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ABSTRACT

A large volume of new data is generated every moment of the day by various domains of social media, bank
transactions, and online websites. One of the vital means in dealing with this data is to classify it into a set of
clusters. At present, many clustering algorithms have been proposed and improved due to the face of large-
scale and high-dimensional data, however, they have not achieved better effects and do not generalize well.
This paper improves the k-means algorithm, where its results are sensitive to the initial clustering centre, and
the clustering results of different similarity measurement methods would be different. The incorporation of
in-built polygon sizes with their respective fuzzy linguistic hedge satisfactions for the classification of data
points made clusters distinct from each other. To verify the effectiveness of the proposed methods, two sets
of data were used as experimental data sets, which produced a good clustering solution with low processing
times.

Keywords: k-means, Inertia method, inter-cluster, fuzzy linguistic, polygon

INTRODUCTION

Clustering is a type of unsupervised learning where data points are grouped into different sets based on their
degree of similarity, such as Euclidean based distance, correlation-based distance, Pearson correlation
distance, Spearman correlation distance, etc. There are various types of clustering such as hierarchical
clustering (agglomerative clustering with bottom-up approach, divisive clustering with top down approach
for examples, Clustering using representative, Balanced Iterative Reducing Clustering), partitioning
clustering (k-means clustering for example Clustering Large Application based upon Randomized Search,
fuzzy c-means clustering, mean shift clustering). Other types are density-based such as Density Spatial
Clustering of Application with Noise, Ordering Points to Identify Clustering Structure, grid clustering such
as Statistical Information Grid, Clustering in Quest, etc.

Clustering has been applied in various sectors such as market segmentation, where customers are found in
terms of behaviour or attributes or similar products, image segmentation or compression in terms of similar
regions or colour separation, and document clustering based on topics or contents. Other areas include data
summarization, such as image processing, vector quantization, similar trends detection in dynamic data,
social network analysis of generating sequences in images, videos, or audio, and biological data analysis.
Clustering could be used for anomaly detection for fraud or intrusion, a recommender system for products or
services based on past purchases or performances. One of the properties of cluster states is that the points
within a cluster should be similar to each other. This paper aims to minimize the distance between the points
within a cluster, focusing on the k-means clustering method.

K-means is very fast, robust, and easier to understand. It works by iteratively assigning data points to the
nearest cluster centroid and updating the centroid until they stabilize. It is easy to implement, can work with
a large number of variables, and can quickly change clusters when the centroids are recomputed. The

Page 1383
www.rsisinternational.org


https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/
https://doi.org/10.51244/IJRSI.2025.12040155

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (1JRSI)
ISSN No. 2321-2705 | DOI: 10.51244/1JRSI [Volume XII Issue IV April 2025

-~

RSIS ¥

=
”
v

algorithm requires a prior specification of the number of cluster centres. The random initialization step
causes the k-means algorithm to be non-deterministic, meaning that cluster assignment will vary if you run
the same algorithm twice on the same dataset. The algorithm might create clusters that do not quite match
the actual data distribution, leading to some clusters being too small or too large compared to others. This
might lead to clusters that do not accurately reflect the true structure of the data. The weakness of the k-
means clustering is that we do not know how many clusters we need by just running the model. We need to
test ranges of values to decide on the best value of k. The k value in the k-means algorithm is a crucial
parameter that determines the number of clusters to be formed in the dataset. It is important to choose the
right value of k, as a small value can result in under-clustered data, and a large value can cause over-
clustering. In the k-means algorithm, the processing mode of abnormal data and the similarity calculation
method will affect the clustering division.

K-means++ algorithm, an improved k-means, ensures a smarter initialization of the centroids and improves
the quality of the clustering. The improved algorithm minimizes the chance of picking centres that are close
to one another while avoiding the systematic pitfall of the farthest-first traversal method. Inertia method
makes sure that the first property of all the data points in a cluster should be similar to each other is satisfied.
Calculation of intra-cluster distance and inter-cluster distance makes sure that the second property of the data
points from different clusters should be as different as possible to have more meaningful clusters. The time
complexity of the k-means algorithm is O(NTK), where N is the total number of data sets, K is the total
number of partitions, and T is the number of iterations in the relatively high clustering process. This paper
improves the initial centre points of the k-means clustering algorithm so that the clustering result has a low
fluctuation.

