

Study on the Concreate Model for the Development of Supergeometry as a New Category of Supermanifolds

Khondokar M. Ahmed

Department of Mathematics, University of Dhaka, Dhaka-1000, Bangladesh DOI: <u>https://doi.org/10.51244/IJRSI.2024.1108031</u>

Received: 06 July 2024; Revised: 24 July 2024; Accepted: 27 July 2024; Published: 02 September 2024

ABSTRACT

In this present paper sheaves, notion of GH^{∞} supermanifolds, graded manifolds, morphism, Z-expansion functions of variables in $B_L^{m,n}$, sheaves of graded commutative B_L -algebra, G-supermanifolds, topologies of rings of G-functions are studied. We establish a theorem demonstrating that the Z-expansion on an isometry onto its image and prove a related metric isomorphism.

Keywords: Supermanifolds, Sheaf, Morphism, Graded G-module, Seminorms $p_{K}^{I,\mu}$

INTRODUCTION

The category of G-supermanifolds [3], [4] provides a consistent and concrete model for the development of supergeometry. In order to supply exact motivation for the development these objects and also for historical argument we strated with a brief representation graded manifolds, these are basically introduced by Berzin and Leîtes [8], [14]; although the most widespread treatment can be found in Kostant [12] and Manin [13]. In this way G-supermanifolds could be expanded more consistant or concreate compared to traditional model. Graded manifolds [2] play a directrole in the theory developed in this paper, in that some results holding in that category can be applied as they are in the context of G-supermanifolds. The discussion of the relationship between G-supermanifolds and the axiomatics for supermanifolds proposed by Rathstein [19]. The classes of G^{∞} , GH^{∞} and H^{∞} supersmooth functions are used which allow us to define supermanifolds in the sense of Rogers [15], [16], [17], [18]; the discussion of their short comings leads us to introduce the notion of G-supermanifolds and Z-expansion. In the present work a theorem on an isometry and its image of Z-expansion and on a metric isomorphism is established.

PRELIMINARIES

The original idea of geometric approach to supermanifolds [10] is to patch open sets in $B_L^{m,n}$ by means of transition functions which fulfill a suitable 'smoothness' condition. We call generically supersmooth functions such as G^{∞} , GH^{∞} and H^{∞} functions. These functions are introduced in a unified manner, in terms of a morphism called Z-expansion, which maps functions of real variables into functions of variables in $B_L^{m,n}$. Unless otherwise stated, whenever referring, explicitly or implicitly, to a topology on $B_L^{m,n}$, we mean its ∇ -vectorspace topology. Throughout this paper we assume to choose integers L, m and n with L > 0 and $m, n \ge 0$ subject to the condition $L \ge n$. For every integer L' such that $0 \le L' \le L$ the exterior algebra $B_{L'}$ is regarded as a subalgebra of B_L so that B_L acquires a structure of a graded $B_{L'}$ -module which is not free unless L' = 0 or L' = L. We recall that the graded vector space associated with $B_L^{m/n}$ according to the procedure is simply $\nabla^m \oplus \nabla^n$. We denote by $\sigma^{m,n} : B_L^{m,n} \to \nabla^m$ the restriction of

the augmentation map to $B_L^{m,n}$.

For any C^{∞} differentiable manifold X, let us denote by $C_{L'}^{\infty}(W)$ the graded algebra of $B_{L'}$ -valued C^{∞} functions on the open set $W \subset X$. For each integer $L' \leq L$ and any $U \subset \nabla^m$, the Z-expansion is the morphism of graded algebras

$$Z_{L'}: \mathcal{C}_{L'}^{\infty}(U) \to \mathcal{C}_{L}^{\infty}((\sigma^{m,0})^{-1}(U))$$

defined by the formula (cf. [18])

$$Z_{L'}(h)(x) = h(\sigma^{m,0}(x) + \sum_{j=1}^{L} \frac{1}{j!} D^{(j)} h_{\sigma^{m,0}(x)}(s^{m,0}(x), \dots, s^{m,0}(x))$$
(2.1)

for all $h \in C_{L'}^{\infty}(U)$ and all $x \in (\sigma^{m,0})^{-1}(U)$; here the *j*-th Fre' cht differential $D^{(j)}h_{\sigma^{m,0}(x)}$ at the point $\sigma^{m,0}(x)$ acts on $B_L^{m,0} \times \cdots \times B_L^{m,0}(j$ -times) simply by extending by $(B_L)_0$ -linearity its action on $\nabla^m \times \cdots \times \nabla^m$. The mapping $S^{m,0}: B_L^{m,0} \to \mathbf{n}_L^{m,0}$ is the projection onto the second component of the direct sum $B_L^{m,0} = \nabla^m \oplus \mathbf{n}_L^{m,0}$.

