

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IV April 2025

Seagas: Evaluating the Biodiesel Potential of Local Seaweed Species Kappaphycus Alvarezii and Eucheuma sp.

Ylaiza Fayne C. Delos Reyes, Cleford Jay D. Bacan, Kerby Boy Sultan, Trixie Mia P. Rebuta, Aaliyah Martine J. Estember, Allyza Pearl Baroy, Queen Margarette Ayaron, Eshymyl Frya Retes, Gee William G. Apura

Cor Jesu College Inc., Philippines

DOI: https://doi.org/10.51244/IJRSI.2025.12040031

Received: 21 March 2025; Accepted: 25 March 2025; Published: 02 May 2025

ABSTRACT

The study evaluated the biodiesel quality of two local seaweed species, Kappaphycus alvarezii and Eucheuma sp., in terms of density, viscosity, flash point, and combustion efficiency. Biodiesel samples were produced and tested under an alternative laboratory setup, with measurements taken across three replicates. K. alvarezii biodiesel exhibited a density of 0.88 g/cm³, viscosity of 4.80 cSt, flash point of 131°C, and combustion efficiency of 98.40%, while Eucheuma sp. biodiesel showed a density of 0.88 g/cm³, viscosity of 5.02 cSt, flash point of 0.88°C, and combustion efficiency of 98.00%. Comparisons with commercial diesel, which had a density of 0.85 g/cm³, viscosity of 3.50 cSt, flash point of 60°C, and combustion efficiency of 99.00%, revealed statistically significant differences in all parameters (p<0.05). The results indicate that both seaweed-derived biodiesels possess higher viscosity and flash points than commercial diesel, suggesting their potential suitability for biodiesel applications. However, combustion efficiency was slightly lower than that of commercial diesel. Overall, K. alvarezii and Eucheuma sp. Show promise as alternative biodiesel sources, meeting key biodiesel quality parameters.

Keywords: biodiesel, Kappaphycus alvarezii, Eucheuma sp., density, viscosity, flash point, combustion efficiency, alternative biodiesel, renewable energy

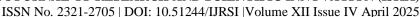
INTRODUCTION

The rising human population on Earth increases the usage of essentials, specifically energy. The more the population grows, the more energy consumption rises, and the bigger the chance it might drain energy resources. The huge amount of energy used particularly from non-renewable sources might put the planet's resources and environment under pressure. The utilization of non-renewable resources such as fossil fuels poses a major environmental threat, as burning them causes harmful effects to the environment due to its excessive greenhouse gas emissions, mainly carbon dioxide (CO₂) into the atmosphere. As a consequence, this adds up to global warming which leads to rising temperatures and extreme weather conditions. Together with the use of fossil fuels, it causes environmental imbalances like pollution and the destruction of natural habitats for animals. Hence, the demand to develop alternative ways to minimize our dependency on fossil fuels has become of great importance.

Fossil fuels have powered the world for centuries, but their devastating environmental impact is undeniable—driving climate change, polluting air and water, and accelerating ecological collapse. In 2023, China led global primary energy consumption at 170.7 exajoules, emphasizing its immense reliance on fossil fuels and the corresponding emissions that contribute to rising global temperatures (Statista, 2024). The United States, responsible for 4.7 billion metric tons of CO₂ emissions in 2020, continues to be a major force behind worsening global warming, intensifying hurricanes, wildfires, and heatwaves (Yi et al., 2023). Australia, the third-largest fossil fuel exporter in 2019, supplied 390 million tonnes of coal, 77.5 million tonnes of liquefied natural gas (LNG), and 400,000 barrels per day of crude oil and petroleum products—fueling the world's dependence on carbon-heavy energy sources and deepening the climate crisis (Gulliver, 2024). Meanwhile, Argentina's electricity production relied on fossil fuels for over 72% of its energy in 2020, further increasing

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IV April 2025

greenhouse gas emissions and environmental degradation (Voumik & Ridwan, 2023). These figures illustrate the ongoing global dependence on fossil fuels and the pressing necessity to transition toward cleaner energy sources to mitigate their environmental impact.

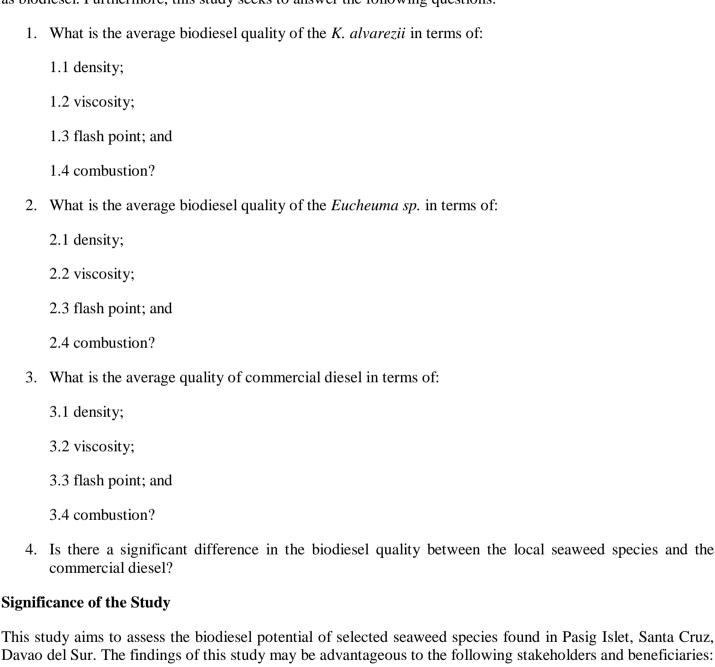

Asian countries have become major contributors to global carbon emissions, with nations like Saudi Arabia, Indonesia, and Russia playing significant roles in escalating environmental concerns. Despite efforts to curb emmisions, these asian nations remain among the world's largest carbon emitter, with varying commitments to renewable energy. While Russia enacted a law in 2021 to limit greenhouse gas emissions, Saudi Arabia has yet to implement substantial policies to reduce its carbom footprint or transition away from fossil fuels.