LITERATURE REVIEW

Many clustering techniques have been developed in different application fields, but they have not achieved a
better effect due to at times datasets with different data types. Although researchers have proposed variants
of the k-means algorithm to overcome these impediments of assignment of centroids and number of clusters
and ability to handle various data types, they are, however domain domain-specific and do not generalize
well.

[1] defined the concepts of neighbourhood coupling and separation of objects by using the upper and lower
approximations of object neighbourhood and neighbourhood model. They proposed an initial clustering
centre selection algorithm, which showed significant improvement. [2] proposed an improvement of the k-
means++ algorithm to improve the way of the initial centroids were selected. The first centroid was selected
in a random number and all the remaining centroids were picked by proportional probability to the shortest
distance from all the existing centroids. [3] proposed a clustering algorithm based on maximum and
minimum distance and weighted similarity calculation (MW-k-means). In the MW-k-means, the initial
cluster centre is selected according to the idea of the maximum and minimum distance, and then the
weighted similarity is used to divide each data point into corresponding clusters. This method avoided the
clustering seeds from being close to each other in the initial value of the selection of the k-means algorithm.
The MW-k-means integrates the advantages of weighted k-means (w-k-means) and maximum k-means (m-
k-means) with faster convergence speed, more accurate clustering results, and higher stability, which can be
used for practical clustering.

[4] described the k-means algorithm of separating data and objects into different clusters. They noted that
objects with similar properties are put in one cluster and objects with different properties are put in a separate
cluster. This permitted large datasets to be easily scaled with k-means clustering system learning techniques,
which work in an unsupervised manner. This gave a strong guarantee of the convergence and generalized the
clusters for the various shapes and structures. [5] compared many k-means algorithms with a series of
experiments. Experimental results showed that the method was reasonable for the selection of the center
point, and the calculation of similarity produced a better clustering effect. [6] proposed initial cluster based
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on the relative distance of each data point from the initial centroids. These clusters were subsequently fine-
tuned by using a heuristic approach.

[7] worked on the variants for solving the problem of initialization of the k-means algorithm. [8] proposed a
simple and efficient clustering algorithm to solve the problem of the cluster centre point not being well-
determined. The modified algorithm was built on a kd-tree data structure for the data points. The modified
algorithm could avoid entering the local optimal solution. [9] presented a modified k-means algorithm based
on self-paced learning theory. This method of self-paced learning theory was used to select a competing
training subset that helps the k-means algorithm to build an initial cluster model. The generalization ability
of the algorithm was then improved by subsequently adding training subsets found by self-paced learning
until the model reached an optimal performance. The authors proposed this algorithm and demonstrated its
performance on several real datasets.

[10] proposed a co-clustering algorithm for dealing with sparse and high-dimensional data that outperformed
the basic k-means. [11] incorporated cuckoo search along with the k-means algorithm. The cuckoo search
algorithm was modified by the authors, which helped to reach a better solution since the search step size
factor was changed. The modified cuckoo search algorithm was robust enough to reach a near-optimal
solution. [12] proposed an initial estimation method for computing the covariance matrix for the k-means
algorithm using Mahalanobis distance. It involved finding a group of points comprised of neighbours with
high density that represent the centroids of the selected clusters. These provided an approximate estimate of
the covariance matrix, which was updated successively using the proposed method. [13] analysed the
stability of the k-means clustering algorithm in a more practical scenario, the parameter of cluster number
was chosen by stability-based model selection.

[14] reported a k-means algorithm that generated the initial centroids using pair-wise computed distances,
which put all the closer points based on the threshold value for the minimum number of clusters required to
build a cluster. [15] worked on k-means algorithm that is characterized by sorting all the dataset records
using a table in which the sorted table was divided into multiple sub-tables that equalled the number of the
desired initial centroids. [16] presented the k-means algorithm that monitored the centroids, which would not
change anymore while the algorithm was still running. [17] proposed a novel k-means clustering algorithm,
which reformulated the classical k-means objective function as a trace maximization problem and then
replaced it with a new formulation. The proposed algorithm does not need to calculate the cluster centers in
each iteration and requires fewer additional intermediate variables during the optimization process. In
addition, the authors proposed an efficient iterative re-weighted algorithm to solve the involved optimization
problem and provided the corresponding convergence analysis. The proposed algorithm keeps a consistent
computational complexity as Lloyd's algorithm, O(ndk) , but shows a faster convergence rate in experiments.
Extensive experimental results on real-world benchmark datasets showed the effectiveness and efficiency of
the proposed algorithm.