For each open $U \subset \nabla^m$, $(\sigma^{m,0})^{-1}(U) \subset B_L^{m,0}$ is a subset of $B_L^{m,n}$, so that we can define on the open set $(\sigma^{m,n})^{-1}(U) \subset B_L^{m,n}$ the graded algebra $S_{L'}((\sigma^{m,n})^{-1}(U))$ formed by the functions having the following expression

$$f(x^{1},...,x^{m},y^{1},...,y^{n}) = \sum_{\mu \in \Xi_{n}} f_{\mu}(x^{1},...,x^{m})y^{\mu} \qquad (2.2)$$

where $f_{\mu} \in Z_{L'}(C_{L'}^{\infty}(U)), (x^1, ..., x^m, y^1, ..., y^n) \in (\sigma^{m,n})^{-1}(U)$ and $y^{\mu} = y^{\mu(1)} ... y^{\mu(r)}$ if $\mu = \{\mu(1), ..., \mu(r)\}$.

We can therefore introduce a sheaf [1] $S_{L'}$ of graded-commutative $B_{L'}$ -algebras over $B_{L}^{m,n}$ by letting, for each open $V \subset B_{L}^{m,n}$,

$$S_{L'}(V) = S_{L'}((\sigma^{m,n})^{-1} \sigma^{m,n}(V)).$$
 (2.3)

The sections of the sheaf S_{L'} on an open set V are C^{∞} functions which show a kind of holomorphic behaviour in the nilpotent directions, in that the coefficients of the various powers of the y's in the equation (2.2) are determined, at every point z of the fibre $(\sigma^{m,n})^{-1}(x)$ of $B_L^{m,n}$ over $x = \sigma^{m,n}(z) \in \nabla^m$, by their germs at x.

We denote by $\hat{S}_{L'}$ the subsheaf of $S_{L'}$ whose sections are functions not depending on the odd variables y^a , namely, they have only the first term in the sum (2.2). In other words, the sheaf $\hat{S}_{L'}$ on $B_L^{m,n}$ is the inverse image under the projection $B_L^{m,n} \to B_L^{m,0}$ of the sheaf $S_{L'}$ on $B_L^{m,0}$. Then equation (2.2) shows the existence, for any open $U \subset B_L^{m,n}$, of a surjective morphism

 $\lambda: \hat{\mathsf{S}}_{L'}(U) \otimes \nabla \wedge \nabla \nabla^{n} \to \mathsf{S}_{L'}(U)$

$$\sum_{\mu\in\Xi_n} f_\mu \otimes y^\mu \mapsto \sum_{\mu\in\Xi_n} f_\mu y^\mu, \qquad (2.4)$$

having identified $\wedge \nabla \nabla^n$ with the exterior algebra generated by the *y*'s.

G-SUPERMANIFOLDS

We have seen that the classes of supersmooth functions which is free from inconsistencies and yields a theory aplicable to supersymmetry [5], is nottrivial. In particular it seems rather difficult to combine the following requirements:

(a) the sheaf of derivations of the function sheaf under consideration should be locally free;

(b) the coefficients of the 'superfield expansion' (2.2), when restricted to real arguments, should take values in a graded-commutative algebra B;

(c) there should be a good theory of superbundles, and in particular there is a sensible notion of graded tangent space.

