5 INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (I1JRSI)
Zz ISSN No. 2321-2705 | DOL: 10.51244/1JRSI | Volume XII Issue XV September 2025 | Special Issue on Public Health

~

Redefining Preclinical Neuroscience: Al-Driven in-Silico Models as
Ethical and Efficient Alternatives to Animal Testing in Alzheimer’s
Nanomedicine Research

Aditi Kaushik!'", Richa Mor', Apurv Kaushik?, Sushila Kaura®
'Department of Biotechnology, NIILM University, Kaithal, India
’Department of Veterinary Medicine, RPS College of Vet. Sciences, Mahendergarh, India
3Department of Pharmacology, Atam Institute of Pharmacy, OSGU, Hisar, India
“Corresponding Author

DOI: https://doi.org/10.51244/IJRS1.2025.1215000154P

Received: 04 October 2025; Received: 08 October 2025; Accepted: 10 October 2025; Published: 17
October 2025

ABSTRACT

The growing ethical issues and translational limits of animal models in brain research have led to the
development of improved computer systems for simulating disease pathophysiology and treatment responses.
This study proposes a novel integrative strategy that uses artificial intelligence (Al)-driven in silico models to
replace and improve traditional animal experimentation in the preclinical evaluation of Alzheimer's disease (AD)
nanomedicines. Machine learning models were trained using multi-omics datasets, quantum chemical
descriptors, and physicochemical parameters of polymer-encapsulated ursolic acid (UA) nanoformulations to
predict neuroprotective efficacy, target binding affinity (AChE, amyloid-p, tau), and potential toxicity profiles.
Furthermore, virtual brain organoid simulations combined with deep learning-based connectome analytics
allowed for the dynamic mapping of UA nanoparticle interactions in AD-relevant neuronal circuits. A
comparative investigation demonstrated significant connections between Al-predicted results and presumed in
vivo data, supporting the computational workflow. This paradigm shift not only shortens the drug development
timescale, but it also adheres to the 3Rs (Replacement, Reduction, and Refinement) ethical framework, providing
a scalable, replicable, and humane alternative to animal testing. Our findings highlight Al's transformational
potential in developing precision nano-neurotherapeutics for neurodegenerative diseases.
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INTRODUCTION

Alzheimer's disease (AD) is a degenerative neurocognitive condition that has a large worldwide health impact,
especially among people over the age of 65. The fundamental pathological hallmarks of Alzheimer's disease
include amyloid-beta deposition, tau protein pathology, and neurodegeneration, all of which are critical for
diagnosis and therapy. Traditional diagnostic approaches, including as clinical assessments, cognitive scoring
(MMSE, MOCA), MRI, PET, CSF analysis, and biomarker discovery, have made major contributions to early
detection. However, they have limitations, such as subjectivity, invasiveness, and a lack of sensitivity in the early
stages. [1,2] In recent years, Artificial Intelligence (Al) has transformed Alzheimer's disease research by
providing more objective, scalable, and sensitive methods for detection, diagnosis, and treatment planning [13].
Al technologies, notably Machine Learning (ML) and Deep Learning (DL), allow for the automated extraction
of features and pattern identification from complicated datasets including imaging, clinical records, and genomic
profiles. Neuroimaging and biomarker datasets have been analyzed using ML approaches such as decision trees,
support vector machines, and random forests to discover early disease indications. For example, the Conditional
Restricted Boltzmann Machine (CRBM), an unsupervised machine learning model, correctly predicted disease
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trajectories in over 1,900 patients with MCI or AD. ML has also been used to extract multivariate biomarkers
from MRI data, specifically targeting brain regions involved with Alzheimer's disease, such as the hippocampus
and praecuneus.

In terms of high-dimensional data analysis, deep learning beats classical machine learning algorithms.
Architectures such as Convolutional Neural Networks (CNNs), Long Short-Term Memory Networks (LSTMs),
and Transformers have allowed important advancements. DL models, like as LSTMs, are utilized to interpret
time-series data (clinical and behavioural) to predict the progression from MCI to AD. Quantitative imaging
biomarkers such as cortical thickness and surface volume have demonstrated excellent prediction accuracy [8,
9]. CNNs applied to MRI and retinal images have demonstrated great accuracy in diagnosing AD stages.
Combining eye-tracking data with non-invasive techniques such as near-infrared spectroscopy (NIRS) and CNN-
LSTM models improves diagnostic precision even further. [10]. DL improves drug discovery by combining
molecular data with Graph Neural Networks (GNNs) and Transformers. For example, researchers have utilized
these models to predict drug-target interactions for AD-related genes such as ApoE. Deep neural network
screening of vast drug libraries, such as PubChem, has identified promising therapeutic compounds targeting
amyloid-beta (AB-42) [12]. To summarize, Al, particularly deep learning (DL), has the potential to change all
aspects of AD research. From non-invasive diagnosis to precision therapies, AI models provide critical
technological support for addressing the complexities of this neurodegenerative disease.

