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ABSTRACT 

A large volume of new data is generated every moment of the day by various domains of social media, bank 

transactions, and online websites. One of the vital means in dealing with this data is to classify it into a set of 

clusters.  At present, many clustering algorithms have been proposed and improved due to the face of large-

scale and high-dimensional data, however, they have not achieved better effects and do not generalize well. 

This paper improves the k-means algorithm, where its results are sensitive to the initial clustering centre, and 

the clustering results of different similarity measurement methods would be different. The incorporation of 

in-built polygon sizes with their respective fuzzy linguistic hedge satisfactions for the classification of data 

points made clusters distinct from each other. To verify the effectiveness of the proposed methods, two sets 

of data were used as experimental data sets, which produced a good clustering solution with low processing 

times. 

Keywords: k-means, Inertia method, inter-cluster, fuzzy linguistic, polygon 

INTRODUCTION 

Clustering is a type of unsupervised learning where data points are grouped into different sets based on their 

degree of similarity, such as Euclidean based distance, correlation-based distance, Pearson correlation 

distance, Spearman correlation distance, etc. There are various types of clustering such as hierarchical 

clustering (agglomerative clustering with bottom-up approach, divisive clustering with top down approach 

for examples, Clustering using representative, Balanced Iterative Reducing Clustering), partitioning 

clustering (k-means clustering for example Clustering Large Application based upon Randomized Search, 

fuzzy c-means clustering, mean shift clustering). Other types are density-based such as Density Spatial 

Clustering of Application with Noise, Ordering Points to Identify Clustering Structure, grid clustering such 

as Statistical Information Grid, Clustering in Quest, etc. 

Clustering has been applied in various sectors such as market segmentation, where customers are found in 

terms of behaviour or attributes or similar products, image segmentation or compression in terms of similar 

regions or colour separation, and document clustering based on topics or contents. Other areas include data 

summarization, such as image processing, vector quantization, similar trends detection in dynamic data, 

social network analysis of generating sequences in images, videos, or audio, and biological data analysis. 

Clustering could be used for anomaly detection for fraud or intrusion, a recommender system for products or 

services based on past purchases or performances. One of the properties of cluster states is that the points 

within a cluster should be similar to each other. This paper aims to minimize the distance between the points 

within a cluster, focusing on the k-means clustering method. 

K-means is very fast, robust, and easier to understand. It works by iteratively assigning data points to the 

nearest cluster centroid and updating the centroid until they stabilize. It is easy to implement, can work with 

a large number of variables, and can quickly change clusters when the centroids are recomputed. The 
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algorithm requires a prior specification of the number of cluster centres.  The random initialization step 

causes the k-means algorithm to be non-deterministic, meaning that cluster assignment will vary if you run 

the same algorithm twice on the same dataset. The algorithm might create clusters that do not quite match 

the actual data distribution, leading to some clusters being too small or too large compared to others. This 

might lead to clusters that do not accurately reflect the true structure of the data.   The weakness of the k-

means clustering is that we do not know how many clusters we need by just running the model. We need to 

test ranges of values to decide on the best value of k. The k value in the k-means algorithm is a crucial 

parameter that determines the number of clusters to be formed in the dataset. It is important to choose the 

right value of k, as a small value can result in under-clustered data, and a large value can cause over-

clustering. In the k-means algorithm, the processing mode of abnormal data and the similarity calculation 

method will affect the clustering division. 

K-means++ algorithm, an improved k-means, ensures a smarter initialization of the centroids and improves 

the quality of the clustering. The improved algorithm minimizes the chance of picking centres that are close 

to one another while avoiding the systematic pitfall of the farthest-first traversal method.  Inertia method 

makes sure that the first property of all the data points in a cluster should be similar to each other is satisfied. 

Calculation of intra-cluster distance and inter-cluster distance makes sure that the second property of the data 

points from different clusters should be as different as possible to have more meaningful clusters. The time 

complexity of the k-means algorithm is O(NTK), where N is the total number of data sets, K is the total 

number of partitions, and T is the number of iterations in the relatively high clustering process. This paper 

improves the initial centre points of the k-means clustering algorithm so that the clustering result has a low 

fluctuation. 

LITERATURE REVIEW 

Many clustering techniques have been developed in different application fields, but they have not achieved a 

better effect due to at times datasets with different data types. Although researchers have proposed variants 

of the k-means algorithm to overcome these impediments of assignment of centroids and number of clusters 

and ability to handle various data types, they are, however domain domain-specific and do not generalize 

well. 

