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ABSTRACT 

In this present paper sheaves, notion of  
GH supermanifolds, graded manifolds, morphism, Z-expansion 

functions of variables in nm

LB , , sheaves of graded commutative LB -algebra, G-supermanifolds, topologies 

of rings of G-functions are studied. We establish a theorem demonstrating that the Z-expansion on an 

isometry onto its image and prove a related metric isomorphism. 
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INTRODUCTION 

The category of G-supermanifolds [3], [4] provides a consistent and concrete model for the development 

of supergeometry. In order to supply exact motivation for the development these objects and also for 

historical argument we strated with a brief representation graded manifolds, these are basically introduced 

by  Berzin  and    Le i


tes [8], [14]; although the most widespread treatment can be found in Kostant [12] 

and Manin [13]. In this way G-supermanifolds could be expanded more consistant or concreate compared 

to traditional model.  Graded manifolds [2] play a directrole in the theory developed in this paper, in that 

some results holding in that category can be applied as they are in the context of G-supermanifolds. The 

discussion of the relationship between G-supermanifolds and the axiomatics for supermanifolds proposed 

by Rathstein [19]. The classes of 
G , 

GH  and 
H  supersmooth functions are used which allow us to 

define supermanifolds in the sense of Rogers [15], [16], [17], [18]; the discussion of their short comings 

leads us to introduce the notion of G-supermanifolds and Z-expansion. In the present work a theorem on 

an isometry and its image of Z-expansion and on a metric isomorphism is established. 

PRELIMINARIES 

The original idea of geometric approach to supermanifolds [10] is to patch open sets in nm

LB ,  by means of 

transition functions which fulfill a suitable ‘smoothness’ condition. We call generically supersmooth 

functions such as 
G , 

GH  and 
H  functions. These functions are introduced in a unified manner, in 

terms of a morphism called Z-expansion, which maps functions of real variables into functions of 

variables in , .m n

LB  Unless otherwise stated, whenever referring, explicitly or implicitly, to a topology on 
, ,m n

LB  we mean its -vectorspace topology. Throughout this paper we assume to choose integers L, m and 

n with 0L  and m, 0n  subject to the condition nL  . For every integer L   such that LL 0  the 

exterior algebra LB   is regarded as a subalgebra of LB so that LB  acquires a structure of a graded LB  -

module which is not free unless 0L  or LL  . We recall that the graded vector space associated with 
nm

LB |  according to the procedure is simply   m


n
.  We denote by nm

L

nm B ,, : 
m

 the restriction of 
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the augmentation map to nm

LB , . 

For any C  differentiable manifold  X, let us denote by C )(WL


  the graded algebra of LB  -valued C  

functions on the open set XW  . For each integer LL   and any U  m , the Z-expansion is the 

morphism of graded algebras 

:LZ  C 

 )(UL C ))()(( 10, Um

L

  , 

defined by the formula (cf. [18]) 

,0

,0 ( ) ,0 ,0

( )
1

1
( )( ) ( ( ) ( ( ), , ( )) (2.1)

!
m

L
m j m m

L x
j

Z h x h x D h s x s x
j 





 

for all h C  L U

     and all    Ux m 10, 
  ; here the j-th Fr e cht differential 

 
 x

j
mhD 0,

 at the point 

 xm 0,  acts on 0,0, m

L

m

L BB  (j-times) simply by extending by  
0LB -linearity its action on  m


m

. 

The mapping S 0,0, : m

L

m B n 0,m

L  is the projection onto the second component of the direct sum 0,m

LB 

m
n 0,m

L . 

For each open U     
1

,0 ,0,m m m

LU B


  is a subset of nm

LB , , so that we can define on the open set 

    nm

L

nm BU ,1, 


  the graded algebra S     Unm

L

1, 

  formed by the functions having the following 

expression 

    



 yxxfyyxxf
n

mnm 


 ,,,,,,, 111 

      

(2.2) 

where (LZf  C  1 1( )), , , , , ,m n

L U x x y y

     
1

,m n U


   and         1
if 1 , , .

r
y y y r

      . 

We can therefore introduce a sheaf [1] S L  of graded-commutative LB  -algebras over nm

LB , by letting, for 

each open nm

LBV , , 

             S   VL S     Vnmnm

L

,1, 


 .                       (2.3) 

The sections of the sheaf S L  on an open set V are 
C functions which show a kind of holomorphic 

behaviour in the nilpotent directions, in that the coefficients of the various powers of the y's in the 

equation (2.2) are determined, at every point z of the fibre    xnm 1, 
  of nm

LB ,

 over   zx nm, 
m

, by 

their germs at x. 