These difficulties can be overcome by introducing a new category of supermanifolds [6], called G-supermanifolds, characterized in terms of a sheaf G on $B_L^{m,n}$, which is in a sense a 'completion' of $GH_{L'}$ (condition $L - L' \ge n$ is assumed to hold). More precisely, we define the sheaf of graded-commutative B_L -algebras on $B_L^{m,n}$

$$\mathbf{G}_{L'} \equiv \mathbf{G} \mathbf{H}_{L'} \otimes_{B_{I'}} B_L \tag{3.1}$$

It is convenient to introduce an evaluation morphism $\delta: G_L \to C_L$ (we denote by C_L the sheaf of B_L -valued continuous functions on $B_L^{m,n}$), by extending by additivity the mapping

$$\delta(f \otimes a) = fa \tag{3.2}$$

Proposition 3.1 The image of δ is isomorphic to the sheaf G^{∞} of G^{∞} functions on $B_L^{m,n}$. The morphism δ is injective when restricted to the subsheaf $\hat{G}_{L'} = \hat{G}\hat{H}_{L'} \otimes_{B_{L'}} B_L$.

Proof. The first claim is evident in view of the definition of the sheaf of G^{∞} functions. In order to prove that $\delta: \hat{G}_{L'} \to \hat{G}^{\infty}$ is an isomorphism, we exhibit the inverse morphism $\lambda: \hat{G}^{\infty} \to \hat{G}_{L'}$. Given an open set $U \subset B_{L}^{m,n}$, every $f \in \hat{G}^{\infty}(U)$, can written in accordance with equation (2.1), in the form

$$f = \sum_{\mu \in \Xi_n} Z_0 \left(\hat{f}^{\mu} \right)_U \beta_{\mu} , \qquad (3.3)$$

where the \hat{f}^{μ} 's are suitable sections of $C^{\infty} \nabla^{m} (\sigma^{m,n}(U))$. After letting $\lambda(f) = Z_{0}(\hat{f}^{\mu})_{U} \otimes \beta_{\mu}$, we verify that $\lambda \circ \delta = i d = \delta \circ \lambda$.

Corollary 3.2 Given two integers L', L'' satisfying the condition $L - L' \ge n$ there is a canonical isomorphism of sheaves of graded commutative B_L -algebras $G_{L'} > G_{L'}$.

Proof. Proposition 3.1. entails the isomorphism $\hat{G}_{L'} \simeq \hat{G}_{L''}$. On the other hand, for any open $U \subset B_L^{m,n}$, the surjective isomorphism gives

$$\hat{\mathbf{G}}_{L'} \simeq \hat{\mathbf{G}}_{L''} \otimes \nabla \wedge \nabla \nabla^{n}, \qquad (3.4)$$

so that our claim is proved.

Therefore, it is possible to introduce on $B_L^{m,n}$ a canonical sheaf of graded commutative B_L -algebras G, formally defined as the isomorphism class of the sheaves $G_{L'}$ while L' varies among the non-negative integers such that $L-L' \ge n$. Alternatively, one can assume $L \ge 2n$ and take once for all L' = [L/2], the biggest integer less than L/2 (cf. [17]). A subsheaf \hat{G} , of germs of sections of G' not depending on the odd variables' is defined in the same fashion and one obtains the isomorphism

$$\mathbf{G} \simeq \hat{\mathbf{G}} \otimes_{\nabla \land \nabla} \nabla^{n} \tag{3.5}$$

Proposition 3.3 There is an isomorphism of sheaves of graded B_L -modules $Der G \cong Der GH \otimes_{B_L} B_L$.

Proof. By virtue of the surjective isomorphism for any open $U \subset B_L^{m,n}$, it is enough to show that $\operatorname{D} er \hat{G} \cong \operatorname{D} er \operatorname{GH} \otimes_{B_L} B_L$. By identifying \hat{G} with \hat{G}^{∞} , we define a morphism $\eta : \operatorname{D} er \hat{G}^{\infty} \to \operatorname{D} er \hat{G} \stackrel{\circ}{H} \otimes_{B_L} B_L$ given by

$$\eta(D)(f) = \sum_{\mu \in \Xi_n} D\left(Z_0(\hat{f}^{\mu})\right) \otimes \beta_{\mu},$$

where f has been factorized according to equation (3.3). It easily verified that η is an isomorphism.

