2

𝑘
 clauses is satisfiable. Here we can prove that probability of picking an 

assignment that satisfies every clause in 𝜙 is non-zero, then using LLL result can be obtained. 

4) Packet Routing in Networks [6]; 𝑖. 𝑒 In each phase of length 𝑙𝑜𝑔 𝑑, there exists a set of delays for the 

packets so that the max congestion over any edge is at most 𝑙𝑜𝑔 𝑑. Using the asymmetric version of 

LLL, the result can be obtained. 

 RESULTS 

We use the following lemmas to obtain the new upper bound. 

Lemma 4.1. [3] Let 𝐺 be a graph of maximum degree 𝑑 and 𝑣 be any vertex of 𝐺, then  
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1. 𝑣 belongs to atmost 𝑑 edges of 𝐺.  

2. 𝑣 belongs to atmost 2𝑑3 paths of length 3 in 𝐺.  

Proof :  

1. Since maximum degree is 𝑑, clearly 𝑣 belongs to at most 𝑑 edges of 𝐺.  

2. Let 𝑣 be a terminal point of a path of length 3. Then there are 𝑑 ways to choose neighboring vertices 

and (𝑑 −  1)(𝑑 −  1) ways to choose paths with length 3 which includes 𝑣 as a internal point. 

Altogether there are 𝑑(𝑑 −  1)2 number of ways to choose paths with length 3 which includes 𝑣. Now 

assume that 𝑣 is an internal vertex of path of length 3. Then one of it adjacent vertex 𝑢 should be an 

end point of the path. Since the maximum degree is 𝑑, there are 𝑑 ways to choose 𝑢 and there are (𝑑 −
 1)(𝑑 −  1) ways to choose paths with length 3 going through 𝑣 and 𝑢 is an end point. Hence, as 

previously, there are 𝑑(𝑑 −  1)2 number of paths of length 3 in G. i.e 𝑣 belongs to atmost 2𝑑(𝑑 −  1)2  

paths of length 3 in G. Since 2𝑑(𝑑 −  1)2  ≤  2𝑑3, 𝑣 belongs to atmost 2𝑑3 paths of length 3 in 𝐺. 

Lemma 4.2. [3] For  𝑖, 𝑗 ∈  {𝐼, 𝐼𝐼}, 𝐴𝑖,𝑗 is an upper bound on the number of vertices of type 𝑗 which are adjacent 

to a vertex of type 𝑖 in the dependency graph 𝐺′ . Then  

i. 𝐴I,I  =  2𝑑 

ii. 𝐴II,I =  4𝑑  

iii. 𝐴I,II =  4𝑑3 

iv. 𝐴II,II  =  8𝑑3 

 Proof : 

i. Let 𝑣1 be a vertex of type I in 𝐺′. 𝑣1  corresponds to an event 𝑈𝑥,𝑦 which implies 𝑥, 𝑦 ∈  𝐺. Thus 𝑣1  

connected to all the vertices that corresponds to events 𝑈𝑥,𝑎 and  𝑈𝑦,𝑏, for all the vertices 𝑎 that 

neighbors of 𝑥 and all the vertices 𝑏 that are neighbors of 𝑦. Hence by the lemma 4.1, there are atmost 

𝑑 vertices that are neighbors of 𝑥 in 𝐺 and atmost 𝑑 vertices which are neighbors of 𝑦. Therefore, 𝐴I,I 

is equal to 2𝑑. 

ii. Let 𝑣2 be a vertex of type II in 𝐺′. 𝑣2 corresponds to an event 𝑉𝑤,𝑥,𝑦,𝑧which implies 𝑤, 𝑥, 𝑦, 𝑧 ∈  𝐺. 

𝑣2 connected to all the vertices in 𝐺′ that corresponds to events 𝑈w,a, 𝑈𝑥,𝑏, 𝑈𝑦,𝑐 and 𝑈𝑧,𝑑 where 

𝑎, 𝑏, 𝑐, 𝑑 are adjacent vertices of 𝑤, 𝑥, 𝑦, 𝑧 respectively. By lemma 4.1, there are at most 𝑑 vertices 

that are neighbors of 𝑤 in 𝐺 as well as 𝑥, 𝑦, 𝑧 in 𝐺. Therefore, 𝐴II,I  is equal to 4𝑑. 

iii. Let 𝑣 1 be a vertex of type I in ′ . 𝑣 1 corresponds to an event 𝑈𝑥,𝑦 which implies 𝑥, 𝑦 ∈  𝐺. Then 𝑣 1 

connected to all the vertices in 𝐺′ which corresponds to the events of type II which includes 𝑥 or 𝑦 as 

a vertex of the path of length 3. Then by lemma 4.1 𝐴I,II is equal to 4𝑑3 .  

iv. Let 𝑣 2 be a vertex of type II in 𝐺′.𝑣 2 corresponds to an event 𝑉𝑤,𝑥,𝑦,𝑧 which implies 𝑤, 𝑥, 𝑦, 𝑧 ∈  𝐺. 