Strengthening and enforcing sustainable policies will be crucial in achieving meaningful reductions in emissions. To address, future energy demands and reduce ependence on fossil fuels, biofuels present a promising alternative. There are four generations of biofuels, with third-generation biofuels—particularly those derived from seaweed—gaining attention due to their high carbohydrate content and carbon sequestration capabilities. Seaweed is a particularly viable biomass feedstock in Asia, where countries like China, Japan, Indonesia, and South Korea lead in its cultivation for various industrial applications. However, as noted by Pardilhó et al. (2021), seaweed composition varies depending on species, location, environmental conditions (such as light, temperature, nutrient content, and water salinity), and biotic interactions. Given these factors, optimizing seaweed cultivation for biofuel production could serve as a sustainable strategy for reducing carbon emissions while promoting renewable energy adoption in Asia.

The Philippines is one of the significant producers of CO₂ in the Asia-Pacific region, which affects both its economic and environmental growth due to the increasing levels of greenhouse gases (Sabado et al., 2022). The country's continuous economic development and industrialization have led to a growing demand for energy across various sectors, including utilities, industry, and transportation. As of 2022, energy consumption has been rising at a rate of 4% annually since 2020, leading to heightened concerns about sustainability and prompting the need for a shift toward renewable energy sources (Philippine Energy Research, 2022). A study conducted in Laguna found that blending biodiesel with fossil fuels resulted in a 42.27% reduction in greenhouse gas emissions. This suggests that biodiesel, particularly when derived from microalgae, can play a significant role in reducing carbon footprints and supporting more sustainable energy practices (Dizon et al., 2022).

In 2007, the Philippines passed the Biofuel Act, also known as Republic Act 9367, which requires the blending of 20% bioethanol and 10% biodiesel in all petroleum fuels by the year 2020. For the production of bioethanol, feedstocks like sugarcane and molasses are utilized, while coconut oil is primarily used for biodiesel manufacturing (Acda, 2022). Moreover, microalgae have shown great promise as a source of biodiesel production due to their high oil content, rapid growth rate, and potential environmental benefits (Nortez & Arguelles, 2023). This highlights the potential of microalgae-based biodiesel as a key solution to reducing emissions and enhancing energy security in the Philippines. According to Lacorte (2022), for Mindanao, which was recently ravaged by powerful typhoons and extreme weather that brought communities flash floods, landslides, and storm surges, switching to clean energy would be the best decision to take action. The engineers of Ateneo de Davao University encouraged workshop participants to consider renewable energy sources since it is cleaner, less expensive, and more abundant over time. The study was led by a desire to better understand renewable energy technology and make it more useful and affordable for the local community. Only 30% of Mindanao's energy comes from renewable sources, with the remaining 50% coming from coal and 20% from diesel and other fossil fuels, said Assistant Secretary Romeo Montenegro, Mindanao Development Authority deputy executive director.

Several studies have indicated that environmental conditions play a significant role in influencing lipid production in organisms. Jaworowska and Murtaza (2022) highlight that seaweeds, in particular, are a rich source of active lipids, within a high concentration of unsaturated fatty acids. These characteristics make seaweed a promising option for biofuel production. In a study conducted by Almarza et al. (2020) in Iloilo City, three seaweed species—Dictyota dichotoma, Sargassum cristaefolium, and Padina minor were evaluated for their potential in biodiesel production. The findings revealed that Padina minor exhibited the highest lipid content and favorable fatty acid composition, making it the most promising alternative for biodiesel production



among the three species. These studies emphasize the importance of selecting suitable seaweed species, like Padina minor, for biodiesel production, further supporting the potential of seaweeds as a renewable and ecofriendly source of biofuel.

Statement of the Problem

This study aims to assess the potential of selected seaweed species found in one of the islets in Davao del Sur as biodiesel. Furthermore, this study seeks to answer the following questions:

Davao del Sur. The findings of this study may be advantageous to the following stakeholders and beneficiaries:

Department of Energy. The department may benefit from this study by promoting seaweed-based biodiesel that could help reduce the usage of imported fossil fuels.

Bureau of Fisheries and Aquatic Resources. The BFAR may benefit from this study by gaining valuable insights into the viability of local seaweed species for biodiesel production, potentially enhancing sustainable energy initiatives and supporting regional marine resource management.

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IV April 2025

RSIS \$ 1551V1V0. 2521 2705 | DOI: 10.51244/15R51 | Volume All 1550C 1 V April 2025

Fuel Companies. This study provides fuel companies with insights into the viability of local seaweed species as a cost-effective and sustainable biodiesel source, promoting renewable energy adoption and reducing environmental impact.

Seaweed farmer. Seaweed farmers could benefit from this study by discovering if their seaweed is good for making biodiesel, which could lead to new business opportunities and better profits. It might also help them improve their farming practices for better results.

Future Researchers. This study may provide a future researcher who will examine the potential of seaweed for environmental products, biofuel, and sustainable food.

Scope and Limitations

This study was conducted in one of the researchers' houses in Digos City, within the academic year 2024-2025. The researchers utilized selected seaweed species from one of the islets in Davao del Sur province, namely, Kappaphycus alvarezii and Eucheuma sp. The selected seaweed species was tested to determine its potential as biodiesel. The selected seaweed species were chosen due to their abundance in the locality of Davao del Sur.

The study's main objective is to determine the biodiesel potential of seaweeds found in one of the islets within the province of Davao del Sur. The seaweed species that will be assessed are only Kappaphycus alvarezii and Eucheuma sp. Thus, seaweed species from neighboring islands and other types of seaweed will not be assessed. Additionally, the study will only assess the density, viscosity, flash point, and combustion of the biodiesel derived from seaweed. Moreover, the study will only cover a specific period, meaning the result will not be generalized to other times of the year or locations outside of Davao del Sur.

Definition of Terms

The following terms were defined to help with understanding the various components of this study.