Proposition 3.4 Der G is a locally free graded G-module on $B_L^{m,n}$, of rank (m, n). On every open set $U \subset B_L^{m,n}$, Der G(U) is generated over G(U) by the derivations

$$\left\{\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial y^{\alpha}} \mid i = 1...m, \, \alpha = 1...n\right\}$$

defined as follows:

$$\frac{\partial}{\partial x^{i}}(f \otimes a) = \frac{\partial f}{\partial x^{i}} \otimes a, \quad i = 1...m; \quad \frac{\partial}{\partial y^{\alpha}}(f \otimes a) = \frac{\partial f}{\partial y^{\alpha}} \otimes a, \quad \text{where} \quad \alpha = 1...n.$$
(3.6)

Definition 3.5 An (m,n) dimensional G-supermanifold is a graded locally ringed B_L -space (M, A) satisfying the following conditions:

(a) *M* is a Hausdorff, paracompact topological space;

(b) (M,A) is locally isomorphic with ($B_L^{m,n}$,G);

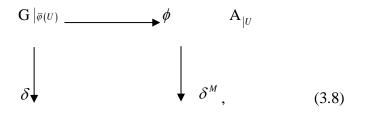
(c) denoting by C_L^M the sheaf of continuous B_L -valued functions on M, there exists a morphism of sheaves of B_L -algebras $\delta^M : A \to C_L^M$ which is locally compatible with the evaluation morphism (3.2) and with the isomorphisms ensuing from condition (b).

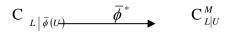
Thus, by assumptions, any point $z \in M$ has a neighbourhood U such that:

(i) there is an isomorphism of graded locally ringed spaces

$$(\bar{\phi}, \phi)$$
: $(U, \mathbf{A}_{|U}) \xrightarrow{\sim} (\bar{\phi}(U), \mathbf{G}_{|\bar{\phi}(U)}),$ (3.7)

(ii) the following diagram commutes:





where $\overline{\phi}^{*}$ is the ordinary pull-back associated with the mapping $\overline{\phi}$.

If there is no confusion, the evaluation morphism δ^M will be denoted simply by δ . The image of the sheaf A through δ is a sheaf on *M* of graded-commutative B_L -algebras, denoted by A^{∞} .

Proposition 3.6

(a) The atlas $U^{\infty} = \{ (U_i, \overline{\phi_i}), i \in \subseteq \}$ endows M with a structure of G^{∞} supermanifold of the same dimension as (M, A).

(b) The G^{∞} structure sheaf of M coincides with A^{∞} .

It is clear that G-supermanifolds generalize the notion of GH^{∞} supermanifolds; indeed, if (M, GH^{M}) is a GH^{∞} supermanifold [7], the pair (M, A), with $A = GH^{M} \otimes_{B_{L'}} B_{L}$, is a G-supermanifold. The resulting G-

supermanifold will be called the trivial extension of the original GH^{∞} supermanifold [19].

Graded tangent space. As a consequence of Proposition 3.3., the sheaf $D_{er}A$ of graded derivations on a G-supermanifold (*M*,A) is locally free, with local bases given by the derivations

$$\left\{\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial y^{\alpha}} \mid i = 1...m, \ \alpha = 1...n\right\}$$

associated with a local coordinate system $(x^1, ..., x^m, y^1, ..., y^n)$.

Definition 3.7 The graded tangent space $T_z(M,A)$ at a point $z \in M$ is the graded B_L -module whose elements are the graded derivations $X : A_z \rightarrow B_L$.

The graded tangent space $T_z(M, A)$ is quite evidently free of rank (m, n) and the elements $\left(\frac{\partial}{\partial x^i}\right)_z, \left(\frac{\partial}{\partial y^\alpha}\right)_z$

defined by

$$\left(\frac{\partial}{\partial x^{i}}\right)_{z}(f) = \frac{\partial \tilde{f}}{\partial x^{i}}(z), \qquad \left(\frac{\partial}{\partial y^{\alpha}}\right)_{z}(f) = \frac{\partial \tilde{f}}{\partial y^{\alpha}}(z) \qquad \text{for all } f \in A_{z},$$

yield a graded basis for it. Furthermore, there is a canonical isomorphism of graded B_L -modules

$$T_z(M,A) \xrightarrow{\sim} (\operatorname{D} \operatorname{er} A)_z / (\operatorname{L}_z \cdot (\operatorname{D} \operatorname{er} A)_z),$$

where L_z is the ideal of germs in which vanish when evaluated, i.e.

$$L_{z} = \{ f \in A_{z} \mid \hat{f}(z) = 0 \}.$$

TOPOLOGIES OF RINGS OF G-FUNCTIONS.