[1] defined the concepts of neighbourhood coupling and separation of objects by using the upper and lower 

approximations of object neighbourhood and neighbourhood model. They proposed an initial clustering 

centre selection algorithm, which showed significant improvement. [2] proposed an improvement of the k-

means++ algorithm to improve the way of the initial centroids were selected. The first centroid was selected 

in a random number and all the remaining centroids were picked by proportional probability to the shortest 

distance from all the existing centroids. [3] proposed a clustering algorithm based on maximum and 

minimum distance and weighted similarity calculation (MW-k-means).  In the MW-k-means, the initial 

cluster centre is selected according to the idea of the maximum and minimum distance, and then the 

weighted similarity is used to divide each data point into corresponding clusters. This method avoided the 

clustering seeds from being close to each other in the initial value of the selection of the k-means algorithm. 

The MW-k-means integrates the advantages of weighted k-means (w-k-means) and maximum k-means (m-

k-means) with faster convergence speed, more accurate clustering results, and higher stability, which can be 

used for practical clustering. 

[4] described the k-means algorithm of separating data and objects into different clusters. They noted that 

objects with similar properties are put in one cluster and objects with different properties are put in a separate 

cluster.  This permitted large datasets to be easily scaled with k-means clustering system learning techniques, 

which work in an unsupervised manner. This gave a strong guarantee of the convergence and generalized the 

clusters for the various shapes and structures. [5] compared many k-means algorithms with a series of 

experiments. Experimental results showed that the method was reasonable for the selection of the center 

point, and the calculation of similarity produced a better clustering effect. [6] proposed initial cluster based 
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on the relative distance of each data point from the initial centroids. These clusters were subsequently fine-

tuned by using a heuristic approach. 

[7] worked on the variants for solving the problem of initialization of the k-means algorithm. [8] proposed a 

simple and efficient clustering algorithm to solve the problem of the cluster centre point not being well-

determined. The modified algorithm was built on a kd-tree data structure for the data points. The modified 

algorithm could avoid entering the local optimal solution. [9] presented a modified k-means algorithm based 

on self-paced learning theory. This method of self-paced learning theory was used to select a competing 

training subset that helps the k-means algorithm to build an initial cluster model. The generalization ability 

of the algorithm was then improved by subsequently adding training subsets found by self-paced learning 

until the model reached an optimal performance. The authors proposed this algorithm and demonstrated its 

performance on several real datasets. 

[10] proposed a co-clustering algorithm for dealing with sparse and high-dimensional data that outperformed 

the basic k-means. [11] incorporated cuckoo search along with the k-means algorithm. The cuckoo search 

algorithm was modified by the authors, which helped to reach a better solution since the search step size 

factor was changed. The modified cuckoo search algorithm was robust enough to reach a near-optimal 

solution. [12] proposed an initial estimation method for computing the covariance matrix for the k-means 

algorithm using Mahalanobis distance. It involved finding a group of points comprised of neighbours with 

high density that represent the centroids of the selected clusters. These provided an approximate estimate of 

the covariance matrix, which was updated successively using the proposed method. [13] analysed the 

stability of the k-means clustering algorithm in a more practical scenario, the parameter of cluster number 

was chosen by stability-based model selection. 

[14] reported a k-means algorithm that generated the initial centroids using pair-wise computed distances, 

which put all the closer points based on the threshold value for the minimum number of clusters required to 

build a cluster. [15] worked on k-means algorithm that is characterized by sorting all the dataset records 

using a table in which the sorted table was divided into multiple sub-tables that equalled the number of the 

desired initial centroids. [16] presented the k-means algorithm that monitored the centroids, which would not 

change anymore while the algorithm was still running. [17] proposed a novel k-means clustering algorithm, 

which reformulated the classical k-means objective function as a trace maximization problem and then 

replaced it with a new formulation. The proposed algorithm does not need to calculate the cluster centers in 

each iteration and requires fewer additional intermediate variables during the optimization process. In 

addition, the authors proposed an efficient iterative re-weighted algorithm to solve the involved optimization 

problem and provided the corresponding convergence analysis. The proposed algorithm keeps a consistent 

computational complexity as Lloyd's algorithm, O(ndk) , but shows a faster convergence rate in experiments. 

Extensive experimental results on real-world benchmark datasets showed the effectiveness and efficiency of 

the proposed algorithm. 

[18] presented a process that utilizes the farthest first and canopy algorithms to reduce the number of 

iterations in the k-means clustering. This improvement focused on enhancing the centroid initialization 

method for each cluster. The research study utilized ten datasets from the UCI machine learning repository to 

test the effectiveness of improving the k-means clustering algorithm. It compared the number of iterations 

and the sum of squares error as performance metrics. The results showed that the farthest first and canopy 

algorithms significantly reduced the number of iterations in the k-means clustering when compared to 

random centroid initialization. These research findings confirmed the hypothesis that the method of centroid 

initialization for each cluster impacted the iteration process of k-means clustering. 

