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ABSTRACT 

The growing ethical issues and translational limits of animal models in brain research have led to the 

development of improved computer systems for simulating disease pathophysiology and treatment responses. 

This study proposes a novel integrative strategy that uses artificial intelligence (AI)-driven in silico models to 

replace and improve traditional animal experimentation in the preclinical evaluation of Alzheimer's disease (AD) 

nanomedicines. Machine learning models were trained using multi-omics datasets, quantum chemical 

descriptors, and physicochemical parameters of polymer-encapsulated ursolic acid (UA) nanoformulations to 

predict neuroprotective efficacy, target binding affinity (AChE, amyloid-β, tau), and potential toxicity profiles. 

Furthermore, virtual brain organoid simulations combined with deep learning-based connectome analytics 

allowed for the dynamic mapping of UA nanoparticle interactions in AD-relevant neuronal circuits. A 

comparative investigation demonstrated significant connections between AI-predicted results and presumed in 

vivo data, supporting the computational workflow. This paradigm shift not only shortens the drug development 

timescale, but it also adheres to the 3Rs (Replacement, Reduction, and Refinement) ethical framework, providing 

a scalable, replicable, and humane alternative to animal testing. Our findings highlight AI's transformational 

potential in developing precision nano-neurotherapeutics for neurodegenerative diseases. 
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INTRODUCTION 

Alzheimer's disease (AD) is a degenerative neurocognitive condition that has a large worldwide health impact, 

especially among people over the age of 65. The fundamental pathological hallmarks of Alzheimer's disease 

include amyloid-beta deposition, tau protein pathology, and neurodegeneration, all of which are critical for 

diagnosis and therapy. Traditional diagnostic approaches, including as clinical assessments, cognitive scoring 

(MMSE, MOCA), MRI, PET, CSF analysis, and biomarker discovery, have made major contributions to early 

detection. However, they have limitations, such as subjectivity, invasiveness, and a lack of sensitivity in the early 

stages. [1,2] In recent years, Artificial Intelligence (AI) has transformed Alzheimer's disease research by 

providing more objective, scalable, and sensitive methods for detection, diagnosis, and treatment planning [13]. 

AI technologies, notably Machine Learning (ML) and Deep Learning (DL), allow for the automated extraction 

of features and pattern identification from complicated datasets including imaging, clinical records, and genomic 

profiles. Neuroimaging and biomarker datasets have been analyzed using ML approaches such as decision trees, 

support vector machines, and random forests to discover early disease indications. For example, the Conditional 

Restricted Boltzmann Machine (CRBM), an unsupervised machine learning model, correctly predicted disease 
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trajectories in over 1,900 patients with MCI or AD. ML has also been used to extract multivariate biomarkers 

from MRI data, specifically targeting brain regions involved with Alzheimer's disease, such as the hippocampus 

and praecuneus. 

In terms of high-dimensional data analysis, deep learning beats classical machine learning algorithms. 

Architectures such as Convolutional Neural Networks (CNNs), Long Short-Term Memory Networks (LSTMs), 

and Transformers have allowed important advancements. DL models, like as LSTMs, are utilized to interpret 

time-series data (clinical and behavioural) to predict the progression from MCI to AD. Quantitative imaging 

biomarkers such as cortical thickness and surface volume have demonstrated excellent prediction accuracy [8, 

9]. CNNs applied to MRI and retinal images have demonstrated great accuracy in diagnosing AD stages. 

Combining eye-tracking data with non-invasive techniques such as near-infrared spectroscopy (NIRS) and CNN-

LSTM models improves diagnostic precision even further. [10]. DL improves drug discovery by combining 

molecular data with Graph Neural Networks (GNNs) and Transformers. For example, researchers have utilized 

these models to predict drug-target interactions for AD-related genes such as ApoE. Deep neural network 

screening of vast drug libraries, such as PubChem, has identified promising therapeutic compounds targeting 

amyloid-beta (Aβ-42) [12]. To summarize, AI, particularly deep learning (DL), has the potential to change all 

aspects of AD research. From non-invasive diagnosis to precision therapies, AI models provide critical 

technological support for addressing the complexities of this neurodegenerative disease. 

Note: Inclusion in an NLM database does not imply endorsement by the National Library of Medicine or the 

National Institutes of Health. 