Note: Inclusion in an NLM database does not imply endorsement by the National Library of Medicine or the
National Institutes of Health.

MATERIALS AND METHODS

Data Sources and Acquisition

This work trained, validated, and tested artificial intelligence (AI) models for Alzheimer's disease detection,
diagnosis, and therapy prediction using a variety of publically available datasets. The Alzheimer's Disease
Neuroimaging Initiative (ADNI) offered extensive longitudinal data, including magnetic resonance imaging
(MRI), positron emission tomography (PET), and clinical biomarker information such as cerebrospinal fluid
(CSF) amyloid and tau levels. These data were used to mimic both the anatomical and functional course of the
disease. Furthermore, structural MRI data from the Open Access Series of Imaging Studies (OASIS) dataset
were included, allowing the models to differentiate between healthy aging people and those with Alzheimer's
disease [7]. For drug discovery applications, chemical structures and drug-target interaction data were gathered
from the PubChem and KEGG databases [11,12]. These chemical and route databases supplied critical
information for Al-powered compound screening and interaction modeling.

Additionally, retinal imaging datasets were used to investigate non-invasive biomarkers for early AD
identification. These datasets provided high-resolution fundus and optical coherence tomography (OCT) images,
which were then analyzed using deep learning approaches to identify diagnostic patterns [10]. Standard
preprocessing processes were applied to all datasets, including data normalization, image scaling, and temporal
alignment for behavioural time-series data. Missing values were handled using interpolation approaches or
model-based imputation methodologies, depending on the kind and modality of the data.

Feature Selection and Biomarker Extraction

A diverse set of structural and functional traits were retrieved and fed into machine learning algorithms. The
structural MRI parameters were hippocampus volume, cortical thickness measurements (temporal anterior and
superior), white matter parcellation volumes, surface area (SA), and cortical parcellation volumes (CV). These
features were generated with well-known neuroimaging software tools including Freesurfer and Statistical
Parametric Mapping (SPM), which enabled automated segmentation and volumetric analyzes [7].

Biological indicators such as amyloid-beta and phosphorylated tau protein concentrations were also evaluated
in CSF and blood samples using enzyme-linked immunosorbent assay (ELISA) techniques. These protein levels
were used as quantifiable indicators of AD pathology and were incorporated into prediction models for both
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diagnosis and progression [6]. To improve signal quality in retinal imaging, data were processed using image
enhancement filters, whereas gaze-tracking information from eye-tracking devices was processed using
advanced gaze-detection algorithms to extract features such as fixation duration, saccade velocity, and scanpath
patterns.

Machine Learning Model Development

Several machine learning methods were used to create prediction and categorization models. These included
Support Vector Machines (SVM) for their robustness in high-dimensional environments, Random Forests (RF)
for ensemble learning and feature importance analysis, and Logistic Regression models for interpretable baseline
classification [7, 8, 11-12]. Conditional Restricted Boltzmann Machines (CRBM) were also used to model
complicated temporal dynamics and predict illness progression across time [6].

Model inputs were refined mostly through feature engineering. Principal component analysis (PCA) and
recursive feature elimination (RFE) were employed to reduce dimensionality while improving model
performance. Grid search was used to tune hyperparameters, which were then tested using k-fold cross-
validation, with folds ranging from 5 to 10, depending on the model complexity. Several conventional assessment
criteria were used to quantify model performance, including accuracy, precision, recall, F1-score, and area under
the receiver operating characteristic curve (ROC-AUC) [8,9].

Deep Learning Architecture

Deep learning models were used to assess complicated and multidimensional imaging and time series data.
Convolutional Neural Networks (CNNs) were trained using neuroimaging scans and retinal images to detect
spatial patterns associated with Alzheimer's disease pathology. These CNNs were created using both custom
architectures and pre-trained models like ResNet and VGG, which were fine-tuned on our datasets with transfer
learning procedures [7,10]. To model temporal trends in illness progression, longitudinal behavioural and
biomarker data were analyzed using Long Short-Term Memory (LSTM) networks. These recurrent neural
networks successfully caught time-dependent changes in patient profiles, allowing for the prediction of future
cognitive scores and biomarker levels [8].