In order to introduce the notions of morphisms and products of G-supermanifolds, and to discuss Rothstein's axiomatics, we need to topologize in a suitable way the rings of sections of the structure sheaves of G-supermanifolds [9]. This will parallel the analogous study performed in the case of graded manifolds [2].

Let (M, A) be a G-supermanifold and let $\| \|$ denote the l^1 norm in B_L ; for every open subset $U \subset M$ the rings A(U) of A can be topologized by means of the seminorms $p_{L,K} : A(U) \to \nabla$ defined by

$$p_{L,K}(f) = \max_{z \in K} \| \delta(L(f))(z) \|$$

where L runs over the differential operators of A on U and $K \subset U$ is compact. The above topology is also given by the family of seminorms

$$p_{K}^{I}(f) = \max_{\substack{z \in K \\ |J| \le I, \mu \in \Xi_{n}}} \left\| \delta\left(\left(\frac{\partial}{\partial x} \right)^{J} \left(\frac{\partial}{\partial y} \right)_{\mu} f \right)(z) \right\|, \quad (4.1)$$

where K runs over the compact subsets of a coordinate neighbourhood W with coordinates $(x^1, ..., x^m, y^1, ..., y^n)$. Under this

form it is clear that this topology makes A(U) into a locally convex metrizable graded algebra. The next results will allow to prove that A(U) is complete, so that it is in fact a graded Fr e' chet algebra. Without loss of generality, we may assume that $(M, A) = (B_L^{m,n} G)$. With reference to the isomorphism (3.5), we topologize the rings $\hat{G}(U)$ by means of the seminorms

$$\hat{p}_{K}^{I}(f) = \max_{\substack{z \in K \\ |J| \le I}} \left\| \delta\left(\left(\frac{\partial}{\partial x} \right)^{J} f \right)(z) \right\|.$$
(4.2)

The tensor product $\hat{G}(U) \otimes_{\nabla \wedge \nabla} \nabla^n$ is in turn given its natural topology, which is induced by the seminorms

$$p_K^{I,\mu}(f) = \hat{p}_K^I(f^{\mu})$$

having set $f = \sum_{\mu \in \Xi_n} f_\mu \otimes y^\mu$.

Lemma 4.1 The isomorphism (3.5),

 $G(U) \xrightarrow{\sim} \hat{G}(U) \otimes_{\nabla} \wedge_{\nabla} \nabla^{n}$, is a metric isomorphism.

Proof. A direct majoration argument shows that

$$p_{K}^{I} \leq \sum_{\mu \in \Xi_{n}} c_{\mu} \hat{p}_{K}^{I,\mu} \text{ where } c_{\mu} = \max_{\substack{z \in K \\ v \in \Xi_{n}}} \left\| \delta\left(\left(\frac{\partial}{\partial y}\right)_{v} y^{\mu}\right)(z) \right\|.$$

This shows the continuity of the inverse morphism. We now display the opposite majoration. The seminorm p_K^I is explicitly written as

$$p_{K}^{I}(f) = \max_{\substack{z \in K \\ |j| \leq l, v \in \mathbb{Z}_{n}}} \left\| \sum_{\mu \in \mathbb{Z}_{n}} \varepsilon_{\mu\nu} \frac{\partial f^{\mu}}{\partial x^{J}}(z) \delta\left(\left(\frac{\partial}{\partial y} \right)_{\nu} y^{\mu} \right)(z) \right\|, \quad (4.3)$$

with $\varepsilon_{\mu\nu}$ a suitable sign. The seminorms $p_{K}^{I,\mu}$ are majorated by descending recurrence, starting from the last one, i.e. from $p_{K}^{I,\omega}$, where ω is the sequence $\{1, 2, ..., n\}$. Indeed, from (4.3) we obtain $p_{K}^{I,\mu} \leq p_{K}^{I}$,

since $p_{K}^{I,\mu}$ is one of the terms over which the maximum (4.3) is taken. For the same reason, if we consider the seminorms $p_{K}^{I,w_{i}}$, I=1,...,n, with $\omega_{i} = \{1, 2, ..., \hat{i}, ..., n\}$, we obtain