[18] presented a process that utilizes the farthest first and canopy algorithms to reduce the number of
iterations in the k-means clustering. This improvement focused on enhancing the centroid initialization
method for each cluster. The research study utilized ten datasets from the UCI machine learning repository to
test the effectiveness of improving the k-means clustering algorithm. It compared the number of iterations
and the sum of squares error as performance metrics. The results showed that the farthest first and canopy
algorithms significantly reduced the number of iterations in the k-means clustering when compared to
random centroid initialization. These research findings confirmed the hypothesis that the method of centroid
initialization for each cluster impacted the iteration process of k-means clustering.

Due to their popularity and ease of use, k-means clustering methods were used in conjunction with deep
learning for tasks as image segmentation and handwriting recognition. A more recent work used a fully
connected deep convolutional neural network along with k-means, and was used to perform pixel matching
between a segmented image and a convoluted image. [19] proposed the k-means clustering algorithm based
on the optimization of artificial fish swarm, which can obtain the global optimal division. This paper aims to
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present an improvement of the initial value of the k-means algorithm for good quality of clusters’ results
with low processing time, where the optimal picking value of k from k-means is subjective for interpretation
with the underlying structure of the dataset.

TYPE OF DISTANCE MEASURE

Several studies have suggested a wide range of distance metrics for data clustering. This section briefly
describes seven widely used distance measures.

Euclidean Distance Measure

The Euclidean distance between the points x and y in two-dimensional plane is given by:

d(x, ) = 04— V)P + (% - ¥,)°
In case there is an extension to n dimensions and the points x and y are of the form
X:(Xl, X2’X3+"'+Xn) y:(yl’ yz’y3+m+yn)

then the Euclidean distance is given as follows:

dtx )= [3 06 - Y

Manhattan distance

The Manhattan distance, also called taxicab distance or city block distance, is another popular distance
metric. The Manhattan distance between the points x and y is given by:

d(x, y) = ‘X1_Y1| + |X2 - y2|
In n-dimensional space, where each point has n coordinates, the Manhattan distance is given by:
d(x y) = > - v
i=1
Though the Manhattan distance does not give the shortest distance between any two given points, it is often
preferred in applications where the feature points are located in a high-dimensional space.

Minkowski distance

Minkowski distance is named after a German mathematician, Henmann Minkowski and is in a normed
vector space which is given by:

dx =k v ¥, for p>1

It is to note that for p = 1, the Minkowski distance equation takes the same form as that of Manhattan
distance and when p = 2, it is equivalent to the Euclidean distance:
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Squared Euclidean distance

The squared Euclidean distance between the point’s p and g in two-dimensional plane is given by:

d?(p, @) = (p,— )" + (P, — @,)° + (P;— Q)° +..+(P — )° +..+ (P, — 0,)°

In case there is an extension to n dimensions at the point’s p and g then the squared Euclidean distance is
given as follows:

d*(p, o) = 3(p,—q,)

Eisen cosine correlation distance

Eisen cosine correlation distance is given as:

DX,

deisen (X' y) =1- —_—

Mahalanobis distance

Mahalanobis distance is the distance between two points in multivariate space. For uncorrelated variables,
the Euclidean distance equals the Mahalanobis distance. The Mahalanobis distance quantities relative
distance from the centroid, in which the centroid is the point in multivariate space where all means from all
variables intersect. The Mahalanobis distance between two objects is formally defined as:

Ta 1 05
dm.s\halanobis = I:(XB _XA) *C *(XB _XA):I

where X, and X, are a pair of objects and ¢ is the sample covariance matrix. T is the transpose

operation, which flips a matrix over its diagonal. A different version of the formula uses distances from each
observation to the central mean, and the equation is given as follows:

0, =| o+ —x»TS

where X, is an object vector and X is the arithmetic mean vector

Chebyshev distance

Chebyshev distance, also known as maximum value distance, is used to examine the absolute magnitude of
the differences between the coordinates of a pair of objects and the equation is given as follows:

dChebyshev(p1 q) = max(‘ pi - qi ‘)

Properties of distance measure

i.  No negative distance
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Distances should always be non-negative. This means, it should be greater than or equal to zero.

d(X,X) > 0 ;VX,X;,€S

] 1! J ]
ii.  Distances are positive

d(x,x) X; VX, X, €S

= 0, :XJ

Distances are positive, except for the distance from a point to itself
iii.  Distance is symmetric