We denote by L Ŝ  the subsheaf of S L  whose sections are functions not depending on the odd variables 
ay , namely, they have only the first term in the sum (2.2). In other words, the sheaf L Ŝ  on nm

LB ,  is the 

inverse image under the projection nm

LB , 0,m

LB  of the sheaf S L  on 0,m

LB . Then equation (2.2) shows the 

existence, for any open nm

LBU , , of a surjective morphism 
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  ULŜ:   n  S L  U  

                 

,








 yfyf

nn




 

                          

(2.4) 

having identified  
n  with the exterior algebra generated by the y’s. 

G-SUPERMANIFOLDS 

We have seen that the classes of supersmooth functions which is free from inconsistencies and yields a 

theory aplicable to supersymmetry [5], is nottrivial. In particular it seems rather difficult to combine the 

following requirements: 

(a) the sheaf of derivations of the function sheaf under consideration should be locally free; 

(b) the coefficients of the ‘superfield expansion’  (2.2), when restricted to real arguments, should take 

values in a graded-commutative algebra B; 

(c) there should be a good theory of superbundles, and in particular there is a sensible notion of graded 

tangent space. 

These difficulties can be overcome by introducing a new category of supermanifolds [6], called G-

supermanifolds, characterized in terms of a sheaf G on nm

LB , , which is in a sense a ‘completion’ of GH L  

(condition nLL   is assumed to hold). More precisely, we define the sheaf of graded-commutative 

LB -algebras on nm

LB ,  

                                       G L GH
LL B LB
           

             (3.1) 

It is convenient to introduce an evaluation morphism :  G L C L (we denote by C L  the sheaf of LB -

valued continuous functions on nm

LB , ), by extending by additivity the mapping 

                                         faaf                           (3.2) 

Proposition 3.1 The  image of   is isomorphic to the sheaf  G


of 
G  functions on nm

LB , . The morphism 

 is  injective when restricted to the subsheaf ˆ ˆ ˆ .
LL L B LB
  G GH

  
 

Proof. The first claim is evident in view of the definition of the sheaf of 
G  functions. In order to prove 

that 

 GG ˆˆ: L  is an isomorphism, we exhibit the inverse morphism L 

 GG ˆˆ: . Given an open set 

nm

LBU , , every  Uf Ĝ , can written in accordance with equation (2.1), in the form  

                         

 



n

UfZf



 ˆ

0 ,                           (3.3) 
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where the f̂ ’s are suitable sections of C 
   Unmm , . After letting     

   UfZf ˆ
0 , we verify 

that    di .  

Corollary 3.2 Given two integers LL ,  satisfying the condition nLL   there is a canonical 

isomorphism of sheaves of graded commutative LB -algebras  G L G L  . 

Proof. Proposition 3.1. entails the isomorphism  ~ˆ
LG L Ĝ . On the other hand, for any open nm

LBU , ,the 

surjective isomorphism gives 

                           ~ˆ
LG L Ĝ  

n ,                           (3.4) 

so that our claim is proved.  

Therefore, it is possible to introduce on nm

LB ,  a canonical sheaf of graded commutative LB -algebras G, 

formally defined as the isomorphism class of the sheaves G L  while L   varies among the non-negative 

integers such that nLL  . Alternatively, one can assume nL 2  and take once for all ]2/[LL  , the 

biggest integer less than L/2 (cf. [17]). A subsheaf Ĝ , of germs of sections of G‘ not depending on the 

odd variables’ is defined in the same fashion and one obtains the isomorphism 

   G Ĝ~  
n

                                                    (3.5) 

Proposition 3.3 There is an isomorphism of sheaves of graded LB -modules D -~Ger D er GH .
LB LB


  

Proof. By virtue of the surjective isomorphism for any open nm

LBU , , it is enough to show that D er -~Ĝ

D er GH LB B
L

 . By identifying Ĝ  with Ĝ , we define a morphism : D er Ĝ 
D HG ˆˆer LB B

L
  

given by 

      



n

fZDfD



  ˆ

0 , 

where  f  has been factorized according to equation (3.3). It easily verified that   is an isomorphism.  