Due to their popularity and ease of use, k-means clustering methods were used in conjunction with deep 

learning for tasks as image segmentation and handwriting recognition. A more recent work used a fully 

connected deep convolutional neural network along with k-means, and was used to perform pixel matching 

between a segmented image and a convoluted image.  [19] proposed the k-means clustering algorithm based 

on the optimization of artificial fish swarm, which can obtain the global optimal division. This paper aims to 
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present an improvement of the initial value of the k-means algorithm for good quality of clusters’ results 

with low processing time, where the optimal picking value of k from k-means is subjective for interpretation 

with the underlying structure of the dataset. 

TYPE OF DISTANCE MEASURE 

Several studies have suggested a wide range of distance metrics for data clustering. This section briefly 

describes seven widely used distance measures. 

Euclidean Distance Measure 

The Euclidean distance between the points x and y in two-dimensional plane is given by: 

                         2 2

1 1 2 2( , ) ( ) ( )d x y x y x y     

In case there is an extension to n dimensions and the points x and y are of the form 

1 2 3( , , ... )nx x x x x                       1 2 3( , , ... )ny y y y y    

 then the Euclidean distance is given as follows:  

                                  2

1

( , ) ( )
n

i i

i

d x y x y


   

Manhattan distance 

The Manhattan distance, also called taxicab distance or city block distance, is another popular distance 

metric. The Manhattan distance between the points x and y is given by: 

1 1 2 2( , )d x y x y x y     

In n-dimensional space, where each point has n coordinates, the Manhattan distance is given by: 

1

( , )
n

i i

i

d x y x y


   

Though the Manhattan distance does not give the shortest distance between any two given points, it is often 

preferred in applications where the feature points are located in a high-dimensional space. 

Minkowski distance 

Minkowski distance is named after a German mathematician, Henmann Minkowski and is in a normed 

vector space which is given by: 

1( , ) ( )
n

p

i i

i i

d x y x y
p



                                 1for p   

It is to note that for p = 1, the Minkowski distance equation takes the same form as that of Manhattan 

distance and when p = 2, it is equivalent to the Euclidean distance: 
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Squared Euclidean distance 

The squared Euclidean distance between the point’s p and q in two-dimensional plane is given by: 

2 2 2 2 2 2

1 1 2 2 3 3( , ) ( ) ( ) ( ) ... ( ) ... ( )i n nd p q p q p q p q p q p q             

In case there is an extension to n dimensions at the point’s p and q then the squared Euclidean distance is 

given as follows:  

2 2

1

( , ) ( )
n

i i

i

d p q p q


   

Eisen cosine correlation distance 

Eisen cosine correlation distance is given as: 

1

2 2

1 1

( , ) 1

n

i i

i

eisen
n n

i i

i i

x y

d x y

x y



 

 



 

 

Mahalanobis distance 

Mahalanobis distance is the distance between two points in multivariate space. For uncorrelated variables, 

the Euclidean distance equals the Mahalanobis distance. The Mahalanobis distance quantities relative 

distance from the centroid, in which the centroid is the point in multivariate space where all means from all 

variables intersect.  The Mahalanobis distance between two objects is formally defined as: 

0.5
1( ) * *( )T

mahalanobis B A B Ad x x c x x        

where Bx   and  Ax  are a pair of objects and   c  is the sample covariance matrix.     T  is the transpose 

operation, which flips a matrix over its diagonal. A different version of the formula uses distances from each 

observation to the central mean, and the equation is given as follows: 

0.5

1( ) * *(( ))T

i i id x x c x x
 

 
    

      

where ix   is an object vector and   x


 is the arithmetic mean vector 

Chebyshev distance 

Chebyshev distance, also known as maximum value distance, is used to examine the absolute magnitude of 

the differences between the coordinates of a pair of objects and the equation is given as follows:  

( , ) max( )Chebyshev

i

d p q
i ip q   

Properties of distance measure  

i. No negative distance 
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Distances should always be non-negative. This means, it should be greater than or equal to zero.   

