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ABSTRACT 

Analytical solutions were derived to investigate the effect of viscous dissipation on the temperature 

distribution and heat transfer characteristics of Couette-Poiseuille flow in a saturated porous medium between 

two parallel plates with simultaneous pressure gradient. The fluid is steady, laminar and both hydro-

dynamically and thermally fully developed, while the thermal boundary conditions considered are both plates 

being kept at asymmetric heat fluxes. For Couette-Poiseuille flow, the temperature distribution and the Nusselt 

number were affected greatly by Brinkman number Br, Darcy number Da and velocity of the moving plate 𝐯̂ 

Keywords: Porous media; Viscous Dissipation; Couette-Poiseuille flow; Brinkman number; Nusselt number; 

Asymmetric heat flux 

INTRODUCTION  

Viscous dissipation plays a role like an internal heat source in the energy transfer, which, in the following, 

affects temperature distributions and heat transfer rates. This heat source is caused by the shearing of fluid 

layers. For a clear fluid, this effect has been studied in detail in the existing literature [1–3]. However, for the 

case of a porous medium, there are not many studies. 

Flow of Newtonian fluids through various channels is of practical importance and heat transfer is dependent on 

flow conditions such as flow geometry and physical properties. 

Investigations in heat transfer behavior through various channels showed that the effect of viscous dissipation 

cannot be neglected for some applications, such as flow through micro-channels, small conduits and extrusion 

at high speeds. The thermal development of forced convection through infinitely long fixed parallel plates, 

both plates having specified constant heat flux had been investigated [4-7]. For the same but filled by a 

saturated porous medium, heat transfer analysis was done where the walls were kept at uniform wall 

temperature with the effect of viscous dissipation and axial conduction taken into account [8]. In [9], it was 

concluded that in a porous medium, the absence of viscous dissipation effect can have great impact. For the 

horizontal double-passage channel, uniform wall temperature with asymmetric and symmetric heating and the 

effect of viscous dissipation had been investigated [10]. 

For the pipe flow, where the wall are kept either at constant heat flux or constant wall temperature analytical 

solution is obtained for both hydro-dynamically and thermally fully developed and thermally developing 

Newtonian fluid flow, considering the effect of viscous dissipation [1,2]. 

Analytical solution with the effect of viscous dissipation was derived for Couette- Poiseuille flow of non-linear 

visco-elastic fluids and with the simplified Phan-Thien-Tanner fluids between parallel plates, with stationary 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/
https://doi.org/10.51244/IJRSI.2024.1108101


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XI Issue VIII August 2024 

Page 1314 

www.rsisinternational.org 

   

 

 

plates subjected to constant heat flux and the other plate moving with constant velocity but insulated [11-13]. 

Numerical solution of fully developed laminar heat transfer of power-law non-Newtonian fluids in plane 

Couette-flow, with constant heat flux at one wall with other wall insulated had been investigated [14] and 

analytical solution was derived for Newtonian fluid [15]. 

A numerical investigation had been done to find the heat transfer for the simultaneously developing steady 

laminar flow, where the fluid was considered to be viscous non-Newtonian described by a power-law model 

flowing between two parallel plates with several different boundary conditions [16]. When a thin slab was 

symmetrically heated on both sides, the hyperbolic heat conduction equation was solved analytically [17]. 

Considering the effect of viscous dissipation and pressure stress work of the fluid, the steady laminar boundary 

layer along a vertically stationary isothermal plate was studied. The variation of wall heat transfer and wall 

shear stress along the plate was discussed [18]. 

The Bingham fluid was assumed to be flowing in-between two porous parallel plates. With the slip effect at 

the porous walls, the analytical solutions were obtained for Couette- Poiseuille flow [19]. Numerical 

evaluations for the developing temperature profiles by a finite difference method were carried out for non-

Newtonian fluid through parallel plates and circular duct. The effect of viscous dissipation and axial heat 

conduction were taken into account. Graphical representation of Nusselt numbers were noted for various 

parameters [20]. The thermal entrance region of a horizontal parallel plate channel, were the lower plate was 

heated isothermally and the upper plate was cooled isothermally was considered. Numerical result were found 

on the onset of instability for longitudinal vortices, with effect of viscous dissipation [21]. A numerical 

analysis was carried out, taken viscous dissipation into account for pseudo-plastic non-Newtonian fluids 

aligned with a semi-infinite plate [22]. Al-Hadhrami [23-24] deduced a viscous dissipation match term, namely, 

the frictional heat was treated as an additional term formed by the heat dissipation generated by viscous force, 

and frictional heat dissipation depends on the shear strain rate. 