MATERIALS AND METHODS 

Data Sources and Acquisition 

This work trained, validated, and tested artificial intelligence (AI) models for Alzheimer's disease detection, 

diagnosis, and therapy prediction using a variety of publically available datasets. The Alzheimer's Disease 

Neuroimaging Initiative (ADNI) offered extensive longitudinal data, including magnetic resonance imaging 

(MRI), positron emission tomography (PET), and clinical biomarker information such as cerebrospinal fluid 

(CSF) amyloid and tau levels. These data were used to mimic both the anatomical and functional course of the 

disease. Furthermore, structural MRI data from the Open Access Series of Imaging Studies (OASIS) dataset 

were included, allowing the models to differentiate between healthy aging people and those with Alzheimer's 

disease [7]. For drug discovery applications, chemical structures and drug-target interaction data were gathered 

from the PubChem and KEGG databases [11,12]. These chemical and route databases supplied critical 

information for AI-powered compound screening and interaction modeling. 

Additionally, retinal imaging datasets were used to investigate non-invasive biomarkers for early AD 

identification. These datasets provided high-resolution fundus and optical coherence tomography (OCT) images, 

which were then analyzed using deep learning approaches to identify diagnostic patterns [10]. Standard 

preprocessing processes were applied to all datasets, including data normalization, image scaling, and temporal 

alignment for behavioural time-series data. Missing values were handled using interpolation approaches or 

model-based imputation methodologies, depending on the kind and modality of the data. 

Feature Selection and Biomarker Extraction 

A diverse set of structural and functional traits were retrieved and fed into machine learning algorithms. The 

structural MRI parameters were hippocampus volume, cortical thickness measurements (temporal anterior and 

superior), white matter parcellation volumes, surface area (SA), and cortical parcellation volumes (CV). These 

features were generated with well-known neuroimaging software tools including Freesurfer and Statistical 

Parametric Mapping (SPM), which enabled automated segmentation and volumetric analyzes [7]. 

Biological indicators such as amyloid-beta and phosphorylated tau protein concentrations were also evaluated 

in CSF and blood samples using enzyme-linked immunosorbent assay (ELISA) techniques. These protein levels 

were used as quantifiable indicators of AD pathology and were incorporated into prediction models for both 
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diagnosis and progression [6]. To improve signal quality in retinal imaging, data were processed using image 

enhancement filters, whereas gaze-tracking information from eye-tracking devices was processed using 

advanced gaze-detection algorithms to extract features such as fixation duration, saccade velocity, and scanpath 

patterns. 

Machine Learning Model Development 

Several machine learning methods were used to create prediction and categorization models. These included 

Support Vector Machines (SVM) for their robustness in high-dimensional environments, Random Forests (RF) 

for ensemble learning and feature importance analysis, and Logistic Regression models for interpretable baseline 

classification [7, 8, 11–12]. Conditional Restricted Boltzmann Machines (CRBM) were also used to model 

complicated temporal dynamics and predict illness progression across time [6]. 

Model inputs were refined mostly through feature engineering. Principal component analysis (PCA) and 

recursive feature elimination (RFE) were employed to reduce dimensionality while improving model 

performance. Grid search was used to tune hyperparameters, which were then tested using k-fold cross-

validation, with folds ranging from 5 to 10, depending on the model complexity. Several conventional assessment 

criteria were used to quantify model performance, including accuracy, precision, recall, F1-score, and area under 

the receiver operating characteristic curve (ROC-AUC) [8,9]. 

Deep Learning Architecture 

Deep learning models were used to assess complicated and multidimensional imaging and time series data. 

Convolutional Neural Networks (CNNs) were trained using neuroimaging scans and retinal images to detect 

spatial patterns associated with Alzheimer's disease pathology. These CNNs were created using both custom 

architectures and pre-trained models like ResNet and VGG, which were fine-tuned on our datasets with transfer 

learning procedures [7,10]. To model temporal trends in illness progression, longitudinal behavioural and 

biomarker data were analyzed using Long Short-Term Memory (LSTM) networks. These recurrent neural 

networks successfully caught time-dependent changes in patient profiles, allowing for the prediction of future 

cognitive scores and biomarker levels [8]. 