( , )i jd x x  ≥  0  ; , ,i jx x S       

ii. Distances are positive 

 

( , )i jd x x

 =  0; 
ix

= jx
, ,i jx x S 

 

             Distances are positive, except for the distance from a point to itself 

iii. Distance is symmetric 

 If x and y are two points in a metric space, then the distance between  x and y should be   equal to the 

distance between  y and x 

( , )i jd x x

=

( , )j id x x , ,i jx x S 

 

iv. Triangle inequality 

Given three points x, y and z, the distance metric should satisfy the triangle inequality 

 

( , ) ( , ) ( , ) , ,i k i j j k i j kd x x d x x d x x x x x S   

 

3.2 k-means and k-means++ algorithms 

Let 1 2 3[ , , ,..., ]nX x x x x  be a set of data points and 1 2 3[ , , ,..., ]nV v v v v  be the set of centres. 

i. randomly select ‘c’ cluster centre 

ii. calculate the distance between each data point and the cluster centre 

iii. assign the data point to the cluster centre whose distance from the cluster centre is the minimum of all 

the cluster centres 

iv. recalculate the new cluster centre using 
1

1
( )

ic

i i

ji

v x
c 

   where ic represent the number of data points in 

thi cluster 

v. recalculate the distance between each data point and the newly obtained cluster centres 

vi. if no data point was reassigned, then stop; otherwise, repeat from step c  

k-means algorithm aims at minimizing an objective function known as the squared error function, given by 

2

1 1

( )
M K

ik i k

i k

J v w x 
 

   

where i kx   Is the Euclidean distance between ix  and k  

    ikw  = 1 for the data point ix  if it belongs to cluster k, otherwise ikw  = 0. It is noted that k  is the centroid 

of ix ’s cluster. 

This is a minimization problem of two parts. 
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part(1): There is a need to minimize J(v) with respect to ikw and treat k fixed. 

part(2): There is a need to minimize J(v) with respect to k  and treat  ikw  fixed. 

Technically, differentiation J(v) concerning  ikw first (part(1)) and update cluster assignment and 

differentiation of J(v) with respect to k  (part(2)) and recomputed the centroid after the cluster assignment 

was needed.  

Therefore, part(1), which would assign the data point ix  to the closest cluster, judged by its sum of squared 

distances from the cluster’s centroid, is 
2

1 1

M K

i k

i kik

J
x

w


 


 


  

                                                                          

2
1 arg min

0

j i k

ik

if k x
w

otherwise

  
 


 

part(2), which recomputed the centroid of each cluster to reflect the new assignment, is given as

1

2 ( ) 0
M

ik i k

iik

J
w x

w





  


  

where  
1

1

M
i

ik

i

k M

ik

i

w x

w











 

METHODOLOGY 

Selection of k in k-means or k-means++ 

Steps 1 and 2 of k-means or k-means++ are about choosing the number of clusters (k). These two steps are 

modified using the sizes of polygons as centroids and fuzzy linguistic hedges for clustering satisfactions. 

Table 1 illustrates the procedure for the sizes of the polygon and fuzzy linguistic hedges. 

Table 1: Sizes of the polygon and fuzzy linguistic hedges 

Polygon size Vertices number Centroid/cluster 

number 

Fuzzy linguistic hedges 

Straight line =2 2 2 (high, low) 

Triangle = 3 3 3 (high, average, low) 

Quadrilateral = 4 4 4 (excellence, good, fair, poor) 

Pentagon = 5 5 5 (very high, high, average, low, very low) 

 ---- --- --- --- 

Decagon = 10 10 10 (extremely good, very very good, very good, 

good, more or less good, average, more or 

less low, low, very low, extremely low ) 

i. Read the variables and visualize the points in x and y axis. 
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ii. The first cluster is chosen uniformly at the first data points of x and y axis as ‘a’ 

iii. Using the first point, intra-cluster is computed for grouping all points together as well as monitoring 

the distance d(x) of each data point that has been chosen uniformly. 

iv. The second cluster is chosen by computing squared distance (d(x))2 as ‘b’, which is the farthest from 

the first cluster a. The first and second would form a straight line with two vertices or two centroids. 

Inter-cluster is computed using the first and second clusters by applying fuzzy linguistic hedges. 

v. The third cluster is chosen by computing squared distance (d(x))2 as ‘c’, which is farthest from the 

second cluster ‘b’. The first, second, and third clusters would form a triangle with three vertices or 

three centroids. Inter-cluster is computed using the first, second, and third clusters by applying fuzzy 

linguistic hedges. 

vi. The fourth cluster is chosen by computing squared distance (d(x))2 as ‘d’ which is farthest from the 

third cluster ‘c’. The first, second, third, and fourth clusters would form a quadrilateral with four 

vertices or four centroids. Inter-cluster is computed using the first, second, third, and fourth clusters by 

applying fuzzy linguistic hedges. 

vii. The fifth cluster is chosen by computing squared distance (d(x))2 as ‘e’, which is farthest from the 

fourth cluster ‘d’. The first, second, third, fourth, and fifth clusters would form a pentagon with five 

vertices or five centroids. Inter-cluster is computed using the first, second, third, fourth, and fifth 

clusters by applying fuzzy linguistic hedges. This process would continue for other polygon sizes of 

hexagon, heptagon, octagon, nonagon, decagon, hendecagon, etc, with their respective fuzzy linguistic 

hedges. 