From the literature survey, it is observed that the flow and heat transfer in the combined form of the Couette 

and Poiseuille flows between parallel plates have received less research interest than either the Couette flow 

only or the Poiseuille flow only. The heat transfer analysis with one plate moving is a different fundamental 

problem worth pursuing. This study is necessary specifically in the design of special heat exchangers and other 

devices where the dimensions have to be kept very small.  

The purpose of the present study is to analytically investigate the effect of viscous dissipation on steady-state 

laminar heat transfer in a Couette–Poiseuille flow of a porous medium between plane-parallel plates with a 

simultaneous pressure gradient and the axial movement of the upper plate. The effects of Brinkman number, 

Darcy number, and the upper-plate velocity on the Nusselt number is obtained for two different configurations 

of the thermal boundary conditions. 

METHOD 

Consider steady, hydro-dynamically, and thermally fully developed laminar flow of an incompressible fluid 

between two parallel plates filled with a saturated porous medium (Fig. 1). The thermal conductivity and the 

thermal diffusivity of the fluid are considered to be independent of temperature. The upper plate is assumed to 

move at a constant velocity, whereas the lower one is stationary. 

The axial heat conduction in the fluid and in the wall is neglected. 

The Brinkman momentum equation in the z* direction is described as [8] 

   𝜇𝑒𝑓𝑓 
𝑑2𝑢∗

𝑑𝑦∗2 − 𝜇
𝐾

 𝑢∗ + 𝐺 = 0    (1) 

Where 𝜇𝑒𝑓𝑓 is the effective viscosity, 𝜇 is the fluid viscosity, K is the permeability, and G is the applied 

pressure gradient. 

Using the following dimensionless parameters, 
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    𝑌 = 𝑌∗

𝐻
,          𝑢=

𝜇𝑒𝑓𝑓𝑢∗

𝐺𝐻2 ,                𝑣=
𝜇𝑒𝑓𝑓𝑣∗

𝐺𝐻2  

        𝑀 =
𝜇𝑒𝑓𝑓

𝜇
, 𝐷𝑎 = 𝐾

𝐻2     (2) 

the dimensionless form of Eq. (1) is written as  

   𝑑2𝑢

𝑑𝑌2 − 𝑆2𝑢 + 1 = 0      (3)  

Under the following boundary conditions, 

 Y = 0,         u = 0,         Y = 1,         u = v    (4) 

Equation (3) is solved to give the dimensionless velocity distribution as  

 u = 1

S2 + b1eSY +  b2e−SY      (5) 

where 

       S = (1/MDa)1 2⁄        (6) 

In Eq. (5), 𝑏1 and 𝑏2 are the constants that are given, respectively, as  

 𝑏1 =
𝑒−𝑆−1 + 𝑣𝑆2

𝑆2(𝑒𝑆−𝑒−𝑆)
,       𝑏2 =

1−𝑒𝑆−𝑣𝑆2

𝑆2(𝑒𝑆−𝑒−𝑆)
      (7) 

The mean velocity U* is defined as  

𝑈∗ =  1

𝐻
 ∫ 𝑢∗ 𝑑𝑦∗𝐻

𝑂
                   (8) 

or in dimensionless form, as 

  𝑈∗ = ∫ 𝑢 𝑑𝑌
1

0
        (9) 

Integrating this equation gives 

U = 1

S2+
b1
S

 (eS−1)−
b2
S

 ( e−S−1)         (10) 