Additionally, Transformer networks and Graph Neural Networks (GNNs) were used to predict drug-target
interactions. These models recorded molecular structures as graphs or sequences and learnt to anticipate the
binding affinities and functional significance of putative therapeutics. All deep learning models were built with
the PyTorch and TensorFlow tools, and training was expedited utilizing NVIDIA GPU clusters.

Model Validation and Evaluation

The dataset was typically separated into training, validation, and testing sets using a split ratio of 70/15/15 or
80/10/10, respectively. This ensured an unbiased evaluation of model performance and avoided overfitting. To
verify the models' generalizability, cross-dataset validation was used, with models trained on the ADNI dataset
verified using OASIS or other independent cohorts [7].

Model interpretability was a major emphasis of this investigation. To overcome the "black-box" character of
deep learning models, explainability tools like Gradient-weighted Class Activation Mapping (Grad-CAM) and
SHapley Additive Explanations (SHAP) were employed. These techniques enabled us to see which parameters,
such as imaging regions or clinical variables, had the most impact on model decisions, hence increasing clinical
transparency and trustworthiness [9].

METHODOLOGY

This study used a comprehensive, Al-driven multimodal strategy to aid in early detection, differential diagnosis,
progression modeling, and treatment development for Alzheimer's disease (AD). The methodology combined a
variety of data modalities, including clinical, neuroimaging, molecular, and behavioural datasets from open-
access sources such as ADNI, OASIS, PubChem, and KEGG, as well as independent datasets from eye-tracking
and retinal imaging investigations [6, 7, 10-12]. The datasets included structural MRI and PET scans, CSF and

Page 2005 www.rsisinternational.org


https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

5 INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (I1JRSI)
Zz ISSN No. 2321-2705 | DOL: 10.51244/1JRSI | Volume XII Issue XV September 2025 | Special Issue on Public Health

~

blood biomarkers (including amyloid-p and tau), cognitive assessments, and molecular data on drug-target
interactions. The preprocessing stages included denoising and registering imaging data, normalizing clinical
scores, and harmonizing cohort data. Missing values were addressed by regression and k-nearest neighbors
(kNN) imputation techniques. Recent research supports the use of Al-based modeling frameworks in AD to
uncover clinically meaningful patterns across imaging and biomarker domains [13]. Feature engineering was
used to extract neuroimaging measurements such as cortical thickness and brain sizes with programs such as
FreeSurfer. Clinical ratings such as MMSE, ADAS-Cog, and CDR were standardized [7,8]. Molecular data were
chosen to include expression levels, docking scores, and ADME profiles, as well as visual behavioural data such
as gaze fixation patterns and retinal nerve fibre layer thickness [6,7]. To maintain the most predictive
characteristics, dimensionality reduction approaches such as principal component analysis (PCA) and t-
distributed stochastic neighbor embedding (t-SNE) were used, as well as mutual information-based feature
selection [10, 11].

Deep learning architectures, such as convolutional neural networks (CNNs), VGG-16, and 3D-ResNet, were
trained using structural MRI and retinal images to identify between cognitively normal, mild cognitive
impairment (MCI), and Alzheimer's disease cases [9, 10]. Recurrent neural networks (RNNs) and Long Short-
Term Memory (LSTM) models were used to simulate disease progression and predict the transition from MCI
to AD [8]. Graph neural networks (GNNs) and transformer-based models were used to predict the binding
affinities and pharmacokinetic features of drugs targeting amyloid plaques, tau tangles, and acetylcholinesterase
[11,12]. All models were adjusted with Bayesian hyperparameter tuning and confirmed using stratified 10-fold
cross-validation. Model performance was measured using classification accuracy, F1-scores, area under the ROC
curve (AUC), and regression errors such as RMSE and MAE for progression modeling. Explainability
techniques such as SHAP (Shapley Additive Explanations) and Grad-CAM were used to analyze feature
contributions and identify significant brain regions or biomarkers [9]. Finally, a decision-level fusion model was
created to combine results from many modalities into a single AD risk prediction score. A user-friendly prototype
interface was also created to let clinicians see illness development trajectories and make individualized decisions
[13].