Biodiesel. According to Mahapatra et al. (2021), This refers to a renewable fuel derived from biological sources such as vegetable oils or animal fats, used as an alternative to petroleum diesel in engines.

Combustion. The process of burning the biodiesel produced from seaweed species to evaluate its energy release and emissions characteristics under controlled conditions (Kohse-Höinghaus, 2023).

Density. A measurement of the mass per unit volume of the biodiesel derived from *Kappaphycus alvarezii* and *Eucheuma sp.* is used to assess its compatibility with biodiesel standards (Mujtaba et al., 2021).

Flashpoint. According to Santos et al. (2019), It is defined as the lowest temperature at which the vapor of a biodiesel sample can ignite in the air, indicating its safety and volatility during storage and handling.

Seaweed. A marine macroalgae species selected for its lipid content and biomass potential specifically Kappaphycus alvarezii, a red seaweed species known for its high carbohydrate and carrageenan content, and Eucheuma sp., a genus of red seaweed characterized by its robust growth and commercial significance in carrageenan production, which is analyzed for its capacity to produce biodiesel through extraction and transesterification.

Viscosity. The measure of a biodiesel's resistance to flow, which is assessed by determining the time required for a specific volume of the sample to pass through a syringe (Farouk et al., 2024).

METHODS

Research Design

In this study, a true experimental design was utilized. This method addresses unforeseen external variables

-those not anticipated in the study design—that have the potential to influence the response variable (Costello, 2023). This design is appropriate as it allows for a straightforward comparison of biodiesel yields and quality

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IV April 2025

measures—such as density, viscosity, flash point, and combustion—across different seaweed species, specifically K. alvarezii and Eucheuma sp. without involving complex blocking or grouping factors. By comparing the results of several groups under controlled conditions, the researchers can easily discover any effects that appear on the changed variable. Furthermore, this design is well regarded for providing strong evidence that supports the existence of relationships among variables.

To understand the experiment clearly, two (2) different species of seaweed were collected. Both K. alvarezii and Eucheuma sp. were assessed by their average density, viscosity, flash point, and combustion as the researchers compared them to biodiesel yields. This approach will help the researchers better grasp if there is a significant difference in the fuel efficiency of biodiesel derived from seaweed compared to the conventional types of biodiesel.

Sampling Technique

The researchers employed complete random sampling in this study. Noor et al. (2022) define random sampling as the process of selecting random samples without identifying any of their features, which in this case are the variables of the seaweed species *Eucheuma sp.* and *K. alvarezii*.

Furthermore, given that it eliminates the need for critical analysis of the seaweed samples, random sampling is a time and money-efficient sampling method. It enables researchers to efficiently gather data without being limited by the difficulties and constraints of several tests and procedures. In situations where time and resources run short, this can be advantageous. Moreover, this study aims to evaluate the seaweed species *Eucheuma sp.* and *K. alvarezii's* capacity to produce biodiesel. Given that the random sampling method is effective, economically viable, and feasible for the researchers to conduct the study, it is the most appropriate approach to use for this study.

Data Gathering Procedure

In the process of gathering data for the study, the researchers needed to follow specific procedures to acquire information.

Collection of the Seaweed Species

- 1. The two (2) seaweed species were collected at Lawis, Barangay Bato, Santa Cruz, Davao del Sur. The seaweed species was hand-picked by a local seaweed farmer via snorkeling.
- 2. The seaweeds were placed inside a one-gallon Ziplock bag filled with seawater and were transported to one of the researcher's houses inside an ice box. It was then stored inside a freezer.

Pre-treatment of the Seaweed Species

- 1. After collecting and determining the seaweed species, the seaweeds were washed with tap water to remove attached debris, coral parts, stones, and epiphytes.
- 2. After washing the seaweed, it was sun-dried to reduce moisture content, making it easier to extract lipids.
- 3. The washed seaweed was ground into smaller particles using a blender to increase the surface area for extraction.

Lipid Extraction and Transesterification

The following steps were adapted from the study of Gülüm and Bilgin (2015).

1. Ethanol was used to extract lipids from the seaweed. The ground seaweed was then mixed with the solvent.

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IV April 2025

- The extracted lipids were then reacted with ethanol in the presence of a catalyst, sodium hydroxide.
- 3. After the transesterification process, the mixture will contain biodiesel, glycerol, and residual
- 3. After the transesterification process, the mixture will contain biodiesel, glycerol, and residual catalyst. These components were separated using a separation technique.

TESTING METHODS FOR BIODIESEL

This reaction will be done at around 60-70°C for 1-2 hours.

The following equipment and time requirements needed for biodiesel quality testing were adapted from the study of Ateeq (2015).

- 1. In measuring the viscosity of the biodiesel derived from seaweed, a syringe flow test technique was utilized with 10 mL of each sample
- 2. The density of the extract was determined using a precision balance with 0.01 g accuracy with 10 mL of each sample.
- 3. An open flame test was performed to measure the flash point of the biodiesel with 5 mL of each sample
- 4. Lastly, the combustibility of the transesterified seaweed was tested using the flame height and burn time technique with 5 mL of each sample.

Measures

To measure biodiesel quality, the researchers assessed key parameters such as density, viscosity, flash point, and combustion efficiency, Density was determined using a hydrometer, following ASTM D1298 standards.

To determine the density of biodiesel using the weighing method, first, the researchers weigh an empty container and record its mass. Next, the researchers added exactly 10 mL of biodiesel and weighed the container again. After that, the empty container's weight was subtracted from the total weight to obtain the mass of the biodiesel. The density was then calculated using the formula as shown in figure 1. Based on ASTM D6751 standard, an acceptable biodiesel density ranges from 860 to 900 kg/m³. If the density falls within this range, the biodiesel meets the standard for proper combustion and engine performance. A density below 860 kg/m³ suggests the fuel may have low energy content, affecting efficiency. Conversely, a density above 900 kg/m³ indicates the fuel may be too thick, leading to injector clogging and incomplete combustion. Table 1 shows the table of interpretation for biodiesel's density.