Substituting Eq. (7) into Eq. (10) gives 

U =
1−2b3

S2(1−b3ὒ)
         (11) 

where  

𝑏3 = −
2−𝑒𝑆−𝑒−𝑆

𝑆(𝑒𝑆−𝑒−𝑆)
,        ὒ = 𝑣/𝑈       (12) 

After performing necessary substitutions, the dimensionless velocity ȗ can be obtained as  

U =
u∗

U∗ =
u

U
=

(1/S2+b1eSY+b2e−sy)(1−b3ὒ)(S2)

(1−2b3)
       (13) 

The conservation of energy including the effect of the viscous dissipation can be written as follows [8]: 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XI Issue VIII August 2024 

Page 1316 

www.rsisinternational.org 

   

 

 

ρcPu∗ ∂T∗

∂z∗ =  k
∂2T∗

∂y∗2 + ɸ        (14) 

Where the second term in the right-hand side is the viscous dissipation term. Following the model proposed by 

Al-Hadhrami et al [23,24] the viscous dissipation term expressed as  

ɸ =
𝜇𝜇∗2

𝐾
+ 𝜇𝑒𝑓𝑓 (

𝑑𝑢∗

𝜕𝑦∗)
2

         (15) 

which is compatible with an expression derived from the Navier–Stokes equation for a fluid clear of solid 

material, in the large Darcy number. 

For the uniform-heat-flux case, the first law of thermodynamics results in the following relationship [23]: 

𝜕𝑇∗

𝜕𝑧∗
=

𝑑𝑇𝑤
∗

𝑑𝑧∗
=

𝑑𝑇𝑚
∗

𝑑𝑧∗
= 𝑐𝑜𝑛𝑠𝑡       (16) 

In the above equation, Tw implies the hot wall temperature according to the thermal orientation of the channel 

(case A or case B). 

Introduction of the following non-dimensional temperature 

𝜃 =
𝑇∗−𝑇𝑤

∗

𝑞′′𝐻/𝑘
          (17) 

modifies Eq. (14) into the following dimensionless form: 

𝑑2𝜃

𝑑𝑌2 = (
𝜌𝑐𝑝𝐻𝑈∗

𝑞′′

𝑑𝑇𝑤
∗

𝑑𝑧∗ ) û −
2𝐵𝑟

𝐷𝑎
(û2 +

1

𝑆2 (
𝑑û

𝑑𝑌
)

2
)      (18) 

or 

𝑑2𝜃

𝑑𝑌2 = 𝑏4û − 𝑏5 (û2 +
1

𝑆2 (
𝑑û

𝑑𝑌
)

2
)       (19) 

where b4 is a constant unknown obtained by using thermal boundary conditions, b5 is a group parameter, and 

Br is the Brinkman number given, respectively, as 

𝑏4 =
𝜌𝑐𝑝𝐻𝑈∗

𝑞′′

𝑑𝑇𝑤
∗

𝑑𝑧∗ = 𝑐𝑜𝑛𝑠𝑡,    𝑏5 =
2𝐵𝑟

𝐷𝑎
,         𝐵𝑟 =

𝜇𝑈∗2

2𝑞′′𝐻
     (20) 

Integrating Eq. (19) twice, one obtains the general solution of energy equation as 

𝜃(𝑌) = −
𝑏2

2𝑏5𝑒−2𝑆𝑌

2𝑆2
−

𝑏1
2𝑏5𝑒2𝑆𝑌

2𝑆2
−

𝑏2𝑒−𝑆𝑌(2𝑏5 − 𝑏4𝑆2)

𝑆4
 

   −
𝑏1𝑒𝑆𝑌(2𝑏5−𝑏4𝑆2)

𝑆4
+

(𝑏4𝑆2−𝑏5)𝑌2

2𝑆4
+ 𝑏6𝑌 + 𝑏7    (21) 

where b6 and b7 are the integration constants that can be found by using the corresponding thermal boundary 

conditions case A and case B, respectively. 

Two different forms of the thermal boundary conditions are applied according to Aydın and Avcı [3], which 

are shown in Fig. 1. 