If x and y are two points in a metric space, then the distance between x and y should be equal to the
distance between y and x

d(x,x) d(x;,%) VX, X;,€S

iv.  Triangle inequality

Given three points x, y and z, the distance metric should satisfy the triangle inequality

dix, %) <d(x, %) +d(, %) V%, X, % €S

1! J7

3.2 k-means and k-means++ algorithms
Let X =[x,X,, X;,..., X,] be a set of data pointsand V =[v,,V,,V;,...,V,] be the set of centres.

i.  randomly select ‘¢’ cluster centre
ii.  calculate the distance between each data point and the cluster centre
iii.  assign the data point to the cluster centre whose distance from the cluster centre is the minimum of all
the cluster centres

G
iv.  recalculate the new cluster centre using v, = (l)z X, where c; represent the number of data points in
i j=1

i" cluster
v.  recalculate the distance between each data point and the newly obtained cluster centres
vi.  if no data point was reassigned, then stop; otherwise, repeat from step ¢

k-means algorithm aims at minimizing an objective function known as the squared error function, given by

J(v) = iiwik —

i=1 k=1
where || x — | Is the Euclidean distance between x, and s,

w, =1 for the data point x. if it belongs to cluster k, otherwise w, = 0. It is noted that s, is the centroid

of X;’s cluster.

This is a minimization problem of two parts.
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part(1): There is a need to minimize J(v) with respect to w, and treat g, fixed.
part(2): There is a need to minimize J(v) with respect to x, and treat w, fixed.

Technically, differentiation J(v) concerning  w, first (part(1)) and update cluster assignment and

differentiation of J(v) with respect to g, (part(2)) and recomputed the centroid after the cluster assignment
was needed.

Therefore, part(1), which would assign the data point X, to the closest cluster, judged by its sum of squared

. A, g, &
distances from the cluster’s centroid, is —— = [ — ||2
" im1 k=1

ik

{ if k=argmin, HX‘ ~u |
0

otherwise

part(2), which recomputed the centroid of each cluster to reflect the new assignment, is given as
0J

M
— =2> W, (X — =0
aNik IZ:l: |k(| :uk)

M .
D w x!

i=1

M
2 W

i=1

where p, =

METHODOLOGY

Selection of k in k-means or k-means++

Steps 1 and 2 of k-means or k-means++ are about choosing the number of clusters (k). These two steps are
modified using the sizes of polygons as centroids and fuzzy linguistic hedges for clustering satisfactions.
Table 1 illustrates the procedure for the sizes of the polygon and fuzzy linguistic hedges.

Table 1: Sizes of the polygon and fuzzy linguistic hedges

Polygon size Vertices number |Centroid/cluster Fuzzy linguistic hedges
number

Straight line =2 |2 2 (high, low)

Triangle = 3 3 3 (high, average, low)

Quadrilateral =4 |4 4 (excellence, good, fair, poor)

Pentagon =5 5 5 (very high, high, average, low, very low)

Decagon = 10 10 10 (extremely good, very very good, very good,
good, more or less good, average, more or
less low, low, very low, extremely low )

I.  Read the variables and visualize the points in x and y axis.
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Vii.

The first cluster is chosen uniformly at the first data points of x and y axis as ‘a’

Using the first point, intra-cluster is computed for grouping all points together as well as monitoring
the distance d(x) of each data point that has been chosen uniformly.

The second cluster is chosen by computing squared distance (d(x))? as ‘b’, which is the farthest from
the first cluster a. The first and second would form a straight line with two vertices or two centroids.
Inter-cluster is computed using the first and second clusters by applying fuzzy linguistic hedges.

The third cluster is chosen by computing squared distance (d(x))? as ‘c’, which is farthest from the
second cluster ‘b’. The first, second, and third clusters would form a triangle with three vertices or
three centroids. Inter-cluster is computed using the first, second, and third clusters by applying fuzzy
linguistic hedges.

The fourth cluster is chosen by computing squared distance (d(x))? as ‘d’ which is farthest from the
third cluster ‘c’. The first, second, third, and fourth clusters would form a quadrilateral with four
vertices or four centroids. Inter-cluster is computed using the first, second, third, and fourth clusters by
applying fuzzy linguistic hedges.

The fifth cluster is chosen by computing squared distance (d(x))? as ‘e’, which is farthest from the
fourth cluster ‘d’. The first, second, third, fourth, and fifth clusters would form a pentagon with five
vertices or five centroids. Inter-cluster is computed using the first, second, third, fourth, and fifth
clusters by applying fuzzy linguistic hedges. This process would continue for other polygon sizes of
hexagon, heptagon, octagon, nonagon, decagon, hendecagon, etc, with their respective fuzzy linguistic
hedges.