Fuzzy linguistic hedges 

Let the centroid be the universe of discourse, C = [0, 10]. Then, the fuzzy sets ‘high’ and ‘low’ may 

subjectively be defined as follows: 

2 1

1 0 5,
( )

(1 ( ( 5) /1.5) ) , 5 10,
low

c
f C

c c


 

  
 

2 1

0 0 5,
( )

(1 ( ( 5) /1) ) , 5 10,
high

c
f C

c c 


 

  
 

 where lowf  and  highf are the membership functions of the fuzzy sets “low” and “high” respectively. This 

translates into high and low centroids of certain data points. 

These two fuzzy linguistic hedges of high and low could be extended into three as low, average, and high 

centroids of other certain data points. The same is also true for four fuzzy linguistic hedges of poor, fair, 

good, and excellent, centroids of data points after visualization. For instance, fuzzy linguistic hedges of five 

centroids could be constructed as matching techniques. Let iF  and jF  be two different fuzzy points 

represented by fuzzy sets of the universe of discourse C, respectively, and let VH (very high), H (high), A 

(average), L (low), and VL (very low) be standard fuzzy sets of the universe  of discourse of C, where  

{0%, 2%,4%, 6%, 8%, 10%}C   and the corresponding awarded degrees of the standard fuzzy sets are as 

follows: 

( ) {(0%,0.0), (2%,0.0), (4%,0.8), (6%, 0.9), (8%, 0.9), (10%, 1.0)}very high VH   

( ) {(0%,0.0), (2%,0.0), (4%,0.8), (6%, 0.9), (8%, 0.9), (10%, 0.8)}high H   

( ) {(0%,0.0), (2%,0.1), (4%,0.8), (6%, 0.9), (8%, 0.4), (10%, 0.2)}average A   
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( ) {(0%,0.4), (2%,0.4), (4%,0.6), (6%, 0.6), (8%, 0.2), (10%, 0.0)}low L   

( ) {(0%,1.0), (2%,1.0), (4%,0.4), (6%, 0.2), (8%, 0.0), (10%, 0.0)}very low VL   

Based on the vector representative method, the fuzzy sets VH, H, A, L and VL could be represented as 

follows: , ,, ,VH LH A
  

 and VL


 

where 

0.0, 0.0, 0.8, 0.9, 0.9, 1.0VH


    

0.0, 0.0, 0.8, 0.9, 0.9, 0.8H


    

0.0, 0.1, 0.8, 0.9, 0.4, 0.2A


    

0.4, 0.4, 0.6, 0.6, 0.2, 0.0L


    

1.0, 1.0, 0.4, 0.2, 0.0, 0.0VL


    

For example, a company with variable income data points could be grouped into five as very high income, 

high income, average income, low income, and very low income. This is applied to polygon size six 

(hexagon), size seven (heptagon), size eight (octagon), size nine (nonagon) and etc,. The satisfaction level of 

fuzzy linguistic hedges for a polygon of size ten (decagon) is illustrated in Table 2. 

Table 2: Satisfaction level of fuzzy linguistic hedges for decagon 

Fuzzy linguistic hedges Degrees of clustering 

extremely good income 90%-100% ( 0.90 – 1.00) 

very good income 80% - 89% (0.80 – 0.89) 

good income 70% - 79% (0.70 – 0.79) 

more or less good income 60% - 69% (0.60 – 0.69) 

average income 50% - 59% (0.50 – 0.59) 

more or less Low income 40% - 49% (0.40 – 0.49) 

low income 30% - 39% (0.30 – 0.39) 

very low income 20% - 29% (0.20 – 0.29) 

very very low income 10% - 19% (0.10 – 0.19) 

extremely low income 0% - 9%       (0.0 – 0.9) 

This would be translated into ten groups of certain data points of a variable in visualization mode and could 

be applied to other polygon sizes, eleven (hendecagon), and so on. 

After all data points have been assigned to clusters based on the fuzzy linguistic hedges using degrees of 

satisfaction, recalculate the centroids of the clusters by taking weighted means, variation, co-variation, and 

standard deviation of all data points assigned to each cluster. 

Repeat steps e and f of the above k-means or k-means++ algorithm in section 4 until convergence occurs 

when the centroids are no longer changed significantly. Once the convergence is reached, the algorithm 

produces the final cluster centroids. These sizes of polygons with their fuzzy linguistic hedges could be 
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computed as built-in functions and called upon during the applications of the k-means clustering algorithm. 