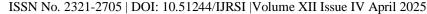

Density= $\frac{\textit{Mass of the Sample}}{\textit{Volume of the Sample}}$

Table 1. Table of Interpretation of Diesel Quality based on Density

To determine the viscosity of biodiesel using the syringe flow technique, 10 mL of biodiesel derived from each seaweed species and commercial diesel was placed in a syringe, and the time it took for the liquid to flow out was recorded. The viscosity was then estimated using the formula $v=K\times t$, where K is a calibration constant based on reference fluids, and t is the measured flow time. The calculated viscosity was compared to the ASTM D6751 standard, which specifies an acceptable range of 1.9 - 6.0 mm²/s. If the viscosity falls within this range, the biodiesel is suitable for use. A viscosity below 1.9 mm²/s indicates that the biodiesel is too thin, potentially leading to poor lubrication and engine wear, while a viscosity above 6.0 mm²/s suggests that the fuel is too thick, which can cause injector clogging and incomplete combustion. Figure 2 shows the calculation of the biodiesel's viscosity while table 2 shows the interpretation of biodiesel's viscosity.

V = Kxt

Where K = calibration constant based on reference fluids

t = measured flow time

Table 2. Table of Interpretation of Biodiesel Quality based on Viscosity

To determine the flash point of biodiesel using the open flame test, the sample is heated in a container while a small flame is introduced at regular temperature intervals. The temperature at which the biodiesel momentarily ignites is recorded as the flash point. According to ASTM D6751, the minimum flash point for biodiesel is 130°C to ensure safety in storage and transportation. If the flash point is ≥130°C, the biodiesel is safe and meets ASTM standards. A flash point between 100–129°C suggests a borderline result, meaning the fuel may pose a higher fire risk. If the flash point is below 100°C, the biodiesel fails the standard, indicating high volatility and potential fire hazards. This test is essential for ensuring the biodiesel's safety before commercial use. Figure 3 shows the calculation of the biodiesel's flash point while table 3 shows the table of interpretation for the flash point.

FP= T_{flash}

Where $FP = \text{Flash Point } (^{\circ}\text{C})$

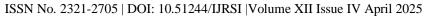
 T_{Flash} = Temperature at which a flash is observed

Table 3. Table of Interpretation of Biodiesel Quality based on Flash Point

To determine biodiesel combustion performance, a fixed volume of biodiesel is ignited, and both flame height and burn time are recorded. The combustion index (CI) is then calculated using the formula CI = H/T, where H is the flame height and T is the burn time. Based on ASTM standards, an optimal CI value ranges from 0.15 to 0.30 cm/s, ensuring proper combustion and efficient energy release. A lower CI < 0.15 cm/s suggests slow burning, which may lead to carbon buildup and incomplete combustion. Meanwhile, a higher CI > 0.30 cm/s indicates rapid burning, potentially causing engine knocking and increased heat production. This method provides a simple yet effective way to evaluate biodiesel's suitability for use as a fuel. Figure 4 shows the calculation of the biodiesel's combustion efficiency while table 4 shows the table of interpretation for the combustion.

$$CI = \frac{H}{T}$$

Where CI = combustion index (cm/s)


H = average flame height (cm)

T = average burn time (s)

Table 4. Table of Interpretation of Biodiesel Quality based on Combustion Efficiency

Data Analysis

In this study, the data were analyzed through quantitative statistics to determine the qualifications of the two seaweeds for biodiesel production. Descriptive Statistics were used together with the Mean and Standard Deviation which helped to describe and explain the data by providing summaries about the samples and the measures of the data. The mean was used to assess the overall impact of the effectiveness of the two groups, while the standard deviation provided the assessment of the spread of data and the variability within each condition. A high standard variation indicated that the seaweeds were closer to the standard quality of biodiesel and a low deviation suggested that the seaweed were not relatively close to the standard quality of biodiesel. The study also utilized the Analysis of Variance (ANOVA) where the researchers utilized this to determine the significant differences among the selected seaweed species for biodiesel production, including commercial diesel. By calculating the F-statistic and associated p-value, ANOVA evaluated whether the variation between the group means was greater than the variation within the groups.

RESULTS AND DISCUSSION

This chapter deals with the presentation, analysis, and interpretation of data. The first part describes the biodiesel quality of Kappaphycus alvarezii and Eucheuma sp. in terms of density, viscosity, flash point, and combustion efficiency. The second part presents a comparison of the biodiesel quality of the two seaweed species with commercial diesel, along with statistical analyses to determine significant differences among the fuel samples.

Biodiesel Quality of K. alvarezii

The study investigated the biodiesel quality of the local seaweed *K. alvarezii* in terms of density, viscosity, flash point, and combustion efficiency. The researchers assessed the biodiesel quality of *K. alvarezii* in an alternative laboratory setup. The process began with the collection of the two (2) seaweed species, *K. alvarezii* and *Eucheuma sp.*, followed by lipid extraction using ethanol to obtain the necessary oils for biodiesel production. The extracted lipids underwent transesterification, where a catalyst, sodium hydroxide, facilitated the conversion of lipids into biodiesel. After, purification of the biodiesel was done to remove residual byproducts. Lastly, the density, viscosity, flash point, and combustion efficiency of the biodiesel were determined. Each test was performed in three (3) replicates to ensure consistency and reliability of the result Hence, the researchers obtained the following results.

Table 5. Biodiesel Quality of Kappaphycus alvarezii

	Replicate		Mean	SD	Interpretation		
	R1	R2	R3	Wiean	SD	interpretation	
Density (in g/cm³)	0.87	0.88	0.89	0.88	0.01	Acceptable	
Viscosity (in cSt)	4.75	4.85	4.8	4.80	0.05	High	
Flash Point (in °C)	130	132	131	131.00	1.00	Safe	
Combustion Efficiency (in percentage)	98.5	98.3	98.4	98.40	0.10	Excellent	

Table 1 presents the biodiesel quality of *K. alvarezii*. In terms of diesel density, *K. alvarezii* has an average of 0.88 g/cm³ which indicates that the density is acceptable and falls within the diesel standard, ensuring proper combustion and engine performance. For viscosity, the table showed that *K. alvarezii* biodiesel has an average viscosity of 4.80 cSt, which means that it is high and can be used in low-speed diesel engines, and may be too thick for standard engines. Moreover, the flash point of the biodiesel derived from *K. alvarezii* has an average of 131.00 °C, which means that it is safe and is suitable for industrial and marine applications with reduced volatility. Lastly, the *K. alvarezii*-derived biodiesel has an average of 98.40% combustion, which indicates that its combustion efficiency is excellent and it is near-complete combustion, minimal emissions, optimal engine performance.