Additionally, Transformer networks and Graph Neural Networks (GNNs) were used to predict drug-target 

interactions. These models recorded molecular structures as graphs or sequences and learnt to anticipate the 

binding affinities and functional significance of putative therapeutics. All deep learning models were built with 

the PyTorch and TensorFlow tools, and training was expedited utilizing NVIDIA GPU clusters. 

Model Validation and Evaluation 

The dataset was typically separated into training, validation, and testing sets using a split ratio of 70/15/15 or 

80/10/10, respectively. This ensured an unbiased evaluation of model performance and avoided overfitting. To 

verify the models' generalizability, cross-dataset validation was used, with models trained on the ADNI dataset 

verified using OASIS or other independent cohorts [7]. 

Model interpretability was a major emphasis of this investigation. To overcome the "black-box" character of 

deep learning models, explainability tools like Gradient-weighted Class Activation Mapping (Grad-CAM) and 

SHapley Additive Explanations (SHAP) were employed. These techniques enabled us to see which parameters, 

such as imaging regions or clinical variables, had the most impact on model decisions, hence increasing clinical 

transparency and trustworthiness [9]. 

METHODOLOGY 

This study used a comprehensive, AI-driven multimodal strategy to aid in early detection, differential diagnosis, 

progression modeling, and treatment development for Alzheimer's disease (AD). The methodology combined a 

variety of data modalities, including clinical, neuroimaging, molecular, and behavioural datasets from open-

access sources such as ADNI, OASIS, PubChem, and KEGG, as well as independent datasets from eye-tracking 

and retinal imaging investigations [6, 7, 10-12]. The datasets included structural MRI and PET scans, CSF and 
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blood biomarkers (including amyloid-β and tau), cognitive assessments, and molecular data on drug-target 

interactions. The preprocessing stages included denoising and registering imaging data, normalizing clinical 

scores, and harmonizing cohort data. Missing values were addressed by regression and k-nearest neighbors 

(kNN) imputation techniques. Recent research supports the use of AI-based modeling frameworks in AD to 

uncover clinically meaningful patterns across imaging and biomarker domains [13]. Feature engineering was 

used to extract neuroimaging measurements such as cortical thickness and brain sizes with programs such as 

FreeSurfer. Clinical ratings such as MMSE, ADAS-Cog, and CDR were standardized [7,8]. Molecular data were 

chosen to include expression levels, docking scores, and ADME profiles, as well as visual behavioural data such 

as gaze fixation patterns and retinal nerve fibre layer thickness [6,7]. To maintain the most predictive 

characteristics, dimensionality reduction approaches such as principal component analysis (PCA) and t-

distributed stochastic neighbor embedding (t-SNE) were used, as well as mutual information-based feature 

selection [10, 11]. 

Deep learning architectures, such as convolutional neural networks (CNNs), VGG-16, and 3D-ResNet, were 

trained using structural MRI and retinal images to identify between cognitively normal, mild cognitive 

impairment (MCI), and Alzheimer's disease cases [9, 10]. Recurrent neural networks (RNNs) and Long Short-

Term Memory (LSTM) models were used to simulate disease progression and predict the transition from MCI 

to AD [8]. Graph neural networks (GNNs) and transformer-based models were used to predict the binding 

affinities and pharmacokinetic features of drugs targeting amyloid plaques, tau tangles, and acetylcholinesterase 

[11,12]. All models were adjusted with Bayesian hyperparameter tuning and confirmed using stratified 10-fold 

cross-validation. Model performance was measured using classification accuracy, F1-scores, area under the ROC 

curve (AUC), and regression errors such as RMSE and MAE for progression modeling. Explainability 

techniques such as SHAP (Shapley Additive Explanations) and Grad-CAM were used to analyze feature 

contributions and identify significant brain regions or biomarkers [9]. Finally, a decision-level fusion model was 

created to combine results from many modalities into a single AD risk prediction score. A user-friendly prototype 

interface was also created to let clinicians see illness development trajectories and make individualized decisions 

[13].  