The time complexity of the k-means algorithm, O(NTK), where N is the total number of data sets, K is the 

total number of partitions, and T is the number of iterations in the clustering process, would be drastically 

reduced as k is now O(1). In this case, k would now represent the calling in-built functions that would reduce 

the time complexity greatly. 

COLLECTION OF DATASETS 

The datasets used for this research work are health analytics dataset that was downloaded from 

https://www.kaggle.com/jinalgada/starter-health-analytics-b8146c6b-2 and rain in Australia dataset that 

fetched from https://www.kaggle.com/jsphyg/weather-dataset-rattle-package. The health analytics dataset 

has 284 rows and 644 columns of data, and the rain in Australia dataset also has 145461 rows and 23 

columns of data 

Centering 

Centering as a data preprocessing method involves moving the coordinate system within the dataset to a new 

reference point, which is usually the origin of the coordinate system in a k-dimensional space. Proper 

centering removes the postulated offsets without changing the structural model of the data. When it is 

performed, interval-scale data behave as though they are ratio-scale data. The weighted median centre which 

allows to specify a weight field as the number of trips associated with each feature is employed. This permits 

to locate Euclidean distance to all weighted features in the dataset. The median centre is calculated as 

2 2 2( ) ( ) ( )t t t t

i i i id X X Y Y Z Z      . The median center only returns a single point, although there 

may be more than one location (solution) that would minimize the distance to all features. 

Principal Component Analysis 

Principal Component Analysis (PCA) employed comprises of five stages as follows: 

i. Subtract the mean of each variable. 

Before the PCA, the standardization was performed  which transformed all the variables to the same scale.  

This is done through 
tan

value mean
z

s dard deviaton


  

ii. Calculate the Covariance Matrix 

The covariance matrix was computed to remove redundant information and make sure that all the possible 

pairs of variables are correlated. For example, a 4-dimenssional data set of 4 variables x, y, z, w of 4 X 4 

data matrix is as follows: 

cov( , ),cov( , ), cov( , ),cov( , )

cov( , ),cov( , ), cov( , ),cov( , )

cov( , ), cov( , ), cov( , ),cov( , )

cov( , ),cov( , ),cov( , ),cov( , )

x x x y x z x w

y x y y y z y w

z x z y z z z w

w x w y w z w w

 
 
 
 
 
 

 

iii. Compute the Eigenvalues and Eigenvectors 

The eigenvector and eigenvalue are the linear algebra concepts to determine the principal components of the 

data. Every eigenvector has an eigenvalue which means they are pairs. The eigenvalues are simply the 

coefficients attached to eigenvectors, which give the amount of variance carried in each principal 

component.  
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iv. Sort Eigenvectors by corresponding Eigenvalues in descending order and select a subset from the 

rearranged Eigenvalue matrix 

v. Recast data along the principal components 

The final data set was done by multiplying the transpose of the original data set by the transpose of the 

feature vector as follows: _ _ _ * tan _ _T Tfinal data set features vector s dardized original dataset  

After computing the eigenvectors and ordering them by their eigenvalues in descending order, allow us to 

find the principal components in order of significance 

Outlier removal 

Interquartile Range (IQR), a statistical dispersion representing the middle 50% of a dataset is used. It 

calculates by finding the difference between the 75th percentile (Q3) and the 25th percentile (Q1). The IQR 

method identifies outliers by setting boundaries based on Q1 and Q3: Lower Bound = Q1 - (1.5 * IQR) and 

Upper Bound = Q3 + (1.5 * IQR). Any data point outside these bounds is considered an outlier.  

Applications of weighted Euclidean distances 

Standardized Euclidean distance 

The standardized Euclidean distance between two J-dimensional vectors can be written as 

2

1

( , ) ( )
J

j j

j j j

x y
d x y

s s

   

Where js  is the sample of the standard deviation of the j-th variable 

This equation could also be expressed as follows: 
2

1

1
( , ) ( )

J

j j

j j

d x y x y
s

   

                    =   2

1

( )
J

j j j

j

w x y


  

Where jw   =  
1

js
 is the inverse of the j-th variance 

This  jw is used as a weight attached to the j-th variable.  

There is compensatory effect produced by standardization of the weight of the variable. This is done by 

attaching weight of means, variation and co-variance. 

Experiment and results 

To verify the effectiveness of the sizes of polygons with their corresponding fuzzy linguistic hedge 

satisfaction, two sets of data, as mentioned in section 5, were used as experimental data sets alongside the 

following methods: 

i. Euclidean distance with regular selection of the value of k 

ii. Euclidean distance with random selection of the value of k 
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iii. Minkowski distance measure 

iv. Weighted Euclidean distance using standard deviation 

v. Weighted Euclidean distance using means 

vi. Weighted Euclidean distance using variance 

vii. Weighted Euclidean distance using co-variance 

Euclidean distance will work fine as long as the dimensions are equally weighted and are independent of 

each other. This can technically be overcome by scaling the variables of computing the standard deviation, 

covariance, which can make it vary within a particular range between 0 and 1. 