Fuzzy linguistic hedges

Let the centroid be the universe of discourse, C = [0, 10]. Then, the fuzzy sets ‘high’ and ‘low’ may
subjectively be defined as follows:

flow (C) = {

fhigh (C) = {

1 0<c <5
(L+((c-5)/1.5))", 5 < ¢ <10,

0 0<c <5
(L+((c=5)/1)2)", 5<c¢<10,

where f, and f are the membership functions of the fuzzy sets “low” and “high” respectively. This
translates into high and low centroids of certain data points.

These two fuzzy linguistic hedges of high and low could be extended into three as low, average, and high
centroids of other certain data points. The same is also true for four fuzzy linguistic hedges of poor, fair,
good, and excellent, centroids of data points after visualization. For instance, fuzzy linguistic hedges of five

centroids could be constructed as matching techniques. Let F and F; be two different fuzzy points

represented by fuzzy sets of the universe of discourse C, respectively, and let VH (very high), H (high), A
(average), L (low), and VL (very low) be standard fuzzy sets of the universe of discourse of C, where

C ={0%, 2%, 4%, 6%, 8%, 10%} and the corresponding awarded degrees of the standard fuzzy sets are as
follows:

very high (VH) = {(0%, 0.0), (2%,0.0), (4%, 0.8), (6%, 0.9), (8%, 0.9), (10%, 1.0)}

high (H) = {(0%,0.0), (2%, 0.0), (4%, 0.8), (6%, 0.9), (8%, 0.9), (10%, 0.8)}

average (A) = {(0%,0.0), (2%,0.1), (4%,0.8), (6%, 0.9), (8%, 0.4), (L0%, 0.2)}
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low(L) ={(0%,0.4), (2%,0.4), (4%,0.6), (6%, 0.6), (8%, 0.2), (10%, 0.0)}
very low (VL) ={(0%,1.0), (2%,1.0), (4%, 0.4), (6%, 0.2), (8%, 0.0), (10%, 0.0)}
Based on the vector representative method, the fuzzy sets VH, H, A, L and VL could be represented as

follows: VH, H ,:6\ |:, and V=L

where

VH = (0.0,0.0, 08, 0.9, 0.9, 1.0)

H =(0.0,0.0,08,0.9,09, 0.8)

A =1(0.0,0.10.8 0.9, 04, 0.2)

| =(04,0.4,086,0.6,0.2 0.0)

VL =(.0,1.0, 0.4, 0.2, 0.0, 0.0)

For example, a company with variable income data points could be grouped into five as very high income,
high income, average income, low income, and very low income. This is applied to polygon size six
(hexagon), size seven (heptagon), size eight (octagon), size nine (nonagon) and etc,. The satisfaction level of
fuzzy linguistic hedges for a polygon of size ten (decagon) is illustrated in Table 2.

Table 2: Satisfaction level of fuzzy linguistic hedges for decagon

Fuzzy linguistic hedges Degrees of clustering

extremely good income

90%-100% ( 0.90 — 1.00)

very good income

80% - 89% (0.80 — 0.89)

good income

70% - 79% (0.70 — 0.79)

more or less good income

60% - 69% (0.60 — 0.69)

average income

50% - 59% (0.50 — 0.59)

more or less Low income

40% - 49% (0.40 — 0.49)

low income

30% - 39% (0.30 — 0.39)

very low income

20% - 29% (0.20 — 0.29)

very very low income

10% - 19% (0.10 — 0.19)

extremely low income 0%-9% (0.0-0.9)

This would be translated into ten groups of certain data points of a variable in visualization mode and could
be applied to other polygon sizes, eleven (hendecagon), and so on.

After all data points have been assigned to clusters based on the fuzzy linguistic hedges using degrees of
satisfaction, recalculate the centroids of the clusters by taking weighted means, variation, co-variation, and
standard deviation of all data points assigned to each cluster.

Repeat steps e and f of the above k-means or k-means++ algorithm in section 4 until convergence occurs
when the centroids are no longer changed significantly. Once the convergence is reached, the algorithm
produces the final cluster centroids. These sizes of polygons with their fuzzy linguistic hedges could be
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computed as built-in functions and called upon during the applications of the k-means clustering algorithm.
The time complexity of the k-means algorithm, O(NTK), where N is the total number of data sets, K is the
total number of partitions, and T is the number of iterations in the clustering process, would be drastically
reduced as k is now O(1). In this case, k would now represent the calling in-built functions that would reduce
the time complexity greatly.