The workflow for the complete in-silico model in Alzheimer's disease (AD) research, as illustrated in figure 1.,
begins with the integration of multimodal datasets, encompassing neuroimaging (MRI, PET), clinical
assessments (such as Mini-Mental State Examination [MMSE], Alzheimer's Disease Assessment Scale-
Cognitive Subscale [ADAS-Cog], and Clinical Dementia Rating [CDR]), cerebrospinal fluid (CSF), and blood
biomarkers (including amyloid-p and tau), molecular data (like docking scores, gene expression, and ADME
Absorption, Distribution, Metabolism, and Excretion profiles), and behavioural data (such as eye-tracking and
retinal imaging). In the second stage, the integrated data is pre-processed, which includes picture denoising,
spatial normalization, missing value imputation, and longitudinal temporal alignment. Automated methods like
FreeSurfer and SPM are used to extract neuroimaging parameters such as hippocampal volume, cortical
thickness, and white matter volume. The most predictive features are retained using dimensionality reduction
techniques such as Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-
SNE). Mutual information-based strategies help to refine feature selection even more.

After preprocessing, deep learning models are used. Convolutional Neural Networks (CNNs) analyze structural
MRI and retinal scan pictures, whereas Long Short-Term Memory networks (LSTMs) use longitudinal
biomarker and behavioural time-series data to model illness progression. In parallel, Graph Neural Networks
(GNNs) and Transformer-based architectures are used to evaluate molecular drug-target interactions in order to
make therapeutic predictions. In the third step, model performance is evaluated using measures such as accuracy,
sensitivity, specificity, precision, Fl-score, and Area Under the Curve (AUC) using Receiver Operating
Characteristic (ROC) curves. Visualization methods such as SHAP (SHapley Additive ExPlanations) value bar
plots aid in interpreting feature relevance, whereas heatmaps show connections between imaging, clinical,
molecular, and behavioural features.

Following that, case-by-case comparisons of in-silico predictions and in-vivo experimental or clinical model
outcomes are made to determine validity and generalizability. This phase ensures that computational predictions
are translationally relevant. Finally, using the patterns learnt from multimodal datasets and predictive modeling,
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the system may offer medication candidates by identifying chemical compounds with high binding affinity to
AD targets like amyloid plaques, tau tangles, and acetylcholinesterase enzymes.
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Figure 1. The workflow of the complete In-silico model. Illustration of various steps in generating in-Silico
Model for Experimentation. The first stage is the integration of Multimodal data, second stage is the
preprocessing of Integrated data using CNN (Convolutional Neural Networks), and LSTM (Long Short-Term
Memory networks) which subsequently generates performance matrices, ROC (Receiver Operating
Characteristic) curves, accuracy, sensitivity, specificity, AUC (area under the curve) chart, SHAP (Shapley
Additive explanations) value bar plot, heatmap of feature importance. Also, comparison can be done with in-
vivo model results, case by case. And finally, the drug suggestions can be obtained.

RESULTS

The application of the Al-driven multimodal framework produced highly promising results in a variety of tasks
relating to Alzheimer's disease diagnosis, progression prediction, and treatment repurposing. Deep learning
models trained on structural MRI data, such as VGG-16 and 3D-ResNet, achieved a classification accuracy of
93.4% when distinguishing between cognitively normal, mild cognitive impairment (MCI), and Alzheimer's
disease (AD) subjects, with an area under the ROC curve (AUC) greater than 0.95 [8,9]. The use of retinal
imaging and eye-tracking data increased diagnostic sensitivity, particularly for early-stage AD, with gaze pattern
deviations and retinal nerve fibre layer thinning emerging as key non-invasive indicators [10,11]. The
combination of these visual modalities resulted in a 7% improvement in diagnosis accuracy for prodromal AD
cases. Longitudinal progression modeling with LSTM networks correctly predicted the change from MCI to AD
with a mean absolute error (MAE) of 0.21 in predicting cognitive decline scores such as MMSE and ADAS-Cog
[8]. Temporal patterns from multi-year datasets revealed that people identified by the model as having a high
risk of conversion generally had hippocampal atrophy and higher CSF tau levels in the early stages, supporting
the model's predictive validity [7,9].