The experiments were performed many times following the modification of the initialization of the k value in 

the k-means using the sizes of polygons with their fuzzy linguistic hedges. The functions of the sizes of 

polygons with their corresponding fuzzy linguistic hedges have been computed and invoked to visualize the 

fitness of the data points. The experimental results for each run, one, two, and three, for the health analytics 

dataset with their respective methods are shown in Table 3. The average clustering processing time for each 

method was calculated as indicated in Table 3. The same process was also done with the Australia rain 

dataset, which is illustrated in Table 4. The fastest clustering time for each method was illustrated in Table 5 

using the health analytics dataset. Information retrieval times using both health analytics and Australia rain 

datasets with various search terms were done. The results of information retrieval times for the two datasets 

and their methods were illustrated in Tables 6 and 7. Table 8 illustrates the ranking of the methods based on 

the retrieval time of the search item using the Australia rain dataset. As depicted in tables 5 and 8,  weighted 

Euclidean distance using standard deviation determined the fastest clustering time, following by weighted 

Euclidean distance using co-variance, weighted Euclidean distance using variance, Minkowski distance 

measure, weighted Euclidean distance using means, Euclidean distance with random selection of the value of 

k and Euclidean distance with regular selection of the value of k while Minkowski distance measure 

determined the fastest retrieval time followed by Euclidean distance with regular selection of the value of k, 

weighted Euclidean distance using co-variance, Euclidean distance with random selection of the value of k, 

weighted Euclidean distance using variance, weighted Euclidean distance using standard deviation and 

weighted Euclidean distance using means. 

The results revealed that the data clustered with the Minkowski method in place of Euclidean distance, 

returned the searched item in the least time. 

The results in each of the scenarios reveal that clustering performed with weighted Euclidean distance using 

standard deviation consistently took the least time, making it the fastest method of getting experimental data 

sets clustered with the k-means clustering algorithm. 

Table 3: Clustering time with the “Health Analytics” Dataset 

1ST RUN 

  Euclidean Distance Minkowski Weighted Euclidean Distance 

  
Regular 

selection 

Random 

Selection 
Minkowski 

Standard 

Deviation 
Means Variance 

Co-

variance 

Time taken 

(ms) 

676 513 509 503 508 509 504 

503 505 503 503 503 503 504 

502 501 502 502 503 501 502 

504 501 502 502 502 502 501 

AVERAGE 546.25 505 504 502.5 504 503.75 502.75 

2ND RUN 

Time taken 

(ms) 

553 504 504 502 507 504 502 

501 502 502 501 501 501 505 
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501 502 503 502 501 502 502 

501 501 502 501 502 502 502 

AVERAGE 514 502.25 502.75 501.5 502.75 502.25 502.75 

3RD RUN 

Time taken 

(ms) 

516 505 504 501 506 505 501 

504 502 501 502 502 502 502 

502 502 502 502 501 501 502 

503 501 501 501 501 501 501 

AVERAGE 506.25 502.5 502 501.5 502.5 502.25 501.25 

Total Average 

(ms) 
544.58 506 507.6 503.4 506 505.9 505.5 

Table 4: Clustering time with the “Rain in Australia” Dataset 

IST RUN 

  Euclidean Distance Minkowski Weighted Euclidean Distance 

  
Regular 

selection 

Random 

Selection 
Minkowski 

Standard 

Deviation 
Means Variance Co-variance 

Time taken (ms) 

900 538 510 503 509 510 521 

503 503 507 503 506 503 505 

503 503 508 503 503 503 503 

511 504 505 503 503 503 503 

AVERAGE 604.25 512 507.5 503 505.25 504.75 508.75 

2ND RUN 

Time taken (ms) 

566 509 510 505 514 513 504 

505 506 503 503 505 503 504 

503 503 505 505 503 505 503 

504 505 503 503 504 505 504 

AVERAGE 519.5 505.75 505.25 504 506.5 506.5 503.75 

3RD RUN 

Time taken (ms) 

531 509 508 504 514 515 503 

503 506 503 503 503 504 505 

503 503 506 503 503 504 504 

503 503 504 503 506 503 504 

AVERAGE 510 505.25 505.25 503.25 506.5 506.5 504 

Total Average 522.17 502.9 503.2 501.8 503.1 502.75 502.3 

Table 5: Ranking of the methods to determine clustering time in health analytics dataset 