COLLECTION OF DATASETS

The datasets used for this research work are health analytics dataset that was downloaded from
https://www.kaggle.com/jinalgada/starter-health-analytics-b8146c¢6b-2 and rain in Australia dataset that
fetched from https://www.kaggle.com/jsphyg/weather-dataset-rattle-package. The health analytics dataset
has 284 rows and 644 columns of data, and the rain in Australia dataset also has 145461 rows and 23
columns of data

Centering

Centering as a data preprocessing method involves moving the coordinate system within the dataset to a new
reference point, which is usually the origin of the coordinate system in a k-dimensional space. Proper
centering removes the postulated offsets without changing the structural model of the data. When it is
performed, interval-scale data behave as though they are ratio-scale data. The weighted median centre which
allows to specify a weight field as the number of trips associated with each feature is employed. This permits
to locate Euclidean distance to all weighted features in the dataset. The median centre is calculated as

df = \/(Xi — XY+ (Y, = Y)Y +(Z, — Z")* . The median center only returns a single point, although there
may be more than one location (solution) that would minimize the distance to all features.

Principal Component Analysis
Principal Component Analysis (PCA) employed comprises of five stages as follows:
i.  Subtract the mean of each variable.

Before the PCA, the standardization was performed which transformed all the variables to the same scale.
value — mean

stan dard deviaton

This is done through z =

ii.  Calculate the Covariance Matrix

The covariance matrix was computed to remove redundant information and make sure that all the possible
pairs of variables are correlated. For example, a 4-dimenssional data set of 4 variables x, y, z, wof 4 X 4
cov(x, X),cov(X,y), cov(x,z),cov(x,w)
cov(y, x),cov(y,y), cov(y,z),cov(y,w)
cov(z,x), cov(z,y), cov(z,z),cov(z,w)

data matrix is as follows:
cov(w, X),cov(w, y),cov(w, z),cov(w, w)
iii.  Compute the Eigenvalues and Eigenvectors

The eigenvector and eigenvalue are the linear algebra concepts to determine the principal components of the
data. Every eigenvector has an eigenvalue which means they are pairs. The eigenvalues are simply the
coefficients attached to eigenvectors, which give the amount of variance carried in each principal
component.
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iv.  Sort Eigenvectors by corresponding Eigenvalues in descending order and select a subset from the
rearranged Eigenvalue matrix

v.  Recast data along the principal components

The final data set was done by multiplying the transpose of the original data set by the transpose of the
feature vector as follows: final _data_set = features _vector’ * standardized _original _dataset’

After computing the eigenvectors and ordering them by their eigenvalues in descending order, allow us to
find the principal components in order of significance

Outlier removal

Interquartile Range (IQR), a statistical dispersion representing the middle 50% of a dataset is used. It
calculates by finding the difference between the 75th percentile (Q3) and the 25th percentile (Q1). The IQR
method identifies outliers by setting boundaries based on Q1 and Q3: Lower Bound = Q1 - (1.5 * IQR) and
Upper Bound = Q3 + (1.5 * IQR). Any data point outside these bounds is considered an outlier.

Applications of weighted Euclidean distances
Standardized Euclidean distance

The standardized Euclidean distance between two J-dimensional vectors can be written as

Where s; is the sample of the standard deviation of the j-th variable

J

This equation could also be expressed as follows: d(x, y) = \/Zi(xj - yj)2

i=19j

J
= \/Z w; (X; = y;)°
j=1
Where w; = 1 is the inverse of the j-th variance
S.
J

This w;is used as a weight attached to the j-th variable.

There is compensatory effect produced by standardization of the weight of the variable. This is done by
attaching weight of means, variation and co-variance.

Experiment and results

To verify the effectiveness of the sizes of polygons with their corresponding fuzzy linguistic hedge
satisfaction, two sets of data, as mentioned in section 5, were used as experimental data sets alongside the
following methods:

I.  Euclidean distance with regular selection of the value of k
ii.  Euclidean distance with random selection of the value of k
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iii.  Minkowski distance measure

iIv.  Weighted Euclidean distance using standard deviation
v.  Weighted Euclidean distance using means

vi.  Weighted Euclidean distance using variance

vii.  Weighted Euclidean distance using co-variance

Euclidean distance will work fine as long as the dimensions are equally weighted and are independent of
each other. This can technically be overcome by scaling the variables of computing the standard deviation,
covariance, which can make it vary within a particular range between 0 and 1.