Then 𝑣 2 connected to all the vertices in 𝐺′ which corresponds to the events of type II which includes 

𝑤, 𝑥, 𝑦, 𝑧 as a vertex of a path of length 3. Therefore, 𝐴II,II is equal to 8𝑑3 . 

Lemma 4.3. [1] If 𝐺 is a graph with maximum degree 𝑑 then  𝑋𝑆(𝐺)  ≤   𝑑2  −  𝑑 +  2. 

In this section we introduce the new upper bound. 
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Theorem 4.1.  

Let 𝐺 be a graph of maximum degree 𝑑, then 

 𝑋𝑆(𝐺) ≤ ⌈6𝑑
3
2⌉ 

Proof : In the proof, let’s examine two distinct cases for consideration.  

Case 1 : when 𝑑 >  36,  

To apply Lovasz Local Lemma, let us define a coloring application for graph 𝐺. Define this application as 

𝑓. 𝑓 is a vertex coloring which uses 𝛤 =  ⌈6𝑑
3

2⌉ number of colors randomly and independently according to a 

uniform distribution on {1, 2, 3. . . , 𝛤}. And coloring of vertex ′𝑥′ is denoted as 𝑓(𝑥). If 𝑓 is a star coloring of 

𝐺, then 𝛤 is an upper bound for the star chromatic number and the theorem will be proved. 𝑖. 𝑒 we must prove 

that with non zero probability 𝑓 is a star coloring. For this, we define family of events on which we apply 

Lovasz Local Lemma. Since Lovasz Local Lemma proves that none of these events occur, we have to choose 

complements of the conditions of star coloring as the events. Then by the Lovasz Local Lemma, we can prove 

that with the non zero probability 𝑓 is a star coloring. 

Events are as follows.  

1. Type  : For each pair of adjacent vertices 𝑥 and 𝑦 in 𝐺, let 𝑈𝑥,𝑦be the event 𝑓(𝑥)  =  𝑓(𝑦).  

2. Type 𝐼𝐼: For each path of length 3 𝑤𝑥𝑦𝑧 in 𝐺, let 𝑉𝑤,𝑥,𝑦,𝑧 be the event 𝑓(𝑤)  =  𝑓(𝑦) and 𝑓(𝑥)  =

 𝑓(𝑧).  

Let us construct a dependency graph 𝐺′ whose nodes are all the events of the two types. And two nodes 

𝐴𝑋 and 𝐵𝑌 where 𝐴, 𝐵 ∈  {𝑈, 𝑉 } are adjacent iff 𝑋 ∩  𝑌 ≠ ∅. Since the occurrence of each event 𝐴 𝑋 depends 

only on the color of the vertices in 𝑋, 𝐺′ is a dependency graph for these events, because even if the colours 

of all vertices of 𝐺 but those in 𝑋 are known, the probability of 𝐴 𝑋 remains unchanged. Now if a vertex of 𝐺′ 
corresponds to an event of type 𝑖, then it will be said to be type 𝑖 ∈  (𝐼, 𝐼𝐼). 

Let us consider the following lemma, to obtain the degree of each vertex in 𝐺′.  

Since we use 𝛤 number of colors for coloring 𝑓, we can observe following observation using basic probability 

concepts. 

Observation 4.1.  

For each,  

i. Event 𝑈 of type I, 𝑃 𝑟(𝑈)  =  
1 

𝛤
  

ii. Event 𝑉 of type II, 𝑃 𝑟(𝑉 )  =  
1 

𝛤
 ×

1 

𝛤
 =

1 

𝛤2
 

Now choose, 𝑥𝑖  = (
√2

𝛤
 )𝑖 where 𝑖 ∈  {1, 2}. To apply Lovasz Local Lemma we must show that, 

Pr(𝑈) =
1

𝛤
≤

√2

𝛤
(1 −

√2

𝛤
)

2𝑑

(1 −
2

𝛤2
)

4𝑑3

− − − (1)  
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Pr(𝑉) =
1

𝛤2
≤

2

𝛤2
(1 −

√2

𝛤
)

4𝑑

(1 −
2

𝛤2
)

8𝑑3

− − − (2) 