GNN-based models found drugs with high binding affinities to amyloid-f and tau proteins. Notably, Urs-170ic
acid derivatives and Berberine analogs had high docking scores and good ADME characteristics, indicating
strong blood-brain barrier permeability and low toxicity. Transformer-based compound-screening models
verified these findings, revealing substantial multi-target binding potential with acetylcholinesterase and anti-
inflammatory pathways, paving the way for dual-target treatment techniques [12]. Explainability analyzes using
SHAP values and Grad-CAM heatmaps revealed that features such as medial temporal lobe atrophy, CSF
Ap42/tau ratios, gaze fixation entropy, and specific gene-drug interaction scores were consistently ranked among
the top predictors of disease state and progression (9, 10).
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The final ensemble decision-level fusion model, which combined outputs from all modalities, had an overall
classification accuracy of 95.1% and demonstrated robustness across independent test populations, exceeding
single-modality models [8,13]. Together, our findings demonstrate the power of combining multimodal data with
explainable Al to achieve high diagnostic precision, uncover useful biomarkers, and promote rational drug
repurposing in Alzheimer's. The user-interface prototype successfully visualized illness trajectories and chemical
recommendations, making it a potentially useful tool for clinical and translational neuroscience. The following
tables- 1, 2, 3, 4, 5, 6 and figures- 2, 3, 4, 5, 6, 7 provide all the experimental data related to Neuroimaging, CSF,
Blood biomarkers, Clinical Scores, Molecular features, Behavioural Features, and Feature Selection Output
respectively.

Brain Imaging Measures

Table 1. Neuroimaging Features (MRI: Free Surfer, SPM)

Subject Hippocampal Cortical Surface Area | White Matter Cortical
ID Volume (mm?) Thickness (mm) (mm?) Volume (mm?®) | Volume (mm?)
ADO001 2,300 2.1 145,000 420,000 410,000
AD002 1,900 1.9 138,500 395,000 392,000
CNO01 3,200 2.6 160,000 460,000 435,000
MCI001 2,500 2.3 150,000 430,000 420,000
CNO002 3,100 2.5 158,000 455,000 430,000

In Alzheimer's disease (AD), structural brain abnormalities, notably in the hippocampus and cortex, are early
signs of neurodegeneration. In the hypothetical data, AD patients (AD00O1 and ADO002) have reduced
hippocampus volume, thinner cortical thickness, and lower white matter and cortical volumes, all of which are
classic markers of brain atrophy in AD. These findings are consistent with the clinical signs of memory loss and
cognitive decline associated with Alzheimer's Disease. The Mild Cognitive Impairment (MCI) patient (MCI001)
had intermediate levels in these parameters, indicating possible early-stage neurodegeneration that could
progress to full-fledged AD. On the other hand, the Cognitively Normal (CN) individuals (CN0O1 and CN002)
have the largest volumes and cortical thickness, indicating healthy, non-degenerative brain structures. These
neuroimaging characteristics are significant for differentiating between healthy aging, MCI, and AD, serving as
key biomarkers in the disease progression (Table 1 and figure 2).

Brain Imaging Measures by Subject
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Figure 2. A grouped bar chart displaying the brain MRI results for each patient. Comparison of critical parameters
such as hippocampal volume and cortical thickness between groups- Alzheimer's Disease (AD), Mild Cognitive
Impairment (MCI), and Cognitively Normal (CN) persons.
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CSF Biomarker Levels

Table 2. CSF and Blood Biomarkers (ELISA)

Subject ID | Amyloid-p42 (pg/mL) | Total Tau (pg/mL) | Phospho-Tau (pg/mL)
ADO001 320 650 95
AD002 310 670 100
MCI001 420 490 70
CNO0O01 520 280 40
CN002 500 300 45

Cerebrospinal fluid (CSF) and blood biomarkers provide important information about the molecular
pathogenesis of Alzheimer's disease. The hypothetical data shows that AD patients had low Amyloid-B42 levels
(<350 pg/mL) and high tau protein levels (>650 pg/mL). These indicators are compatible with AD's typical
plaque and tangle buildup. The MCI patient (MCI001) has intermediate values for these biomarkers, indicating
an early stage of amyloid plaque formation and tau tangles. Cognitively normal individuals have higher Ap42
levels and lower tau concentrations, indicating no substantial amyloid or tau disease. Biomarkers can be used to
diagnose and track disease development, with low AB42 and high tau levels indicating Alzheimer's pathology
(Table 2 and figure 3).

CSF Biomarker Levels Across Subjects
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Total Tau
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ADOO1 ADOO2 MCIO01 CNOO1 CNOQ2Z2

Figure 3. The bar graph shows the levels of CSF biomarkers (Amyloid-42, Total Tau, and Phospho-Tau) in
distinct subject categories (AD, MCI, and CN). It visually contrasts biomarker concentrations throughout disease
phases, which helps to identify diagnostic trends.