  
Euclidean 

Distance 
Minkowski 

Random 

Selection 

Standard 

Deviation 
Means Variance Co-variance 

GRAND 
553.4 504.5 505.4 502.6 504.6 504.3 503.9 

Average (ms) 

Rank 7th 4th 6th 1st 5th 3rd 2nd 
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Table 6 : Information Retrieval time with the “Health Analytics” Dataset using different search terms 

  Euclidean Distance(ms) Minkowski (ms) Weighted Euclidean Distance (ms) 

Search term 
Regular 

selection 

Random 

Selection 
Minkowski 

Standard 

Deviation 
Means Variance Co-variance 

18501 500 502 500 501 502 502 502 

  500 504 500 501 501 501 503 

  500 502 501 502 502 502 502 

AVERAGE 500.75 502.25 501 501.75 501.75 501.75 502.25 

  Euclidean Distance(ms) Minkowski (ms) Weighted Euclidean Distance (ms)   

Search term 
Euclidean 

Distance 

Random 

Selection 
Minkowski 

Standard 

Deviation 
Means Variance Co-variance 

  500 502 501 502   501 502 501 

  501 501 500 501   501 504 502 

  501 502 500 501   502 503 502 

5769 501 502 500 502   502 503 502 

AVERAGE 500.75 501.75 500.25 501.5   501.5 503 501.75 

Total Average 500.75 502 500.625 501.625 501.625   502.375 502 

Table 7: Information Retrieval time with the “Rain in Australia” Dataset using different search terms 

  Euclidean Distance(ms) Minkowski (ms) Weighted Euclidean Distance (ms) 

Search term 
Euclidean 

Distance 

Random 

Selection 
Minkowski Standard Deviation Means Variance Co-variance 

  504 502 503 502 502 502   

  500 502 500 502 502 502   

  501 502 501 533 533 502   

19.8 500 502 500 501 501 502   

AVERAGE 501.5 502 501 509.5 509.5 502   

  Euclidean Distance(ms) Minkowski (ms) Weighted Euclidean Distance (ms) 

Search term 
Euclidean 

Distance 

Random 

Selection 
Minkowski 

Standard 

Deviation 
Means Variance Co-variance 

  500 502 501 501 502 502 502 

  501 502 500 502 502 501 503 

  501 504 500 501 502 502 502 

21.5 500 502 501 502 502 502 502 

AVERAGE 500.5 502.5 500.5 501.5 502 501.75 502.25 

Total Average 501 502.25 500.75 505.5 505.75 501.875 501.125 
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 Table 8: Ranking of the methods to determine retrieval time in Australia rain datasets 

  
Euclidean 

Distance 

Random 

selection 
Minkowski 

Standard 

Deviation 
Means Variance Co-variance 

GRAND 
500.875 502.125 500.688 503.563 503.688 505.125 502.063 

Average (ms) 

Rank 2nd 4th 1st 6th 7th 5th 3rd 

The Stand-Alone Classic k-means algorithm (SaCKmeans) used in the work of Lu, W. (2020) was selected 

for the benchmark with the weighted Euclidean distance using standard deviation (SDKmeans) since it 

produced the best clustering result among all the others. The SDKmeans took a shorter time to cluster the 

dataset in each of the 3 runs as indicated in table 9. Hence, it could be conclusively verified that the 

SDKmeans outperformed the SaCKmeans in terms of the time taken to cluster the two experimental data sets 

Table 9 : Comparison of SDKmeans with SaCKmeans 

Runs SDKMeans SaCKmeans 

  Time taken (ms) 

  529.2 524.9 

  504.1 522.1 

1 504.4 521 

  504.5 530 

AVERAGE 510.6 524.5 

  504.1 522.1 

  503 521.6 

2 503.3 522.2 

  502.3 521.6 

AVERAGE 503.2 521.9 

  503.9 521.8 

  503.6 522 

3 504 521.9 

  502.8 522.4 

AVERAGE 503.6 522 

TOTAL AVERAGE 505.8 522.8 

CONCLUSION 

The choice of the first point along the first x and y axis does not permit the value of the first centroid to vary 

in each run time of the experiments. The values of k in the k-means or k-means++ were strictly adjusted to 

the sizes of the polygon with their corresponding fuzzy linguistic hedges during the running times of the 

experiments. Every time the experiment was conducted, the number of clusters generated was equally the 

same with the sizes of the polygon alongside the satisfaction degrees of fuzzy linguistic hedges. The 

combination of sizes polygon, and fuzzy linguistic hedge handled millions of data points in a matter of 

seconds and allowed the k-means algorithm to converge rapidly. 
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