In the following, we treat these two different cases separately 
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A. Case A 

In this case (Fig. 1a), the thermal boundary conditions are as in the following: 

𝑇∗ = 𝑇𝑤
∗ ,          𝑘

𝜕𝑇∗

𝜕𝑦∗
|𝑦∗=𝐻 = 𝑞′′    𝑎𝑡 𝑦∗ = 𝐻, 

     𝑘
𝜕𝑇∗

𝜕𝑦∗
|𝑦∗=0 = 0    𝑎𝑡 𝑦∗ = 0 

Introducing the dimensionless temperature, Eq. (17), the thermal boundary conditions are written as 

𝜃 = 0,      
𝜕𝜃

𝜕𝑦
|𝑌=1 = 1   𝑎𝑡 𝑌 = 1,

𝜕𝜃

𝜕𝑦
|𝑌=0 = 0   𝑎𝑡 𝑌 = 0    (23) 

Using these boundary conditions, the constant unknown b4 and the integration constants b6 and b7 for Eq. (21) 

are obtained, respectively, as 

𝑏4 = (−1 +
𝑏2

2𝑏5(𝑒−2𝑆−1)

𝑆
−

𝑏1
2𝑏5(𝑒2𝑆−1)

𝑆
+

2𝑏2𝑏5(𝑒−𝑆−1)

𝑆3 −
2𝑏1𝑏5(𝑒𝑆−1)

𝑆3 −
𝑏5

𝑆4) / (
𝑏2(𝑒−𝑆−1)

𝑆
−

𝑏1(𝑒𝑆−1)

𝑆
−

1

𝑆2) 

         (24) 

𝑏6 =
𝑏6(𝑏1

2− 𝑏2
2)

𝑆
−

(𝑏1−𝑏2)(𝑏4𝑆2−2𝑏5)

𝑆3         (25) 

𝑏7 =
𝑏5(𝑏2

2𝑒−2𝑆+𝑏1
2𝑒2𝑆)

2𝑆2 +
(2𝑏5−𝑏4𝑆2)(𝑏2𝑒−𝑠+𝑏1𝑒𝑆)

𝑆4 +
𝑏5−𝑏4𝑆2

2𝑆4 − 𝑏6     (26) 

B. Case B  

The thermal boundary conditions for case B (Fig. 1b) are as in the following, 

𝑘
𝜕𝑇∗

𝜕𝑦∗ |𝑦∗=𝐻 = 0    𝑎𝑡 𝑦∗ = 𝐻,      𝑇∗ = 𝑇𝑤
∗ ,     − 𝑘

𝜕𝑇∗

𝜕𝑦∗ |𝑦∗=0 = 𝑞′′    𝑎𝑡 𝑦∗ = 0          (27) 

or in dimensionless form, as 

 

Fig.1 Schematic diagram of the flow domain: a) case A and b) case B 

 
𝜕𝜃

𝜕𝑌
|𝑌=1 = 0   𝑎𝑡 𝑌 = 1,     𝜃 = 0,    ,      

𝜕𝜃

𝜕𝑌
|𝑌=0 = −1   𝑎𝑡 𝑌 = 0                     (28) 

Similarly, using these boundary conditions, the integration constants b6 and b7 for Eq. (21) are obtained, 

respectively, as 

𝑏6 = −1 +
𝑏5(𝑏1

2− 𝑏2
2)

𝑆
−

(𝑏1−𝑏2)(𝑏4𝑆2−2𝑏5)

𝑆3                                     (29) 

𝑏7 =
𝑏5(𝑏2

2− 𝑏1
2)

2𝑆2 +
(2𝑏1− 𝑏4𝑆2)(𝑏2− 𝑏1)

𝑆4        (30) 
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Note that the constant unknown b4 is the same for case A and case B. 