Proposition 3.4 Der G is a locally free graded G-module on nm

LB , , of rank (m, n). On every open set 
nm

LBU , , Der G  U  is generated over G  U by the derivations 

















nmi

yx i
 1,1, 


 

defined as follows: 

   , 1 ; ,
i i

f f
f a a i m f a a

x x y y 

   
      

   
 where 1 .n                                                     

(3.6) 
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Definition 3.5 An (m,n) dimensional G-supermanifold is a graded locally ringed LB -space ( M ,A) 

satisfying the following conditions: 

(a) M is a Hausdorff, paracompact topological space; 

(b) ( M ,A) is locally isomorphic with ( nm

LB , ,G ); 

(c) denoting by  C M

L  the sheaf of continuous LB -valued functions on M, there exists a morphism of 

sheaves of LB -algebras :M AC M

L  which is locally compatible with the evaluation morphism (3.2) and 

with the isomorphisms ensuing from condition (b). 

Thus, by assumptions, any point Mz has a neighbourhood U such that: 

(i) there is an isomorphism of graded locally ringed spaces 

                ,:, U A   ,~) U
U

 G
   ,U

    
      (3.7) 

(ii) the following diagram commutes: 

G  U             
             

               A U
 

 

                                          
M ,                      (3.8) 

                          

C
 

 UL             
*                C

M

UL                                                                                                                                     

where *  is the ordinary pull-back associated with the mapping  . 

If there is no confusion, the evaluation morphism 
M will be denoted simply by  . The image of the 

sheaf A through   is a sheaf on M of graded-commutative LB -algebras, denoted by A


. 

Proposition 3.6 

(a) The atlas U


={   iU ii ,, } endows M with a structure of 
G  supermanifold of the same 

dimension  as (M,A). 

(b) The 
G  structure sheaf of M coincides with A


. 

It is clear that G-supermanifolds generalize the notion of 
GH  supermanifolds; indeed, if M ,GH M  is a 

GH  supermanifold [7], the pair (M,A), with A= GH LB

M B
L

 , is a G-supermanifold. The resulting G- 
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supermanifold will be called the trivial extension of the original GH supermanifold [19]. 

Graded tangent space. As a consequence of Proposition 3.3., the sheaf D er A of graded derivations on a 

G-supermanifold (M,A) is locally free, with local bases given by the derivations  

















nmi

yx i
 1,1, 


 

associated with a local coordinate system  nm yyxx ,,,,, 11  . 

Definition 3.7 The graded tangent space zT (M,A) at a point Mz is the graded LB -module whose 

elements are the graded derivations :X A Lz B . 

The graded tangent space zT (M,A) is quite evidently free of rank (m, n )and the elements 

zz

i yx 

























,  

defined by 

       z
y

f
f

y
z

x

f
f

x
z

i

z

i  
































~

,

~

      

for all f A z , 

yield a graded basis for it. Furthermore, there is a canonical isomorphism of graded LB -modules  

zT (M,A)~ (D er A) z
/( L .z (D er A) z ), 

where L z  is the ideal of germs in which vanish when evaluated, i.e. 

L z   f A z   0ˆ zf . 

TOPOLOGIES OF RINGS OF G-FUNCTIONS. 

In order to introduce the notions of morphisms and products of G-supermanifolds, and to discuss 

Rothstein's axiomatics, we need to topologize in a suitable way the rings of sections of the structure 

sheaves of G-supermanifolds [9]. This will parallel the analogous study performed in the case of graded 

manifolds [2]. 

Let (M,A) be a G-supermanifold and let  denote the 
1l  norm in LB ; for every open subset MU   the 

rings A  U  of A can be topologized by means of the seminorms :,KLp  A  U  defined by 

     zfLfp
Kz

KL 


 max,  

where L runs over the differential operators of A on U and UK   is compact. The above topology is also 

given by the family of seminorms 
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    ,max

,

zf
yx

fp

J

Kz

I

K

nIJ















































     

(4.1) 

where K  runs over the compact subsets of a coordinate neighbourhood W with coordinates 

 nm yyxx ,,,,, 11  . Under this      

form it is clear that this topology makes A  U  into a locally convex metrizable graded algebra. The next 

results will allow to prove that A  U  is complete, so that it is in fact a graded Fr e chet algebra. Without 

loss of generality, we may assume that (M,A)  nm

LB , G  . With reference to the isomorphism (3.5), we 

topologize the rings Ĝ  U by means of the seminorms 

            

    .maxˆ zf
x

fp

J

Kz

I

K

IJ

































              

(4.2) 

The tensor product Ĝ  U  
n

 is in turn given its natural topology, which is induced by the 

seminorms 

    fpfp I

K

I

K
ˆ,   

having set  


n

yff



 . 

Lemma 4.1 The isomorphism (3.5),  

G   Ĝ~U  U   
n

, is a metric isomorphism. 