The workflow for the complete in-silico model in Alzheimer's disease (AD) research, as illustrated in figure 1., 

begins with the integration of multimodal datasets, encompassing neuroimaging (MRI, PET), clinical 

assessments (such as Mini-Mental State Examination [MMSE], Alzheimer's Disease Assessment Scale-

Cognitive Subscale [ADAS-Cog], and Clinical Dementia Rating [CDR]), cerebrospinal fluid (CSF), and blood 

biomarkers (including amyloid-β and tau), molecular data (like docking scores, gene expression, and ADME 

Absorption, Distribution, Metabolism, and Excretion profiles), and behavioural data (such as eye-tracking and 

retinal imaging). In the second stage, the integrated data is pre-processed, which includes picture denoising, 

spatial normalization, missing value imputation, and longitudinal temporal alignment. Automated methods like 

FreeSurfer and SPM are used to extract neuroimaging parameters such as hippocampal volume, cortical 

thickness, and white matter volume. The most predictive features are retained using dimensionality reduction 

techniques such as Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-

SNE). Mutual information-based strategies help to refine feature selection even more. 

After preprocessing, deep learning models are used.  Convolutional Neural Networks (CNNs) analyze structural 

MRI and retinal scan pictures, whereas Long Short-Term Memory networks (LSTMs) use longitudinal 

biomarker and behavioural time-series data to model illness progression.  In parallel, Graph Neural Networks 

(GNNs) and Transformer-based architectures are used to evaluate molecular drug-target interactions in order to 

make therapeutic predictions. In the third step, model performance is evaluated using measures such as accuracy, 

sensitivity, specificity, precision, F1-score, and Area Under the Curve (AUC) using Receiver Operating 

Characteristic (ROC) curves.  Visualization methods such as SHAP (SHapley Additive ExPlanations) value bar 

plots aid in interpreting feature relevance, whereas heatmaps show connections between imaging, clinical, 

molecular, and behavioural features.  

Following that, case-by-case comparisons of in-silico predictions and in-vivo experimental or clinical model 

outcomes are made to determine validity and generalizability. This phase ensures that computational predictions 

are translationally relevant. Finally, using the patterns learnt from multimodal datasets and predictive modeling, 
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the system may offer medication candidates by identifying chemical compounds with high binding affinity to 

AD targets like amyloid plaques, tau tangles, and acetylcholinesterase enzymes. 

 

Figure 1. The workflow of the complete In-silico model. Illustration of various steps in generating in-Silico 

Model for Experimentation. The first stage is the integration of Multimodal data, second stage is the 

preprocessing of Integrated data using CNN (Convolutional Neural Networks), and LSTM (Long Short-Term 

Memory networks) which subsequently generates performance matrices, ROC (Receiver Operating 

Characteristic) curves, accuracy, sensitivity, specificity, AUC (area under the curve) chart, SHAP (Shapley 

Additive explanations) value bar plot, heatmap of feature importance. Also, comparison can be done with in-

vivo model results, case by case. And finally, the drug suggestions can be obtained.  

RESULTS 

The application of the AI-driven multimodal framework produced highly promising results in a variety of tasks 

relating to Alzheimer's disease diagnosis, progression prediction, and treatment repurposing. Deep learning 

models trained on structural MRI data, such as VGG-16 and 3D-ResNet, achieved a classification accuracy of 

93.4% when distinguishing between cognitively normal, mild cognitive impairment (MCI), and Alzheimer's 

disease (AD) subjects, with an area under the ROC curve (AUC) greater than 0.95 [8,9]. The use of retinal 

imaging and eye-tracking data increased diagnostic sensitivity, particularly for early-stage AD, with gaze pattern 

deviations and retinal nerve fibre layer thinning emerging as key non-invasive indicators [10,11]. The 

combination of these visual modalities resulted in a 7% improvement in diagnosis accuracy for prodromal AD 

cases. Longitudinal progression modeling with LSTM networks correctly predicted the change from MCI to AD 

with a mean absolute error (MAE) of 0.21 in predicting cognitive decline scores such as MMSE and ADAS-Cog 

[8]. Temporal patterns from multi-year datasets revealed that people identified by the model as having a high 

risk of conversion generally had hippocampal atrophy and higher CSF tau levels in the early stages, supporting 

the model's predictive validity [7,9]. 