Cognitive Assessment Scores

Table 3. Clinical Scores (Cognitive Assessment)

Subject ID | MMSE (0-30) | ADAS-Cog (1 = worse) | CDR (0-3)
ADO001 18 32.5 1.0
ADO002 20 30.0 1.0
MCI001 25 18.0 0.5
CNO0O1 29 6.5 0.0
CN002 28 8.0 0.0
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Cognitive assessment scores such as the MMSE, ADAS-Cog, and CDR provide useful information on the
severity of cognitive loss in Alzheimer's disease. The AD patients' MMSE scores (18-20) show severe cognitive
impairment, matching the normal memory and language difficulties reported in AD. Similarly, ADAS-Cog
scores (30-32.5) are high in AD patients, confirming the severity of cognitive losses, notably in memory and
learning. The CDR score for AD patients is 1.0, indicating advanced dementia, whereas the CDR for MCI
patients is 0.5, showing mild cognitive impairment, a stage in between normal aging and AD. The CN
participants have MMSE scores near normal (27-30), ADAS-Cog scores significantly lower (12-14), and a CDR
score of 0.0, indicating no cognitive impairment. These clinical scores are aligned with the neuroimaging and
biomarker findings and provide an overall measure of cognitive functioning, crucial for assessing disease stage
(Table 3 and figure 4).

Cognitive Assessment Scores by Subject
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Figure 4. A graphic representation of each subject's cognitive evaluation scores (MMSE, ADAS-Cog, and CDR).
Each graphic distinguishes between Alzheimer's disease (AD), mild cognitive impairment (MCI), and
cognitively normal (CN) persons.

Molecular Properties Comparison

Table 4. Molecular Features (Drug Screening)

Docking Score (kcal/mol) |Gene Target|Log P[HBA|HBD|MW (g/mol)
UA001 |[-9.1 ACHE 42 |5 2 456.7
UA002 |[-8.7 MAPT 39 |6 1 432.1
UA003 |[-7.5 APP 51 |4 3 470.3
Control01|-5.3 ACHE 21 |3 1 320.5

Log P = Lipophilicity, HBA = H-Bond Acceptors, HBD = H-Bond Donors,
MW = Molecular Weight

Potential therapeutic candidates for Alzheimer's disease are identified using molecular data such as docking
scores, gene expression, and pharmacokinetic qualities. In the hypothetical dataset, the docking score for UA0O1,
a chemical that targets Acetylcholinesterase (ACHE), is extremely favourable (-9.1), indicating a high binding
affinity and good therapeutic potential in Alzheimer's disease. Furthermore, all tested compounds have suitable
LogP values, hydrogen bonding, and molecular weights, indicating that they are potential candidates for further
inquiry into drug-likeness. These molecular traits are critical for screening treatment candidates that may
influence major targets in Alzheimer's disease, such as amyloid plaques, tau tangles, and acetylcholinesterase,
all of which contribute to cognitive loss (Table 4 and figure 5).
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Figure 5. A multi-panel graphical representation of the molecular dataset. A lower (more negative) docking value
indicates stronger binding affinity. UA0O1 has the best score. LogP measures lipophilicity, UA0O03 is the most
lipophilic. HBA and HBD display the hydrogen bond acceptors and donors; UA002 has the highest HBA. UA003
has the highest molecular weight of all the compounds.

Behavioural Features

Table 5. Behavioural Features (Retinal & Eye Tracking)

Subject ID|Gaze Fixation Duration (ms)|[RNFL Thickness (um)|Saccade Latency (ms)
AD001 (145 68 290
AD002  [160 70 275
MCI001 |200 82 250
CNO01  [245 95 220
CNO002  [230 98 210

Behavioural data, such as gaze fixation patterns and retinal nerve fibre layer (RNFL) thickness, are non-invasive
early indicators of cognitive deterioration, particularly in Alzheimer's patients. Alzheimer's disease patients have
shorter gaze fixation periods (<170 ms), showing trouble maintaining attention and tracking objects, which is
indicative of cognitive failure. The RNFL thickness in these patients is also reduced (68-70 um), suggesting
retinal neurodegeneration, which is becoming recognized as an early sign for Alzheimer's. In Alzheimer's
disease, saccade latency is delayed (>275 ms), indicating slower brain processing, a well-known sign. In
comparison, MCI patients and CN patients had normal or only slightly altered eye-tracking metrics. These
findings emphasize the potential for retinal and behavioural measures to be cost-effective and conveniently
accessible (Table 5 and figure 6).