Proof. A direct majoration argument shows that 





n

I

K

I

K pcp





,ˆ

 

where   .max zy
y

c
v

Kz
n


































 



 

This shows the continuity of the inverse morphism. We now display the opposite majoration. The 

seminorm I

Kp  is explicitly written as 

  

      ,max
,

zy
y

z
x

f
fp

v

Jv
Kz

I

K

nnvIj































 











 

       

(4.3) 

with v  a suitable sign. The seminorms ,I

Kp  are majorated by descending recurrence, starting from the 

last one, i.e. from ,I

Kp , where   is the sequence  n,,2,1  . Indeed, from (4.3) we obtain ,I

Kp  I

Kp ,  
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since ,I

Kp  is one of the terms over which the maximum (4.3) is taken. For the same reason, if we 

consider the seminorms iwI

Kp
, , I=1,...,n, with  nii ,,ˆ,,2,1  , we obtain 

             

      

   

,
max

max

1 ,

i

i

J I

J I

I i i

K J J Jz K

I i

K Jz K

I

iK K

f f f
p f z z y z z y z

x x x

f
p f z y z

x

c p f

  




 











  
  

  


 



 

 

where   zyc i

KziK  max . The remaining majorations are performed in the same way.  

For any open W  m , the space C   W  LB   
is equipped with the usual topology of uniform 

convergence of derivatives of any order, which is induced by the family of seminorms 

   zh
x

hq

J

Kz

I

K

IJ


















max  

where K is a compact in W and the norm is taken in LB  . Moreover, since   is injective when restricted 

to Ĝ , we may identify the sheaves Ĝ   and 
Ĝ . 

Theorem 4.2 For any open nm

LBU , and all  such that LL 0 , the Z-expansion 

               :LZ  C    Ĝ,  



L

nm BU  U                 (4.4) 

is an isometry onto its image. In particular, when LL  , we obtain a metric isomorphism C

    ~,

L

nm BU Ĝ  U , while , for  0L ,  we obtain a metric isomorphism  C    ~, Unm  

Ĥ  U . 

Proof.  One easily shows that the seminorms which defines the topology in the right-hand side are 

majorated in terms of the relevant seminorms on the left-hand side. To show the converse, let K be a 

compact subset of an open W in 
m

 and I   be a nonnegative integer; for any h C

  Wn , we have 

      hZpzhZ
x

hq L

I

KL

J

Kz

I

K

IJ




















~ˆmax , 

where K
~

 is a compact in     Wnm 1, 
  containing K. It is clear that the previous minoration implies the 

thesis.  

L 
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Proposition 4.3 

(a) The functions :r

kp 𝒜(𝑊) 
 
are submultiplicative seminorms, in that  

     gPfPgfP r

K

r

K

nrr

K 2,  , 

(b) 𝒜(𝑊), equipped with the topology induced by the seminorms r

KP , where 0r  and K  is an 

arbitrary compact coordinate subset of W , is a Frechet algebra.  

Corollary 4.4 The spaces G  ,U   H   U  LB and C    

L

nm BU,  n
 are isometrically 

isomorphic for any open nm

LBU , . 

Proposition 4.5 Let (M,A) be a G-supermanifold. For every open ,MU    the space A  U , endowed 

with the topology induced by the semi norms (4.1) is a graded   Fr e chet algebra. 

Reasoning as in Proposition 4.3, one proves that the topological algebra Ĝ  U is complete, where using 

Lemma 4.1 and reasoning as in Proposition 4.3 again, the algebra G  U  is complete as well. We 

eventually obtain the results which are Corollary 4.4 and Proposition 4.5. 

Example 4.6 The previous Lemma 4.1 and Theorem 4.2 also imply a further result, that will be 

significant when dealing with morphisoms of G-supermanifolds. For any open W 
m

, we topologize 

the space  

 ( ) LW B  
n
 ( )W 

L n
 

as in Proposition 4.3. 

CONCLUSIONS 

The Z-expansion is the morphism of graded algebras LZ   which is defined by (2.1). A theorem on an 

isometry onto its image of Z-expansion and on a metric isomorphism is derived. This theorem make 

possible definition of coordinate neighbourhood and odd and even coordinate system and to be able to 

know about odd symplectic supermanifolds [11] and also it will be helpful to study integration on 

supermanifolds such as integration on  ,m n

S  and Rothstein’s theory of integration on non-compact 

supermanifolds. Thus, this theorem is implied a further research, which will be useful when some one 

author have to deal with morphisms of G-supermanifolds. 
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