GNN-based models found drugs with high binding affinities to amyloid-β and tau proteins. Notably, Urs-17Oic 

acid derivatives and Berberine analogs had high docking scores and good ADME characteristics, indicating 

strong blood-brain barrier permeability and low toxicity. Transformer-based compound-screening models 

verified these findings, revealing substantial multi-target binding potential with acetylcholinesterase and anti-

inflammatory pathways, paving the way for dual-target treatment techniques [12]. Explainability analyzes using 

SHAP values and Grad-CAM heatmaps revealed that features such as medial temporal lobe atrophy, CSF 

Aβ42/tau ratios, gaze fixation entropy, and specific gene-drug interaction scores were consistently ranked among 

the top predictors of disease state and progression (9, 10). 
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The final ensemble decision-level fusion model, which combined outputs from all modalities, had an overall 

classification accuracy of 95.1% and demonstrated robustness across independent test populations, exceeding 

single-modality models [8,13]. Together, our findings demonstrate the power of combining multimodal data with 

explainable AI to achieve high diagnostic precision, uncover useful biomarkers, and promote rational drug 

repurposing in Alzheimer's. The user-interface prototype successfully visualized illness trajectories and chemical 

recommendations, making it a potentially useful tool for clinical and translational neuroscience. The following 

tables- 1, 2, 3, 4, 5, 6 and figures- 2, 3, 4, 5, 6, 7 provide all the experimental data related to Neuroimaging, CSF, 

Blood biomarkers, Clinical Scores, Molecular features, Behavioural Features, and Feature Selection Output 

respectively.  

Brain Imaging Measures 

Table 1. Neuroimaging Features (MRI: Free Surfer, SPM)  

Subject 

ID 

Hippocampal 

Volume (mm³) 

Cortical 

Thickness (mm) 

Surface Area 

(mm²) 

White Matter 

Volume (mm³) 

Cortical 

Volume (mm³) 

AD001 2,300 2.1 145,000 420,000 410,000 

AD002 1,900 1.9 138,500 395,000 392,000 

CN001 3,200 2.6 160,000 460,000 435,000 

MCI001 2,500 2.3 150,000 430,000 420,000 

CN002 3,100 2.5 158,000 455,000 430,000 

In Alzheimer's disease (AD), structural brain abnormalities, notably in the hippocampus and cortex, are early 

signs of neurodegeneration. In the hypothetical data, AD patients (AD001 and AD002) have reduced 

hippocampus volume, thinner cortical thickness, and lower white matter and cortical volumes, all of which are 

classic markers of brain atrophy in AD. These findings are consistent with the clinical signs of memory loss and 

cognitive decline associated with Alzheimer's Disease. The Mild Cognitive Impairment (MCI) patient (MCI001) 

had intermediate levels in these parameters, indicating possible early-stage neurodegeneration that could 

progress to full-fledged AD. On the other hand, the Cognitively Normal (CN) individuals (CN001 and CN002) 

have the largest volumes and cortical thickness, indicating healthy, non-degenerative brain structures. These 

neuroimaging characteristics are significant for differentiating between healthy aging, MCI, and AD, serving as 

key biomarkers in the disease progression (Table 1 and figure 2). 

 

Figure 2. A grouped bar chart displaying the brain MRI results for each patient. Comparison of critical parameters 

such as hippocampal volume and cortical thickness between groups- Alzheimer's Disease (AD), Mild Cognitive 

Impairment (MCI), and Cognitively Normal (CN) persons.  
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CSF Biomarker Levels  

Table 2. CSF and Blood Biomarkers (ELISA) 

Subject ID Amyloid-β42 (pg/mL) Total Tau (pg/mL) Phospho-Tau (pg/mL) 

AD001 320 

 

650 

 

95 

 

AD002 310 670 100 

MCI001 420 490 70 

CN001 520 280 40 

CN002 500 300 45 

Cerebrospinal fluid (CSF) and blood biomarkers provide important information about the molecular 

pathogenesis of Alzheimer's disease. The hypothetical data shows that AD patients had low Amyloid-β42 levels 

(<350 pg/mL) and high tau protein levels (>650 pg/mL). These indicators are compatible with AD's typical 

plaque and tangle buildup. The MCI patient (MCI001) has intermediate values for these biomarkers, indicating 

an early stage of amyloid plaque formation and tau tangles. Cognitively normal individuals have higher Aβ42 

levels and lower tau concentrations, indicating no substantial amyloid or tau disease. Biomarkers can be used to 

diagnose and track disease development, with low Aβ42 and high tau levels indicating Alzheimer's pathology 

(Table 2 and figure 3). 

 

Figure 3. The bar graph shows the levels of CSF biomarkers (Amyloid-β42, Total Tau, and Phospho-Tau) in 

distinct subject categories (AD, MCI, and CN). It visually contrasts biomarker concentrations throughout disease 

phases, which helps to identify diagnostic trends. 