$$\begin{split} p_{K}^{I,\omega_{i}}\left(f\right) &= \max_{\substack{z \in K \\ |y| \leq I}} \left\| \frac{\partial f^{\omega_{i}}}{\partial x^{J}}(z) + \frac{\partial f^{\omega}}{\partial x^{J}}(z)\delta\left(y^{i}\right)(z) - \frac{\partial f^{\omega}}{\partial x^{J}}(z)\delta\left(y^{i}\right)(z) \right\| \\ &\leq p_{K}^{I}\left(f\right) + \max_{\substack{z \in K \\ |y| \leq I}} \left\| \frac{\partial f^{\omega}}{\partial x^{J}}(z)\delta\left(y^{i}\right)(z) \right\| \\ &\leq (1 + c_{iK}) p_{K}^{I}(f), \end{split}$$

where $c_{iK} = \max_{z \in K} \| \delta(y^i)(z) \|$. The remaining majorations are performed in the same way.

For any open $W \subset \nabla^m$, the space $C^{\infty}(W) \otimes_{\nabla} B_{L'}$ is equipped with the usual topology of uniform convergence of derivatives of any order, which is induced by the family of seminorms

$$q_{K}^{I}(h) = \max_{\substack{z \in K \\ |J| \leq I}} \left\| \left(\frac{\partial}{\partial x} \right)^{J} h(z) \right\|$$

where *K* is a compact in *W* and the norm is taken in $B_{L'}$. Moreover, since δ is injective when restricted to \hat{G} , we may identify the sheaves \hat{G} and \hat{G}^{∞} .

Theorem 4.2 For any open $U \subset B_L^{m,n}$ and all L' such that $0 \le L' \le L$, the Z-expansion

$$Z_{L'}: \mathbf{C}^{\infty} \left(\sigma^{m,n}(U) \right) \otimes B_{L'} \to \hat{\mathbf{G}} \left(U \right)$$
(4.4)

is an isometry onto its image. In particular, when L' = L, we obtain a metric isomorphism C $^{\infty}(\sigma^{m,n}(U)) \otimes B_L \simeq \hat{G}(U)$, while, for L' = 0, we obtain a metric isomorphism $C^{\infty}(\sigma^{m,n}(U)) \simeq$

$$\hat{\mathsf{H}}^{\infty}(U).$$

Proof. One easily shows that the seminorms which defines the topology in the right-hand side are majorated in terms of the relevant seminorms on the left-hand side. To show the converse, let *K* be a compact subset of an open W in ∇^m and *I* be a nonnegative integer; for any $h \in \mathbb{C}^{\infty} \nabla^n(W)$, we have

$$q_{K}^{I}(h) \leq \max_{z \in K \atop |J| \leq I} \left\| \left(\frac{\partial}{\partial x} \right)^{J} Z_{L'}(h)(z) \right\| = \hat{p}_{\tilde{K}}^{I} (Z_{L'}(h),$$

where \tilde{K} is a compact in $(\sigma^{m,n})^{-1}(W)$ containing K. It is clear that the previous minoration implies the thesis.

Proposition 4.3

(a) The functions $p_k^r : \mathcal{A}(W) \to \nabla$ are submultiplicative seminorms, in that

 $P_{K}^{r}(f,g) \leq 2^{nr} P_{K}^{r}(f) P_{K}^{r}(g)$

(b) $\mathcal{A}(W)$, equipped with the topology induced by the seminorms $\{P_K^r\}$, where $r \ge 0$ and K is an arbitrary compact coordinate subset of W, is a Frechet algebra.

Corollary 4.4 The spaces G(U), $H^{\infty}(U) \otimes_{\nabla} B_L$ and $C^{\infty}(\sigma^{m,n}(U)) \otimes B_L \otimes \wedge \nabla^n$ are isometrically isomorphic for any open $U \subset B_L^{m,n}$.

Proposition 4.5 Let (M, A) be a G-supermanifold. For every open $U \subset M$, the space A(U), endowed with the topology induced by the semi norms (4.1) is a graded Fre' chet algebra.

Reasoning as in Proposition 4.3, one proves that the topological algebra $\hat{G}(U)$ is complete, where using Lemma 4.1 and reasoning as in Proposition 4.3 again, the algebra G(U) is complete as well. We eventually obtain the results which are Corollary 4.4 and Proposition 4.5.