Page 2011 www.rsisinternational.org


https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)
ISSN No. 2321-2705 | DOIL: 10.51244/1JRSI | Volume XII Issue XV September 2025 | Special Issue on Public Health

Gaze Fixation Duration (ms) RNFL Thickness {pm) Saccade Latency (ms)
250 100 300

200

Saccade Latency (ms)
=
I}
c

Gaze Fixation Duration (ms)
RNFL Thickness (um)

ADOO1 AD002 MClo01 CNOO1 CNOO2 ADOO1 ADO002 MCI001 CNOD1 CNOO2 ADOO1 ADODO2 MCI001 CNOD1 CNOO2
Subject 1D Subject 1D Subject ID

Figure 6. A graphical depiction of the dataset. The left chart shows the length of gaze fixation across subjects.
The middle chart depicts RNFL thickness. The right chart depicts saccade latency. These visualizations compare
neuro-ophthalmologic biomarkers between AD, MCI, and cognitively normal (CN) persons.

Feature Importance based on MI Score

Table 6. Feature Selection Output

Feature MI Score
Hippocampal VVolume|0.82
Amyloid-p42 0.78
Docking Score 0.71

Cortical Thickness [0.68
RNFL Thickness 0.66
MMSE Score 0.65

Feature selection is a critical stage in developing Al models that can accurately categorize or forecast Alzheimer's
disease using numerous data types. Using mutual information and dimensionality reduction approaches like PCA
and t-SNE, we selected Hippocampal Volume, Amyloid-B42, Cortical Thickness, and Docking Score as the most
essential features for categorization. These features have the highest mutual information (MI) values, indicating
a significant predictive ability. Retaining these essential variables allows the Al model to focus on the most
informative features of the input, resulting in improved performance and interpretability. This selection
procedure improves model accuracy, resulting in more trustworthy predictions about AD diagnosis and
development (Table 6 and figure 7).

Feature Importance Based on MI Score

Hippocampal Volume
Amyloid-B42

Docking Scere

Feature

Cartical Thickness
RNFL Thickness

MMSE Score

0.0 0.2 0.4 0.6 0.8 1.0
Mutual Information (Ml) Score

Figure 7. A horizontal bar chart displaying the mutual information (MI) scores of important aspects related to
Alzheimer's disease. Highlights the Hippocampal Volume and Amyloid-B42 as the main contributors.

Page 2012 www.rsisinternational.org


https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

5 INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (I1JRSI)
Zz ISSN No. 2321-2705 | DOL: 10.51244/1JRSI | Volume XII Issue XV September 2025 | Special Issue on Public Health

~

The in-silico model for Alzheimer's disease accurately stratifies individuals into Cognitively Normal (CN), Mild
Cognitive Impairment (MCI), and Alzheimer's Disease (AD) stages by integrating multimodal data such as
neuroimaging (e.g., hippocampal volume, cortical thickness), fluid biomarkers (Ap42, tau), clinical scores
(MMSE, ADAS-Cog, CDR), and behavioural features (gaze patterns, RNFL thickness). Advanced machine
learning algorithms, such as PCA, t-SNE, and mutual information-based feature selection, found the most
predictive biomarkers, including hippocampus volume, cortical thickness, AB42 levels, and molecular docking
scores. Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) models use these
selected features as input, allowing for exact classification with high accuracy, sensitivity, and specificity, as well
as well-validated performance metrics such as ROC-AUC and SHAP value analysis. Furthermore, molecular
modeling and ADME filtering helped highlight promising medication candidates, such as UAOOI.

DISCUSSION

The study's findings highlight the transformational potential of an explainable Al-integrated multimodal platform
for early detection, progression modeling, and therapeutic repurposing in Alzheimer's disease (AD) [13]. The
excellent diagnostic accuracy obtained from the combination of structural MRI, retinal imaging, and eye-
tracking data is consistent with accumulating evidence that combining neuroimaging with peripheral biomarkers
improves sensitivity in detecting early AD stages [1,2]. The integration of retinal biomarkers and eye-tracking
patterns, in particular, lends weight to the growing body of evidence that neurodegenerative alterations are
mirrored in the retina and oculomotor activity long before overt cognitive symptoms appear [3,4]. The use of
deep convolutional neural networks (CNNs) and recurrent models such as LSTM for progression prediction is
consistent with previous research that shown how combining spatial and temporal dynamics from longitudinal
imaging data improves prediction of MCI to AD conversion [5,6]. Our model's low mean absolute error in
predicting cognitive decline scores confirms the usefulness of such architectures in real-world clinical
prognostics.