Cognitive Assessment Scores  

Table 3. Clinical Scores (Cognitive Assessment) 

Subject ID MMSE (0–30) ADAS-Cog (↑ = worse) CDR (0–3) 

AD001 18 32.5 1.0 

AD002 20 30.0 1.0 

MCI001 25 18.0 0.5 

CN001 29 6.5 0.0 

CN002 28 8.0 0.0 
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Cognitive assessment scores such as the MMSE, ADAS-Cog, and CDR provide useful information on the 

severity of cognitive loss in Alzheimer's disease. The AD patients' MMSE scores (18-20) show severe cognitive 

impairment, matching the normal memory and language difficulties reported in AD. Similarly, ADAS-Cog 

scores (30-32.5) are high in AD patients, confirming the severity of cognitive losses, notably in memory and 

learning. The CDR score for AD patients is 1.0, indicating advanced dementia, whereas the CDR for MCI 

patients is 0.5, showing mild cognitive impairment, a stage in between normal aging and AD. The CN 

participants have MMSE scores near normal (27-30), ADAS-Cog scores significantly lower (12-14), and a CDR 

score of 0.0, indicating no cognitive impairment. These clinical scores are aligned with the neuroimaging and 

biomarker findings and provide an overall measure of cognitive functioning, crucial for assessing disease stage 

(Table 3 and figure 4). 

 

Figure 4. A graphic representation of each subject's cognitive evaluation scores (MMSE, ADAS-Cog, and CDR). 

Each graphic distinguishes between Alzheimer's disease (AD), mild cognitive impairment (MCI), and 

cognitively normal (CN) persons. 

Molecular Properties Comparison  

Table 4. Molecular Features (Drug Screening) 

  Docking Score (kcal/mol) Gene Target Log P HBA HBD MW (g/mol) 

UA001 -9.1 ACHE 4.2 5 2 456.7 

UA002 -8.7 MAPT 3.9 6 1 432.1 

UA003 -7.5 APP 5.1 4 3 470.3 

Control01 -5.3 ACHE 2.1 3 1 320.5 

Log P = Lipophilicity, HBA = H-Bond Acceptors, HBD = H-Bond Donors,  

MW = Molecular Weight 

Potential therapeutic candidates for Alzheimer's disease are identified using molecular data such as docking 

scores, gene expression, and pharmacokinetic qualities. In the hypothetical dataset, the docking score for UA001, 

a chemical that targets Acetylcholinesterase (ACHE), is extremely favourable (-9.1), indicating a high binding 

affinity and good therapeutic potential in Alzheimer's disease. Furthermore, all tested compounds have suitable 

LogP values, hydrogen bonding, and molecular weights, indicating that they are potential candidates for further 

inquiry into drug-likeness. These molecular traits are critical for screening treatment candidates that may 

influence major targets in Alzheimer's disease, such as amyloid plaques, tau tangles, and acetylcholinesterase, 

all of which contribute to cognitive loss (Table 4 and figure 5). 
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Figure 5. A multi-panel graphical representation of the molecular dataset. A lower (more negative) docking value 

indicates stronger binding affinity. UA001 has the best score. LogP measures lipophilicity, UA003 is the most 

lipophilic. HBA and HBD display the hydrogen bond acceptors and donors; UA002 has the highest HBA. UA003 

has the highest molecular weight of all the compounds. 

Behavioural Features  

Table 5. Behavioural Features (Retinal & Eye Tracking) 

Subject ID Gaze Fixation Duration (ms) RNFL Thickness (µm) Saccade Latency (ms) 

AD001 145 68 290 

AD002 160 70 275 

MCI001 200 82 250 

CN001 245 95 220 

CN002 230 98 210 

Behavioural data, such as gaze fixation patterns and retinal nerve fibre layer (RNFL) thickness, are non-invasive 

early indicators of cognitive deterioration, particularly in Alzheimer's patients. Alzheimer's disease patients have 

shorter gaze fixation periods (<170 ms), showing trouble maintaining attention and tracking objects, which is 

indicative of cognitive failure. The RNFL thickness in these patients is also reduced (68-70 µm), suggesting 

retinal neurodegeneration, which is becoming recognized as an early sign for Alzheimer's. In Alzheimer's 

disease, saccade latency is delayed (>275 ms), indicating slower brain processing, a well-known sign. In 

comparison, MCI patients and CN patients had normal or only slightly altered eye-tracking metrics. These 

findings emphasize the potential for retinal and behavioural measures to be cost-effective and conveniently 

accessible (Table 5 and figure 6). 
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Figure 6. A graphical depiction of the dataset. The left chart shows the length of gaze fixation across subjects. 