In fully developed flow, it is usual to use the mean fluid temperature 𝑇𝑚
∗  rather than the center-line 

temperature when defining the Nusselt number. This mean or bulk temperature is given by 

𝑇𝑚
∗ =

∫ 𝑈∗𝑇∗ 𝑑𝑦∗𝐻
0

∫ 𝑈∗ 𝑑𝑦∗𝐻
0

        (31) 

or in dimensionless form, as 

𝜃𝑚 =
𝑇𝑚

∗ −𝑇𝑤
∗

𝑞′′ 𝐻/𝑘
=

∫ 𝑢𝜃 𝑑𝑌
1

0

𝑈
        (32) 

Substituting Eq. (10) and Eq. (21) into Eq. (32), the dimensionless mean temperature is obtained as 

𝜃𝑚 = (
𝑏7(𝑏1(1−𝑒𝑠)+𝑏2(1−𝑒−𝑠))

𝑆
−

𝑏6(𝑏2𝑒−𝑠−𝑏1𝑒𝑠)

𝑆
  

   +
𝑏4(𝑏1(1−𝑒𝑠)+ 𝑏2(1−𝑒𝑠)+

1

2
)

𝑆
+

2𝑏4𝑏1𝑏2

𝑆2 +
𝑏7

𝑆2   

    +
𝑏1𝑏2𝑏5(𝑏1(1−𝑒𝑠)−𝑏2(1−𝑒−𝑠))

2𝑆3  

    −
𝑏4(𝑏2

2𝑒−2𝑠− 𝑏1
2𝑒2𝑠+ 𝑏2𝑒−𝑠 − 𝑏1𝑒𝑠)

2𝑆3 −
𝑏4(𝑏1

2− 𝑏2
2)

2𝑆3  

    +
𝑏5(𝑏1

3(1−𝑒3𝑠)− 𝑏1
3(1−𝑒−3𝑠))

6𝑆3   

    +
𝑏4(1/6 − 𝑏2𝑒−𝑠−𝑏1𝑒𝑠)

𝑆4 −
4𝑏1𝑏2𝑏5

𝑆4       

    +
(𝑏4/2 − 2𝑏4)(𝑏2𝑒−𝑠−𝑏1𝑒𝑠)

𝑆5 −
2𝑏4(𝑏1−𝑏2)

𝑆5    

    +
5𝑏5(𝑏1

2(1−𝑒2𝑠)−𝑏2
2(1−𝑒−2𝑠))

4𝑆5 −
𝑏5(1/6 − 𝑏2𝑒−𝑠−𝑏1𝑒𝑠)

𝑆6  

    + 
3𝑏5(𝑏1(1−𝑒𝑠)− 𝑏2(1−𝑒−𝑠))

𝑆7 ) /𝑈       (33) 

The forced convective heat transfer coefficient is given as follows: 

ℎ =
𝑞′′

𝑇𝑤
∗ −𝑇𝑚

∗          (34) 

which is obtained from Nusselt number that is defined as 

𝑁𝑢 =
𝑞′′𝐷ℎ

(𝑇𝑤
∗ −𝑇𝑚

∗ )
= −

2

𝜃𝑚
        (35) 

where Dh is the hydraulic diameter of the cross section of the channel, Dh = 2H. 

RESULTS AND DISCUSSION 

Here, we study the Couette–Poiseuille flow in a saturated porous medium between two plane-parallel plates 

with a simultaneous pressure gradient and the axial movement of the upper plate. As stated earlier, the problem 

is steady, laminar, and hydro-dynamically and thermally fully developed. Three different geometrical 
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orientations of the upper plate are considered: The upper plate is 1) stationary 2) moving in the positive z 

direction, and 3) moving the 

 

Fig.2 Variations of the Nusselt number with the Darcy number at Br =0.0 and 𝑣 = 0 

 

Fig.3 Variations of the Nusselt number with the Brinkman number at different values of Darcy number for 

𝑣 = 0. 

 

Fig.4 Variations of the Nusselt number with the Brinkman number at different values of Darcy number for 

𝑣 = 1.0 and -1.0: a) case A and b) case B negative z direction. For the sake of brevity and without loss of 

generality, it is assumed that 𝜇eff = 𝜇, leading to M=1, in the presentations of results. 