Consider equation (1), 

1

𝛤
≤

√2

𝛤
(1 −

√2

𝛤
)

2𝑑

(1 −
2

𝛤2
)

4𝑑3

 

1

√2
≤ (1 −

√2

𝛤
)

2𝑑

(1 −
2

𝛤2
)

4𝑑3

 

Let, 

𝛼 = (1 −
√2

𝛤
)

2𝑑

(1 −
2

𝛤2
)

4𝑑3

 

Since 𝛤 = ⌈6𝑑
3

2⌉, 
 

𝛼 ≥ (1 −
√2

6𝑑
3
2

)

2𝑑

(1 −
2

36𝑑3
)

4𝑑3

 

𝛼 ≥
1

√2
 

for any 𝑑 ≥ 15. 

𝑖. 𝑒 , 

Pr(𝑈) =
1

𝛤
≤

√2

𝛤
(1 −

√2

𝛤
)

2𝑑

(1 −
2

𝛤2
)

4𝑑3

 

for any 𝑑 ≥ 15.  

Now consider equation (2), 

1

𝛤2
≤

2

𝛤2
(1 −

√2

𝛤
)

4𝑑

(1 −
2

𝛤2
)

8𝑑3

 

1

2
≤ (1 −

√2

𝛤
)

4𝑑

(1 −
2

𝛤2
)

8𝑑3

 

 

Let, 

𝛽 = (1 −
√2

𝛤
)

4𝑑

(1 −
2

𝛤2
)

8𝑑3

 

Since 𝛤 = ⌈6𝑑
3

2⌉, 
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𝛽 ≥ (1 −
√2

6𝑑
3
2

)

4𝑑

(1 −
2

36𝑑3
)

8𝑑3

 

𝛽 ≥
1

2
 

for any 𝑑 ≥ 15. 

𝑖. 𝑒 , 

Pr(𝑉) =
1

𝛤2
≤

2

𝛤2
(1 −

√2

𝛤
)

4𝑑

(1 −
2

𝛤2
)

8𝑑3

 

for any 𝑑 ≥ 15. d≥15. 

Hence equations (1) and (2) satisfy for any 𝑑 >  36. Then by Lovasz Local Lemma we can obtain, 

𝑃 𝑟[⋂ 𝑈𝑖

𝑛

𝑖=1

 ] ≥ ∏(1 − 𝑥𝑖) > 0.

𝑛

𝑖=1

 

𝑃 𝑟[⋂ 𝑉𝑖

𝑛

𝑖=1

 ] ≥ ∏(1 − 𝑥𝑖) > 0.

𝑛

𝑖=1

 

Therefore, we can conclude that for any 𝑑 >  36, 𝑓 is a star coloring. 

 𝑖. 𝑒 𝛤 =  ⌈6𝑑
3

2⌉   is an upper bound for star chromatic number.  

𝑖. 𝑒 for any 𝑑 >  36,  

 𝑋𝑆(𝐺) ≤ ⌈6𝑑
3
2⌉    − − − (3) 

Case 2 : 𝑤ℎ𝑒𝑛 𝑑 ≤  36 

Since 𝑑 ≤  36, 

1 ≤  
36

𝑑
 

1 ≤  
6

√𝑑
  

Clearly, 

𝑑 2 −  𝑑 +  2 ≤  𝑑 2 (𝑠𝑖𝑛𝑐𝑒 𝑑 ≥  2) 

𝑑2  −  𝑑 +  2 ≤ 𝑑 2 × 
6

√𝑑
 (𝑠𝑖𝑛𝑐𝑒 1 ≤  

6

√𝑑
) 

𝑑2  −  𝑑 +  2 ≤ 6𝑑 
3
2 

By lemma 4.3, 

𝑋𝑆(𝐺)  ≤  6𝑑 
3
2 
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𝑖. 𝑒 for any 𝑑 ≤  36, 

𝑋𝑆(𝐺) ≤ ⌈6𝑑
3
2⌉    − − − (4) 

Therefore, by equations (3) and (4), for every 𝑑, 

𝑋𝑆(𝐺) ≤ ⌈6𝑑
3
2⌉   

                                                                           ∎ 

CONCLUSION 

The central focus of this research is explore the star chromatic number and obtain a new upper bound for 

star chromatic number. Through rigorous mathematical analysis and application of Lovasz Local Lemma, we 

have proven that star chromatic number is bounded above by, ⌈ 6𝑑
3

2⌉. Our finding not only contribute to the 

theoretical understanding of graph coloring but also have potential implications for practical applications. Our 

next goal is to improve this upper bound by exploring a new method. 
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