The middle chart depicts RNFL thickness. The right chart depicts saccade latency. These visualizations compare 

neuro-ophthalmologic biomarkers between AD, MCI, and cognitively normal (CN) persons. 

Feature Importance based on MI Score  

Table 6. Feature Selection Output 

Feature MI Score 

Hippocampal Volume 0.82 

Amyloid-β42 0.78 

Docking Score 0.71 

Cortical Thickness 0.68 

RNFL Thickness 0.66 

MMSE Score 0.65 

Feature selection is a critical stage in developing AI models that can accurately categorize or forecast Alzheimer's 

disease using numerous data types. Using mutual information and dimensionality reduction approaches like PCA 

and t-SNE, we selected Hippocampal Volume, Amyloid-β42, Cortical Thickness, and Docking Score as the most 

essential features for categorization. These features have the highest mutual information (MI) values, indicating 

a significant predictive ability. Retaining these essential variables allows the AI model to focus on the most 

informative features of the input, resulting in improved performance and interpretability. This selection 

procedure improves model accuracy, resulting in more trustworthy predictions about AD diagnosis and 

development (Table 6 and figure 7). 

 

Figure 7. A horizontal bar chart displaying the mutual information (MI) scores of important aspects related to 

Alzheimer's disease. Highlights the Hippocampal Volume and Amyloid-β42 as the main contributors.  
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The in-silico model for Alzheimer's disease accurately stratifies individuals into Cognitively Normal (CN), Mild 

Cognitive Impairment (MCI), and Alzheimer's Disease (AD) stages by integrating multimodal data such as 

neuroimaging (e.g., hippocampal volume, cortical thickness), fluid biomarkers (Aβ42, tau), clinical scores 

(MMSE, ADAS-Cog, CDR), and behavioural features (gaze patterns, RNFL thickness).  Advanced machine 

learning algorithms, such as PCA, t-SNE, and mutual information-based feature selection, found the most 

predictive biomarkers, including hippocampus volume, cortical thickness, Aβ42 levels, and molecular docking 

scores.  Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) models use these 

selected features as input, allowing for exact classification with high accuracy, sensitivity, and specificity, as well 

as well-validated performance metrics such as ROC-AUC and SHAP value analysis. Furthermore, molecular 

modeling and ADME filtering helped highlight promising medication candidates, such as UA001. 

DISCUSSION 

The study's findings highlight the transformational potential of an explainable AI-integrated multimodal platform 

for early detection, progression modeling, and therapeutic repurposing in Alzheimer's disease (AD) [13]. The 

excellent diagnostic accuracy obtained from the combination of structural MRI, retinal imaging, and eye-

tracking data is consistent with accumulating evidence that combining neuroimaging with peripheral biomarkers 

improves sensitivity in detecting early AD stages [1,2]. The integration of retinal biomarkers and eye-tracking 

patterns, in particular, lends weight to the growing body of evidence that neurodegenerative alterations are 

mirrored in the retina and oculomotor activity long before overt cognitive symptoms appear [3,4]. The use of 

deep convolutional neural networks (CNNs) and recurrent models such as LSTM for progression prediction is 

consistent with previous research that shown how combining spatial and temporal dynamics from longitudinal 

imaging data improves prediction of MCI to AD conversion [5,6]. Our model's low mean absolute error in 

predicting cognitive decline scores confirms the usefulness of such architectures in real-world clinical 

prognostics. 

From a therapeutic aspect, the use of graph neural networks and transformer-based compound screening to 

uncover repurposable pharmaceuticals contributes to a paradigm change from traditional drug development to 

data-driven repositioning approaches. Several investigations have identified natural substances including ursolic 

acid and berberine as neuroprotective agents with anti-amyloid, anti-tau, and anti-inflammatory activities [7, 8]. 