Furthermore, the biodiesel from *K. alvarezii* shows that it has excellent fuel properties, matches to the ASTM D6751 standard and highlights its potential good alternative to the customary diesel. The results for its density, viscosity, and its flashpoint can be supported by the studies of Abomohra et al. (2018) and Jaworowska and Murtaza (2022), where it states that rich lipid content and unsaturated fatty acids in seaweeds contributes to the promising biodiesel characteristics. It also aligns with the study of Illijas et al. (2023), where they elucidate the characteristics of the fatty acid composition of *K. alvarezii* and it showed that it contains significant amounts of fatty acids. This is also connected to the investigation of Mendes et al. (2024) on fatty acid methyl ester analysis of *K. alvarezii* where they found two saturated fatty acids and one monounsaturated fatty acid which concludes that these fatty acids found in *K. alvarezii* are ideal for transesterification to produce high-quality biodiesel with good combustion properties. These studies reflect the efficacy of *K. alvarezii* as shown in the results.

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IV April 2025

Biodiesel Quality of Eucheuma sp.

The study investigated the biodiesel quality of the local seaweed Eucheuma Sp., in terms of density, viscosity, flash point, and combustion efficiency. The researchers assessed the biodiesel quality of Eucheuma Sp. in an alternative laboratory setup. The process started with seaweed harvesting of two species, K. alvarezii and Eucheuma sp., and then proceeded to lipid extraction with ethanol in order to recover the oils to be used as biodiesel inputs. The resultant lipids were then transesterified through the use of sodium hydroxide as catalyst, wherein the lipids were converted to biodiesel. The biodiesel was then further purified to get rid of lingering byproducts. Lastly, the density, viscosity, flashpoint, and combustion efficiency of biodiesel were evaluated. All tests were performed in triplicate to guarantee the accuracy and consistency of the findings. Therefore, the researchers achieved the following results.

Table 6. Biodiesel Quality of Eucheuma Sp.

	Repli	cate		Mean	SD	Interpretation	
	R1	R2	R3	Ivican	SD		
Density (in g/cm³)	0.88	0.89	0.88	0.88	0.01	Acceptable	
Viscosity (in cSt)	4.92	5.1	5.05	5.02	0.09	Very High	
Flash Point (in °C)	125	127	126	126.00	1.00	Safe	
Combustion Efficiency (in percentage)	98.2	97.8	98	98.00	0.20	Excellent	

Table 2 presents the biodiesel quality of *Eucheuma sp*. In terms of diesel density of *Eucheuma Sp*., it has an average of 0.88 g/cm³ which indicates that it is acceptable and it falls within the diesel standard, ensuring proper combustion and engine performance. For viscosity, the table showed that *Eucheuma Sp*. biodiesel has an average viscosity of 5.02 cSt, which means that it is very high and it exceeds the standard, which may result in poor fuel injection, filter clogging, and engine deposits. Moreover, its flash point has an average of 126.00 °C, which shows that it is safe and is suitable for industrial and marine applications with reduced volatility. Lastly, for combustion efficiency, it has an average of 98.00 %, which indicates that it is excellent and and it is near-complete combustion, minimal emissions, optimal engine performance.

Moreover, the results match the study of Mohadesi et al. (2021), biodiesel made from alternative feedstocks such as seaweeds, shows excellent combustion efficiency which serves its purpose in reducing carbon footprint of transportation and industrial sectors.

Diesel Quality of Commercial Diesel

The study investigated the diesel quality of the positive control in terms of density, viscosity, flash point, and combustion efficiency for comparison with the biodiesel. Hence, the researchers obtained the following results.

Table 7. Diesel Quality of Commercial Diesel

	Repli	cate		Mean	SD	Interpretation	
	R1	R2	R3	vican	SD		
Density (in g/cm³)	0.85	0.86	0.85	0.85	0.01	Acceptable	
Viscosity (in cSt)	3.5	3.6	3.4	3.50	0.10	Acceptable	
Flash Point (in °C)	60	61	59	60.00	1.00	Safe	
Combustion Efficiency (in percentage)		98.9	99.1	99.00	0.10	Excellent	

Table 3 presents the quality of commercial diesel. In terms of density, commercial diesel has an average of 0.85 g/cm³ which indicates that it is acceptable and it falls within the diesel standard, ensuring proper combustion and engine performance. For viscosity, the table showed that commercial diesel has an average

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IV April 2025

viscosity of 3.50 cSt, which means that it is acceptable and meets standard diesel engine requirements for proper atomization and combustion. Moreover, the flash point of the commercial diesel has an average of

proper atomization and combustion. Moreover, the flash point of the commercial diesel has an average of 99.00, which indicates that it is safe and suitable for industrial and marine applications with reduced volatility. Lastly, its combustion efficiency has an average of 99.00 %, which means that it is excellent and it is near-complete combustion, minimal emissions, optimal engine performance.

Additionally, a study by Kim et al. (2020) says that the combustion performance of a conventional rail diesel engine was investigated by measuring the exhaust gas with respect to the number of injector holes, fuel type, and the use of exhaust gas recirculation (EGR), to provide a detailed reduction of environmental pollutants. Moreover, the components of the fuel's composition determine its physical and ignition properties, and their variations affect engine performance. In this study, n-heptane, n-dodecane, tetralin, and decalin were chosen as typical additives to blend with commercial diesel according to the China VI standard (Heavy Duty Diesel Vehicle Pollutant Emission Limits and Measurement Methods) in 20% and 50% volume fractions, respectively. The physical properties of the fuel blends, such as viscosity, density, cetane number (CN), and distillation range, were measured first. Then, the commercial diesel's lower heat value was measured, and blended fuels were calculated accordingly (Wei et al., 2022).