The experiments were performed many times following the modification of the initialization of the k value in
the k-means using the sizes of polygons with their fuzzy linguistic hedges. The functions of the sizes of
polygons with their corresponding fuzzy linguistic hedges have been computed and invoked to visualize the
fitness of the data points. The experimental results for each run, one, two, and three, for the health analytics
dataset with their respective methods are shown in Table 3. The average clustering processing time for each
method was calculated as indicated in Table 3. The same process was also done with the Australia rain
dataset, which is illustrated in Table 4. The fastest clustering time for each method was illustrated in Table 5
using the health analytics dataset. Information retrieval times using both health analytics and Australia rain
datasets with various search terms were done. The results of information retrieval times for the two datasets
and their methods were illustrated in Tables 6 and 7. Table 8 illustrates the ranking of the methods based on
the retrieval time of the search item using the Australia rain dataset. As depicted in tables 5 and 8, weighted
Euclidean distance using standard deviation determined the fastest clustering time, following by weighted
Euclidean distance using co-variance, weighted Euclidean distance using variance, Minkowski distance
measure, weighted Euclidean distance using means, Euclidean distance with random selection of the value of
k and Euclidean distance with regular selection of the value of k while Minkowski distance measure
determined the fastest retrieval time followed by Euclidean distance with regular selection of the value of Kk,
weighted Euclidean distance using co-variance, Euclidean distance with random selection of the value of k,
weighted Euclidean distance using variance, weighted Euclidean distance using standard deviation and
weighted Euclidean distance using means.

The results revealed that the data clustered with the Minkowski method in place of Euclidean distance,
returned the searched item in the least time.

The results in each of the scenarios reveal that clustering performed with weighted Euclidean distance using
standard deviation consistently took the least time, making it the fastest method of getting experimental data
sets clustered with the k-means clustering algorithm.

Table 3: Clustering time with the “Health Analytics” Dataset

15T RUN
Euclidean Distance Minkowski | Weighted Euclidean Distance
?epiggtl ?()rn gj Ir(]e(i?i?n Minkowski ?)tea\r/]ic:}t?ir(()jn Means | Variance \(/:a?riance
676 513 509 503 508 509 504
Time taken 503 505 503 503 503 503 504
(ms) 502 501 502 502 503 501 502
504 501 502 502 502 502 501
AVERAGE 546.25 505 504 502.5 504 503.75 502.75
2NPRUN
Time taken 553 504 504 502 507 504 502
(ms) 501 502 502 501 501 501 505
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501 502 503 502 501 502 502
501 501 502 501 502 502 502
AVERAGE 514 502.25 502.75 501.5 502.75 | 502.25 502.75
3"° RUN
516 505 504 501 506 505 501
Time taken 504 502 501 502 502 502 502
(ms) 502 502 502 502 501 501 502
503 501 501 501 501 501 501
AVERAGE 506.25 502.5 502 501.5 502.5 | 502.25 501.25
(Trg;‘;" AVerage | 54 5g 506 507.6 503.4 506 | 5059 | 505.5
Table 4: Clustering time with the “Rain in Australia” Dataset
IST RUN
Euclidean Distance Minkowski |Weighted Euclidean Distance
?eiggtliac:n S:Igi?ig]n Minkowski SDt:\?g?irgn Means |Variance |Co-variance
900 538 510 503 509 |510 521
Time taken (ms) 503 503 507 503 506 |503 505
503 503 508 503 503 |503 503
511 504 505 503 503 |503 503
AVERAGE 604.25 512 507.5 503 505.25(504.75 |508.75
2NP RUN
566 509 510 505 514 |513 504
i 505 506 503 503 505 [503 504
Time taken (ms)
503 503 505 505 503 [505 503
504 505 503 503 504  |505 504
AVERAGE 519.5 505.75 505.25 504 506.5 [506.5 503.75
3RP RUN
531 509 508 504 514 |515 503
. 503 506 503 503 503 [504 505
Time taken (ms)
503 503 506 503 503 [504 504
503 503 504 503 506 [503 504
AVERAGE 510 505.25 505.25 503.25 506.5 [506.5 504
Total Average |522.17 502.9 503.2 501.8 503.1 [{502.75 |502.3
Table 5: Ranking of the methods to determine clustering time in health analytics dataset
Elijs?z;?](ezzn Minkowski gjlr(]e(cj:(t)ir:n E)ts\r/]g?irgn Means|Variance |Co-variance
i\?;?z;\glg[e) (ms) 553.4 504.5 505.4 502.6 504.6 {504.3 |503.9
Rank ™" 4" 6" 1 5|3 2"
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Table 6 : Information Retrieval time with the “Health Analytics” Dataset using different search terms