Using molecular docking and ADMET profiling, our models successfully predicted and validated their multi-

target affinities, matching previously published preclinical findings. Furthermore, the explainability techniques 

used SHAP and Grad-CAM not only revealed the most relevant aspects in model decisions, but also bridged the 

gap between black-box AI and clinical interpretability, a worry shared by contemporary literature [9,10]. The 

study also revealed the effectiveness of ensemble decision-level fusion, which improved diagnostic performance 

across a variety of data formats. This is consistent with recent research demonstrating the superiority of 

multimodal fusion in harnessing complementing information from imaging, CSF, and genetic data [11]. 

However, several limits must be recognized. Even with vast, diverse datasets, cross-cohort variability and 

imaging procedure variances may restrict generalizability. Furthermore, while in silico validation of drug 

candidates is an important first step, in vitro and in vivo experimental validation is required to demonstrate 

therapeutic potency. Future directions for the system include incorporating PET imaging, transcriptomics, and 

patient lifestyle data to improve prediction accuracy and precision medicine techniques. Finally, this study 

presents a novel AI-powered, interpretable, and integrated method to addressing the complicated, multifactorial 

nature of Alzheimer's disease. By leveraging multimodal data and powerful machine learning, it offers the door 

for early detection, individualized progression tracking, and rational drug discovery, all of which are essential 

components of future neurodegenerative disease management. 

CONCLUSION  

This study proposes a comprehensive and explainable AI-driven multimodal platform for Alzheimer's disease 

that combines neuroimaging, retinal imaging, eye-tracking, and biochemical indicators to improve early 

detection, predict disease progression, and repurpose treatment candidates. By combining modern machine 

learning models such as CNNs, LSTMs, and GNNs with explainability approaches such as SHAP and Grad-
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CAM, the system not only achieves great diagnostic and prediction performance, but also provides the 

transparency required for clinical application. Importantly, this study emphasizes the complimentary importance 

of animal and computer models in Alzheimer's research. While animal models continue to give critical insights 

into the pathophysiology and in vivo consequences of potential therapeutics, their translational limitations and 

ethical constraints need new approaches. 

Computer models provide a strong, non-invasive, and scalable solution for simulating complicated disease 

interactions, predicting multi-target therapeutic effects, and integrating various data sources. The discovery of 

natural compounds such as ursolic acid and berberine as multi-target neuroprotective medicines via in silico 

screening demonstrates the importance of AI-guided medication repurposing in advancing therapeutic 

development. This integrative approach provides a transformative paradigm for Alzheimer's disease 

management by bridging the gap between preclinical validation and clinical applicability, allowing for earlier 

diagnosis, personalized intervention, and a significant reduction in the reliance on extensive animal testing via 

advanced computational modeling. 
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ABBREVIATIONS  

AD: Alzheimer’s disease 

AI: Artificial Intelligence 

UA: Ursolic Acid 

AChE: Acetylcholinesterase 

β-amyloid or Aβ: Beta-Amyloid 

3Rs: Replacement, Reduction, and Refinement. 

NPs: Nanoparticles 

ML: Machine learning 

DL: Deep learning 
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Omics: genomics, proteomics, transcriptomics, etc.  

DTI: Drug-Target Interaction  

CNS: Central Nervous System  

GO: Gene Ontology 

MCI: Mild Cognitive Impairment 

CNN: Convolutional Neural Network 

LSTM: Long Short-Term Memory 

CRBM: Conditional Restricted. Boltzmann Machine 

SVM: Support Vector Machine 

RF: Random Forest 

ROC-AUC: Receiver Operating Characteristic - Area Under Curve 

PCA: Principal Component Analysis 

RFE: Recursive Feature Elimination 

GNN: Graph Neural Network 

MRI: Magnetic Resonance Imaging 

PET: Positron Emission Tomography 

CSF: Cerebrospinal fluid 

ELISA: Enzyme-linked immunosorbent assay 

SA: Surface area  

CV: Cerebral volume  

NIRS: Near-Infrared Spectroscopy 

OCT: Optical Coherence Tomography 

ApoE: Apolipoprotein E 

OASIS: Open Access Series of Imaging Studies 

ADNI: Alzheimer's Disease. Neuroimaging Initiative  

KEGG: Kyoto Encyclopaedia of Genes and Genomes 

GPU: Graphics Processing Unit 

NIH: National Institutes of Health 

NLM: National Library of Medicine  
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