Significance of the Difference in the Biodiesel Quality of K. alvarezii, Eucheuma Sp., and Commercial Diesel

Table 4 shows the results of a one-way analysis of variance to determine the significance of the difference in the biodiesel quality of different species seaweed seaweed-derived biodiesel and the positive control diesel. It can be observed that the F value is 4.704 with 3 and 8 degrees of freedom. The p-value is 0.036 which is less than 0.05. This further means that there is a need to reject the null hypothesis. This indicates that the three experimental groups significantly differ from the positive control in terms of their tensile strength.

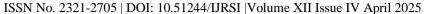
Table 8. Significance of the Difference in the Biodiesel Quality of K. alvarezii, Eucheuma Sp., and Commercial Diesel

	F	p	Decision	Interpretation
Density	14.600	0.005	Reject H _o	Significant
Viscosity	288.200	0.000	Reject H _o	Significant
Flash Point	4711.000	0.000	Reject H _o	Significant
Combustion Efficiency	38.000	0.000	Reject H _o	Significant

To determine which among the four setups significantly differ from the other, post hoc analysis was conducted particularly the pair-wise comparisons of sample means via the Tukey HSD test. The Tukey's honestly significant difference test (Tukey's HSD) tests differences among sample means for significance. The Tukey's HSD tests all pairwise differences while controlling the probability of making one or more Type I errors. Tukey's HSD test is one of several tests designed for this purpose and fully controls this Type I error rate (Salkind, 2010).

Table 9. Post Hoc Comparisons using the Tukey HSD Test

	Mean Difference	p	Decision	Interpretation
Density				
Between Kappaphycus alvarezii and Eucheuma Sp.	-0.0033	0.851	Fail to Reject H_o	No Significant Difference


ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IV April 2025

0.0267	0.011	Reject H _o	Significant Difference
0.0300	0.006	Reject H _o	Significant Difference
-0.2233	0.040	Reject H _o	Significant Difference
1.3000	0.000	Reject H _o	Significant Difference
1.5233	0.000	Reject H _o	Significant Difference
5.0000	0.002	Reject H _o	Significant Difference
71.0000	0.000	Reject H _o	Significant Difference
66.0000	0.000	Reject H _o	Significant Difference
0.4000	0.031	Reject H _o	Significant Difference
-0.6000	0.005	Reject H _o	Significant Difference
-1.0000	0.000	Reject H _o	Significant Difference
	0.0300 -0.2233 1.3000 1.5233 5.0000 71.0000 66.0000 -0.6000	0.0300 0.006 -0.2233 0.040 1.3000 0.000 1.5233 0.000 5.0000 0.002 71.0000 0.000 66.0000 0.000 0.4000 0.031 -0.6000 0.005	0.0300 0.006 Reject H_o -0.2233 0.040 Reject H_o 1.3000 0.000 Reject H_o 1.5233 0.000 Reject H_o 5.0000 0.002 Reject H_o 71.0000 0.000 Reject H_o 66.0000 0.000 Reject H_o 0.4000 0.031 Reject H_o -0.6000 0.005 Reject H_o

Table 5 presents the post hoc analysis of biodiesel qualities reveals significant differences in most measured factors. For density, there was no significant difference between K. alvarezii and Eucheuma sp. (p = 0.851). However, significant differences were observed between K. alvarezii and commercial diesel (p = 0.011), as well as between Eucheuma sp. and commercial diesel (p = 0.006), indicating that both local seaweed biodiesels had significantly higher densities compared to commercial diesel. In terms of viscosity, significant differences were found between all pairs. The comparisons between K. alvarezii and Eucheuma sp. (p = 0.040), K. alvarezii and commercial diesel (p = 0.000), and Eucheuma sp. and commercial diesel (p = 0.000) all showed significantly higher viscosities for the local seaweeds biodiesel.

For flash point, all pairwise comparisons were significant, with K. alvarezii and $Eucheuma\ sp$. showing a significant difference (p = 0.002), as well as K. alvarezii and commercial diesel (p = 0.000), and $Eucheuma\ sp$. and commercial diesel (p = 0.000). Both local seaweed biodiesel exhibited significantly higher flash points compared to commercial diesel. Similarly, combustion point comparisons yielded significant differences between all groups. The comparisons between K. alvarezii and $Eucheuma\ sp$. (p = 0.031), K. alvarezii and commercial diesel (p = 0.005), and $Eucheuma\ sp$. and commercial diesel (p = 0.000) all indicated higher combustion points for both algae-based biodiesel. These results highlight the significant differences in key properties of biodiesel from K. alvarezii and $Eucheuma\ sp$. compared to commercial diesel, suggesting the potential for these algae-based biodiesel as alternative fuel sources.

The result agrees with the statement of Abomohra et al. (2018) and Jaworowska and Murtaza (2022), which highlight that seaweeds, particularly those rich in lipids and unsaturated fatty acids, exhibit promising biodiesel

characteristics. The findings also align with the study of Illijas et al. (2023), which identified *Kappaphycus alvarezii* as having significant fatty acid content suitable for biodiesel production. Additionally, the results support the study of Mendes et al. (2024), which found that *K. alvarezii* contains saturated and monounsaturated fatty acids that are ideal for transesterification, leading to high-quality biodiesel with efficient combustion properties.

Conversely, the results contradict the findings of Mohadesi et al. (2021), which suggested that biodiesel from alternative feedstocks may have lower combustion efficiency compared to commercial diesel. In this study, both *K. alvarezii* and *Eucheuma sp.* exhibited combustion efficiencies close to that of commercial diesel, indicating that seaweed-derived biodiesel can be a viable alternative fuel source.