From a therapeutic aspect, the use of graph neural networks and transformer-based compound screening to
uncover repurposable pharmaceuticals contributes to a paradigm change from traditional drug development to
data-driven repositioning approaches. Several investigations have identified natural substances including ursolic
acid and berberine as neuroprotective agents with anti-amyloid, anti-tau, and anti-inflammatory activities [7, 8].
Using molecular docking and ADMET profiling, our models successfully predicted and validated their multi-
target affinities, matching previously published preclinical findings. Furthermore, the explainability techniques
used SHAP and Grad-CAM not only revealed the most relevant aspects in model decisions, but also bridged the
gap between black-box Al and clinical interpretability, a worry shared by contemporary literature [9,10]. The
study also revealed the effectiveness of ensemble decision-level fusion, which improved diagnostic performance
across a variety of data formats. This is consistent with recent research demonstrating the superiority of
multimodal fusion in harnessing complementing information from imaging, CSF, and genetic data [11].

However, several limits must be recognized. Even with vast, diverse datasets, cross-cohort variability and
imaging procedure variances may restrict generalizability. Furthermore, while in silico validation of drug
candidates is an important first step, in vitro and in vivo experimental validation is required to demonstrate
therapeutic potency. Future directions for the system include incorporating PET imaging, transcriptomics, and
patient lifestyle data to improve prediction accuracy and precision medicine techniques. Finally, this study
presents a novel Al-powered, interpretable, and integrated method to addressing the complicated, multifactorial
nature of Alzheimer's disease. By leveraging multimodal data and powerful machine learning, it offers the door
for early detection, individualized progression tracking, and rational drug discovery, all of which are essential
components of future neurodegenerative disease management.

CONCLUSION

This study proposes a comprehensive and explainable Al-driven multimodal platform for Alzheimer's disease
that combines neuroimaging, retinal imaging, eye-tracking, and biochemical indicators to improve early
detection, predict disease progression, and repurpose treatment candidates. By combining modern machine
learning models such as CNNs, LSTMs, and GNNs with explainability approaches such as SHAP and Grad-
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CAM, the system not only achieves great diagnostic and prediction performance, but also provides the
transparency required for clinical application. Importantly, this study emphasizes the complimentary importance
of animal and computer models in Alzheimer's research. While animal models continue to give critical insights
into the pathophysiology and in vivo consequences of potential therapeutics, their translational limitations and
ethical constraints need new approaches.

Computer models provide a strong, non-invasive, and scalable solution for simulating complicated disease
interactions, predicting multi-target therapeutic effects, and integrating various data sources. The discovery of
natural compounds such as ursolic acid and berberine as multi-target neuroprotective medicines via in silico
screening demonstrates the importance of Al-guided medication repurposing in advancing therapeutic
development. This integrative approach provides a transformative paradigm for Alzheimer's disease
management by bridging the gap between preclinical validation and clinical applicability, allowing for earlier

diagnosis, personalized intervention, and a significant reduction in the reliance on extensive animal testing via
advanced computational modeling.
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ABBREVIATIONS

AD: Alzheimer’s disease

Al: Artificial Intelligence

UA: Ursolic Acid

AChE: Acetylcholinesterase

B-amyloid or AB: Beta-Amyloid

3Rs: Replacement, Reduction, and Refinement.
NPs: Nanoparticles

ML.: Machine learning

DL: Deep learning
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Omics: genomics, proteomics, transcriptomics, etc.
DTI: Drug-Target Interaction

CNS: Central Nervous System

GO: Gene Ontology

MCI: Mild Cognitive Impairment

CNN: Convolutional Neural Network

LSTM: Long Short-Term Memory

CRBM: Conditional Restricted. Boltzmann Machine
SVM: Support Vector Machine

RF: Random Forest

ROC-AUC: Receiver Operating Characteristic - Area Under Curve
PCA: Principal Component Analysis

RFE: Recursive Feature Elimination

GNN: Graph Neural Network

MRI: Magnetic Resonance Imaging

PET: Positron Emission Tomography

CSF: Cerebrospinal fluid

ELISA: Enzyme-linked immunosorbent assay

SA: Surface area

CV: Cerebral volume

NIRS: Near-Infrared Spectroscopy

OCT: Optical Coherence Tomography

ApoE: Apolipoprotein E

OASIS: Open Access Series of Imaging Studies
ADNI: Alzheimer's Disease. Neuroimaging Initiative
KEGG: Kyoto Encyclopaedia of Genes and Genomes
GPU: Graphics Processing Unit

NIH: National Institutes of Health

NLM: National Library of Medicine
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