Figure 2 illustrates the variation of Nusselt number with the Darcy number for the case without viscous 

dissipation effect. For the values of Darcy number lower than 10-4, Nusselt number nearly stays constant at the 

slug flow value, Nu = 6, then it decreases sharply and finally it approaches to the clear fluid limit, Nu = 5.385 

for Da > 1. 
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For the non-moving-upper-wall case (the Poiseuille flow), the effect of the viscous dissipation on Nusselt 

number is shown in Fig. 3. As seen, Nusselt number decreases with an increase in Brinkman number. 

Increasing viscous dissipation increases both the wall temperature and the bulk fluid temperature. This 

increase is felt more in the wall due to high shear stress near the wall. It is clear from Eq. (35) that an increased 

value of the wall and mean temperature differences 𝑇𝑤
∗ − 𝑇𝑚

∗  will decrease Nusselt number. 

Similarly, Figs. 4a and 4b illustrate the variation of the Nusselt number with the Brinkman number for 

different dimensionless relative velocity of the upper plate and Darcy number at cases A and B, respectively. 

For case A, an increase in Brinkman number decreases Nusselt number for the movement of the upper plate in 

the negative direction (ὒ = _1) while in the positive direction (ὒ = 1) it increases it. This is due to increasing 

temperature differences between the wall and the bulk fluid, as discussed above. For case B, similar behaviors 

are observed. However, for the movement of the upper plate in the negative direction (ὒ = 1) singularities are 

obtained at Da = 10-2 and 10-4 due to the high shear rate near the wall. For Da =10-4, with the increasing value 

of Brinkman number, Nusselt number increases in the range of 0 < Br < 5.2 x10-3. 

This is because the temperature difference that drives the heat transfer decreases. At Br = 5.2x10-3, the heat 

supplied by the wall into the fluid is balanced with the internal heat generation due to the viscous heating. For 

Br > 5.2x10-3, the internally generated heat overcomes the heat supplied by the wall. When Br → 0.1, the 

Nusselt number reaches an asymptotic value. 

CONCLUSIONS 

The Couette–Poiseuille flow in a saturated porous medium between two plane-parallel plates with a 

simultaneous pressure gradient and axial movement of the upper plate was investigated analytically. The effect 

of the viscous dissipation was found to affect temperature profiles and heat transfer rates. The Nusselt numbers 

were determined for various values of Br, Da, and ὒ. It was disclosed that hydro-dynamical and thermal 

behaviors of the porous medium approached the slug flow behaviors for the lower values of Da (≤ 10-4), while 

the clear fluid behavior was observed for Da ≥1. 

Nomenclature 

Br    = Brinkman number, Eq. (20) 

C
p      = specific heat at constant pressure, Jkg- 1K-1 

Da    = Darcy number, K=H2 

Dh    = hydraulic diameter, 2H  

G  = applied pressure gradient, Nm-3  

H  = channel width, m 

K  = permeability, m2 

k  = fluid thermal conductivity, Wm-1K-1 

M  = 𝜇eff/𝜇 

Nu  = Nusselt number, Eq.(35) 

q′′  = wall heat flux, Wm-2 

S  = (MDa)-1/2 

T*  = temperature, K 
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𝑇𝑚
∗     = mean or bulk temperature, K 

𝑇𝑤
∗      = wall temperature, K 

U  = dimensionless mean velocity, Eq. (9) 

U* = mean velocity, Eq. (8), ms-1 

u  = 𝜇effu*/GH2 

û  = u*/U*or u/U 

𝑢∗    = filtration velocity, ms-1 

v      = 𝜇effv*/GH2 

𝒗̂  = ʋ*/U* or ʋ/U 

v*  =  axial velocity of the moving plate, ms-1 

Y  = y*/H 

y* = vertical coordinate, m 

z* = axial co-ordinate, m 

θ = (𝑇∗ − 𝑇𝑤
∗ )/(𝑞′′ 𝐻/𝑘)  

θ = 𝑇𝑚
∗ − 𝑇𝑤

∗ )/(𝑞′′ 𝐻/𝑘) 

μ  = fluid viscosity, kgm-1s-1 

𝜇𝑒𝑓𝑓 = effective viscosity, kgm-1s-1 

ρ  = fluid density, kgm-3 

ɸ = viscous dissipation term 
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