Euclidean Distance(ms) |Minkowski (ms) Weighted Euclidean Distance (ms)
Search term ?jg;l?;n g:Ir;i?irc?n Minkowski ?)ts\?g?irgn Means |Variance |Co-variance
18501 500 502 500 501 502 |502 502
500 504 500 501 501 |501 503
500 502 501 502 502 |502 502
AVERAGE|500.75 502.25 501 501.75 501.75|501.75 |502.25
Euclidean Distance(ms) |Minkowski (ms) [Weighted Euclidean Distance (ms)
Search term g?;gii:n g:Ire]f:?ir:n Minkowski gt:\?;?irgn Means|Variance | Co-variance
500 502 501 502 501 |502 501
501 501 500 501 501 |504 502
501 502 500 501 502 |503 502
5769 501 502 500 502 502 |503 502
AVERAGE |500.75 501.75 500.25 501.5 501.5 {503 501.75
Total Average |500.75 502 500.625 501.625|501.625 502.375 (502

Table 7: Information Retrieval time with the “Rain in Australia” Dataset using different search terms

Euclidean Distance(ms) |Minkowski (ms) |Weighted Euclidean Distance (ms)
Search term [E)?;gﬂﬁzn g:lr:i?i?n Minkowski Standard Deviation |Means|Variance|Co-variance
504 502 503 502 502 |502
500 502 500 502 502 |502
501 502 501 533 533 |502
19.8 500 502 500 501 501 |[502
AVERAGE [501.5 502 501 509.5 509.5 (502
Euclidean Distance(ms) [ Minkowski (ms) |Weighted Euclidean Distance (ms)
Search term [E)L:Siggizn Eggggi?n Minkowski E)ts\?g?irgn Means |Variance|Co-variance
500 502 501 501 502 |502 502
501 502 500 502 502 |501 503
501 504 500 501 502 |502 502
21.5 500 502 501 502 502 |502 502
AVERAGE |500.5 502.5 500.5 501.5 502 |501.75 |502.25
Total Average |501 502.25 500.75 505.5 505.75(501.875 |501.125
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Table 8: Ranking of the methods to determine retrieval time in Australia rain datasets

Euclidean [Random Standard

- . Minkowski . Means |Variance|Co-variance
Distance [selection Deviation
RAND
G 500.875 |502.125 |[500.688 |503.563 503.688|505.125 {502.063
Average (ms)
Rank znd 4th 1st 6th 7th 5th 3rd

The Stand-Alone Classic k-means algorithm (SaCKmeans) used in the work of Lu, W. (2020) was selected
for the benchmark with the weighted Euclidean distance using standard deviation (SDKmeans) since it
produced the best clustering result among all the others. The SDKmeans took a shorter time to cluster the
dataset in each of the 3 runs as indicated in table 9. Hence, it could be conclusively verified that the
SDKmeans outperformed the SaCKmeans in terms of the time taken to cluster the two experimental data sets

Table 9 : Comparison of SDKmeans with SaCKmeans

Runs SDKMeans | SaCKmeans
Time taken (ms)
529.2 524.9
504.1 522.1
1 504.4 521
504.5 530
AVERAGE 510.6 524.5
504.1 522.1
503 521.6
2 503.3 522.2
502.3 521.6
AVERAGE 503.2 521.9
503.9 521.8
503.6 522
3 504 521.9
502.8 522.4
AVERAGE 503.6 522
TOTAL AVERAGE |505.8 522.8
CONCLUSION

The choice of the first point along the first x and y axis does not permit the value of the first centroid to vary
in each run time of the experiments. The values of k in the k-means or k-means++ were strictly adjusted to
the sizes of the polygon with their corresponding fuzzy linguistic hedges during the running times of the
experiments. Every time the experiment was conducted, the number of clusters generated was equally the
same with the sizes of the polygon alongside the satisfaction degrees of fuzzy linguistic hedges. The
combination of sizes polygon, and fuzzy linguistic hedge handled millions of data points in a matter of
seconds and allowed the k-means algorithm to converge rapidly.
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