SPSS RESULTS

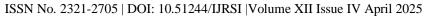
One-way

Descrip	tives								
		N	Mean	Std. Devia tion	Std. Error	95% Interval for Lower Bound	Confidence or Mean Upper Bound	Minimu m	Maximum
Densi ty	Kappap hycus alvarezi i	3	.8800	.0100	.0057	.8552	.9048	.87	.89
	Eucheu ma Sp.	3	.8833	.0057 7	.0033	.8690	.8977	.88	.89
	Comme rcial Diesel	3	.8533	.0057 7	.0033	.8390	.8677	.85	.86
	Total	9	.8722	.0156	.0052 1	.8602	.8842	.85	.89
Visco sity	Kappap hycus alvarezi i	3	4.800 0	.0500	.0288 7	4.6758	4.9242	4.75	4.85
	Eucheu ma Sp.	3	5.023 3	.0929	.0536 4	4.7925	5.2541	4.92	5.10
	Comme rcial Diesel	3	3.500	.1000	.0577 4	3.2516	3.7484	3.40	3.60
	Total	9	4.441 1	.7161 3	.2387 1	3.8906	4.9916	3.40	5.10
Flash Point	Kappap hycus alvarezi i	3	131.0 000	1.000	.5773 5	128.515 9	133.4841	130.00	132.00
	Eucheu ma Sp.	3	126.0 000	1.000	.5773 5	123.515 9	128.4841	125.00	127.00
	Comme rcial	3	60.00 00	1.000 00	.5773 5	57.5159	62.4841	59.00	61.00

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue IV April 2025

	Diesel								
	Total	9	105.6 667	34.32 929	11.44 310	79.2788	132.0545	59.00	132.00
Comb ustion Effici ency	Kappap hycus alvarezi i	3	98.40 00	.1000	.0577 4	98.1516	98.6484	98.30	98.50
	Eucheu ma Sp.	3	98.00 00	.2000 0	.1154 7	97.5032	98.4968	97.80	98.20
	Comme rcial Diesel	3	99.00 00	.1000	.0577 4	98.7516	99.2484	98.90	99.10
	Total	9	98.46 67	.4527 7	.1509 2	98.1186	98.8147	97.80	99.10

ANOVA						
		Sum of Squares	df	Mean Square	F	Sig.
Density	Between Groups	.002	2	.001	14.60 0	.005
	Within Groups	.000	6	.000		
	Total	.002	8			
Viscosity	Between Groups	4.060	2	2.030	288.2 00	.000
	Within Groups	.042	6	.007		
	Total	4.103	8			
Flash Point	Between Groups	9422.000	2	4711.000	4711. 000	.000
	Within Groups	6.000	6	1.000		
	Total	9428.000	8			
Combustion Efficiency	Between Groups	1.520	2	.760	38.00 0	.000
•	Within Groups	.120	6	.020		
	Total	1.640	8			


Post Hoc Tests

Multiple Comparisons											
Tukey HSD											
Dependen	(I)	(J) Treatment	Mean	Std.	Sig.	95% Confidence Interval					
t Variable	Treatme		Differ	Err		Lower Bound	Upper Bound				
	nt		ence	or			11				
			(I-J)								

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue IV April 2025

Density	Kappap hycus alvarezii	Eucheuma Sp.	.0033	.00 609	.851	0220	.0153
		Commercial Diesel	.0266 7*	.00 609	.011	.0080	.0453
	Eucheu ma Sp.	Kappaphycus alvarezii	.0033	.00 609	.851	0153	.0220
		Commercial Diesel	.0300 0*	.00 609	.006	.0113	.0487
	Comme rcial Diesel	Kappaphycus alvarezii	- .0266 7*	.00 609	.011	0453	0080
		Eucheuma Sp.	- .0300 0*	.00 609	.006	0487	0113
Viscosity	Kappap hycus alvarezii	Eucheuma Sp.	- .2233 3*	.06 853	.040	4336	0131
	Eucheu	Commercial Diesel	1.300 00*	.06 853	.000	1.0897	1.5103
	Eucheu ma Sp.	Kappaphycus alvarezii	.2233 3*	.06 853	.040	.0131	.4336
	Commo	Commercial Diesel	1.523 33*	.06 853	.000	1.3131	1.7336
	Comme rcial Diesel	Kappaphycus alvarezii	1.300 00*	.06 853	.000	-1.5103	-1.0897
		Eucheuma Sp.	- 1.523 33*	.06 853	.000	-1.7336	-1.3131
Flash Point	Kappap hycus	Eucheuma Sp.	5.000 00*	.81 650	.002	2.4948	7.5052
	alvarezii	Commercial Diesel	71.00 000*	.81 650	.000	68.4948	73.5052
	Eucheu ma Sp.	Kappaphycus alvarezii	5.000 00*	.81 650	.002	-7.5052	-2.4948
		Commercial Diesel	66.00 000*	.81 650	.000	63.4948	68.5052
	Comme rcial Diesel	Kappaphycus alvarezii	- 71.00 000*	.81 650	.000	-73.5052	-68.4948
		Eucheuma Sp.	- 66.00 000*	.81 650	.000	-68.5052	-63.4948
Combusti	Kappap hycus	Eucheuma Sp.	.4000 0*	.11 547	.031	.0457	.7543
Efficiency	alvarezii	Commercial	-	.11	.005	9543	2457

Holo							
		Diesel	.6000 0*	547			
	Eucheu ma Sp.	Kappaphycus alvarezii	- .4000 0*	.11 547	.031	7543	0457
		Commercial Diesel	- 1.000 00*	.11 547	.000	-1.3543	6457
	Comme rcial	Kappaphycus alvarezii	.6000 0*	.11 547	.005	.2457	.9543
	Diesel	Eucheuma Sp.	1.000	.11	.000	.6457	1.3543

547

Summary

This study aimed to evaluate the potential of seaweed-derived biodiesel as an alternative biofuel by analyzing its viscosity, density, flash point, and combustion characteristics. The research involved a step-by-step process, including seaweed, cultivation, lipid extraction, transesterification, and purification, followed by experimental testing of the biodiesel's properties.