Example 4.6 The previous Lemma 4.1 and Theorem 4.2 also imply a further result, that will be significant when dealing with morphisoms of G-supermanifolds. For any open $W \subset \nabla^m$, we topologize the space

 $\mathbf{X}^{\infty}(W) \otimes B_{L} \otimes \wedge \nabla^{n} \xrightarrow{\sim} \mathbf{X}^{\infty}(W) \otimes \wedge \nabla^{L+n}$

as in Proposition 4.3.

CONCLUSIONS

The Z-expansion is the morphism of graded algebras $Z_{L'}$ which is defined by (2.1). A theorem on an isometry onto its image of Z-expansion and on a metric isomorphism is derived. This theorem make possible definition of coordinate neighbourhood and odd and even coordinate system and to be able to know about odd symplectic supermanifolds [11] and also it will be helpful to study integration on supermanifolds such as integration on $\nabla_s^{m,n}$ and Rothstein's theory of integration on non-compact supermanifolds. Thus, this theorem is implied a further research, which will be useful when some one author have to deal with morphisms of G-supermanifolds.

REFERENCES

- 1. Ahmed, K. M., (2002) A note on sheaves and cohomology on manifold, Ganit: J. Bangladesh Math Soc., 22, 41-50.
- 2. Ahmed, K. M., (2007) A study of Graded Manifolds, Dhaka Univ. J. Sci. 55(1): 35-39.

- 3. Bartocci, C. and Bruzzo, U., (1987) Some remarks on the differential-geometric approach to supermanifolds, *J.Geom. phys.* **4**, 391-404.
- 4. Bartocci, C., Bruzzo, U. and Hern ndez Ruip rez, D,. (1989) A remark on a new category of supermanifolds. J. Geom.phys. 6, 509-516.
- 5. Bahraini, A. (2005). Supersym trie et geom trie complexe, Ph.D. thesis, Universit de Paris VII.
- 6. Batchelor, M. (1979). The structure of supermanifolds, *Transactionsof the American Mathematical Society* **253**, pp. 329-338.
- 7. Batchelor, M., (1980) Two approaches to supermanifolds, Trans. Amer. Math.Soc. 258, 257-270.
- 8. Berezin, F. A. and Le tes, D. A. (1975) Supermanifolds, Soviet Math. Dokl. 16 1218-1222.
- 9. Boyer, C. P. and Gitler, S., (1984) The theory of supermanifolds, *Trans. Amer. Math. Soc.* 285, 241-261.
- 10. DeWitt, B. (1984,1992). Supermanifolds (Cambridge University Press).
- 11. Khudaverdian, H. M. (2004). Semidensities on odd symplectic supermanifolds, Comm. Math. Phys. 247, 2, pp. 353-390.
- 12. Kostant, B. (1977) Graded manifolds, graded Lie theory, and prequantization, in: *Differential geometric methods in mathematical physics*, K. Bleuler and A. Reetz eds., *Lecture Notes Math.* **570**, Springer- Verlag, Berlin, pp. 177-306.
- 13. Manin, Yu. I. (1988) (original Russian edition 1984) *Gauge field theory and complex geometry, Grundlehren Math. Wiss.* **289**, Springer- Verlag, Berlin.
- 14. Le tes, D. A. (1980) Introduction to the theory of supermanifolds, Russian Math. Surveys, 35 1-64.
- 15. Rabin, J. and Crane, L., (1945) How different are the supermanifolds of Rogers and DeWitt?, *Commun. Math. Phys.* **102**, 123-137.
- 16. Rabin, J. and Crane, L., (1985) Global properties of supermanifolds, *Commun.Math.Phys.*100, 141-160.
- 17. Rogers, A., (1980) A global theory of supermanifolds, J. Math. Phys. 21, 1352-1365.
- 18. Rogers, A., (1986). Graded manifolds, supermanifolds and infinite-dimensional Grassmann algebras, *Commun. Math. Phys.* **105**, 375-384.
- 19. Rothstein, M., (1986) The axioms of supermanifolds and a new structure arising from them, *Trans. Amer. Math. Soc.* **297**, 159-180.