 00^{*}

Descriptive analysis and experimental methods were used to assess the fuel quality. Results indicated that the biodiesel met key standards but also highlighted areas requiring further refinement, particularly in viscosity and combustion efficiency. The study provides valuable insights into the feasibility of seaweed-based biodiesel production and its potential applications as a sustainable energy source. These findings emphasize the importance of continued research and development in alternative biofuels to promote environmental sustainability.

CONCLUSION

After a thorough investigation of seaweed-derived biodiesel, the following conclusions are drawn:

- 1. Seaweed-derived biodiesel is a viable alternative fuel source. The study shows that biodiesel produced from seaweed has promising fuel properties, making it a potential renewable energy option.
- 2. The biodiesel meets key fuel standards. The viscosity, density, and flash point of the biodiesel fall within acceptable ranges, indicating its potential for use in diesel engines.
- 3. Combustion characteristics require further optimization. While the biodiesel burns efficiently, improvements in ignition quality and energy output are needed to enhance performance.
- 4. Seaweed is a sustainable biofuel feedstock. Unlike traditional crops, seaweed does not require freshwater or arable land, making it an environmentally friendly alternative for biodiesel production.
- 5. Seaweed is a sustainable biofuel feedstock, but its lipid content varies. The lipid and fatty acid content should be documented throughout the year, as environmental conditions across different seasons may affect lipid accumulation. To add to this, other external factors should be considered and studied to attain optimal cultivation technology for higher lipid yield from seaweed.

RECOMMENDATION

1. For the Department of Energy, the DOE should support further research and development on seaweedderived biodiesel by providing funding, technical assistance, and policy support for its large-scale

^{*.} The mean difference is significant at the 0.05 level.

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IV April 2025

production. Establishing pilot projects and conducting feasibility studies will help assess its commercial viability and integration into the country's renewable energy (———-).

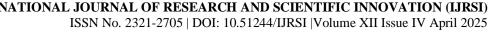
- 2. The Bureau of Fisheries and Aquatic Resources (BFAR) should encourage sustainable seaweed farming practices by offering training programs and financial assistance to farmers. Strengthening the seaweed industry will not only boost local economies but also ensure a stable supply of raw materials for biodiesel production. Additionally, BFAR should collaborate with energy researchers to assess the environmental impact of large-scale seaweed cultivation.
- 3. Fuel companies should invest in the research and development of biofuels, particularly seaweed-based biodiesel, to diversify their energy sources and reduce dependence on fossil fuels. Partnerships with academic institutions and government agencies can facilitate (—) testing and production scaling while ensuring the fuel meets industry standards for efficiency and emissions.
- 4. Seaweed farmers should be provided with access to technology and resources that enable them to participate in biodiesel production. Government and private sector initiatives should help integrate seaweed farming into the renewable energy supply chain by ensuring fair market opportunities and sustainable farming practices.
- 5. Further researchers should explore the potential of other seaweed species for biodiesel production, focusing on lipid content, growth efficiency, and sustainability. Additionally, researchers should investigate other biodiesel quality tests beyond viscosity, density, combustion, and flashpoint to comprehensively assess its performance and regulatory compliance. Long-term studies on the environmental and economic impacts of seaweed-based biodiesel should also be conducted to support its large-scale implementation.

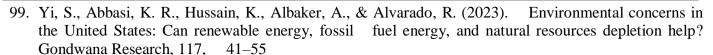
REFERENCES

- 1. Abdin, Z., Zafaranloo, A., Rafiee, A., Mérida, W., Lipiński, W., & Khalilpour, K. R. (2019). Hydrogen as an energy vector. Renewable and Sustainable Energy Reviews, 120, 109620. https://doi.org/10.1016/j.rser.2019.109620
- 2. Abomohra, A. e., El-Naggar, A. H., & Baeshen, A. A. (2018). Potential of macroalgae for biodiesel production: Screening and evaluation studies. Journal of bioscience and bioengineering, 125 (2), 231-237.https//doi.org/10.1016/j.jbiosc.2017.08.020
- 3. Acda, M. N. (2022). Production, regulation, and standardization of biofuels: a Philippine perspective. In Value-Chain of Biofuels (pp. 553-570). Elsevier.
- 4. Agaton, C. B. (2022). Will a Geopolitical Conflict Accelerate Energy Transition in Oil-Importing Countries? A Case Study of the Philippines from a Real Options Perspective. Resources, 11(6), 59. https://doi.org/10.3390/resources11060059
- 5. Akbari, M., Piri, H., Renzi, M., & Bietresato, M. (2024). The effects of biodiesel on the performance and gas emissions of farm tractors' engines: A Systematic Review, Meta-Analysis, and Meta-Regression. Energies, 17(17), 4226. https://doi.org/10.3390/en17174226
- 6. Alamsjah, M. A., Abdillah, A. A., Mustikawati, H., & Atari, S. D. P. (2017). Screening of biodiesel production from waste tuna oil (Thunnus sp.), seaweed Kappaphycus alvarezii and Gracilaria sp. doi:10.1063/1.5004286
- 7. Alharbi, N. S., Alyahya, S. A., Ramachandran, G., Chelliah, C. K., Kadaikunnan, S., Khaled, J. M., Alanzi, K. F., Rajivgandhi, G., & Manoharan, N. (2020). Screening of antioxidant and anti-bacterial metabolites from brown algae Turbinaria ornata for inhibits the multi-drug resistant P. aeruginosa. Journal of King Saud University Science, 32(8), 3447–3453. https://doi.org/10.1016/j.jksus.2020.10.005
- 8. Almarza, Lourde Frances Mye & Almarza, & Gatila, Sheena & Inosanto, Norielle. (2018). Potential for Biodiesel Production of Selected Seaweed Species from Taklong Island, Guimaras.
- 9. Astillo, J. D., Avenido, M. V., Bantilan, F. M., & Laroda, R. J. A. (2023, May 30). Guso (Eucheuma sp.) Ice Cream Enhanced with Blue ternate. https://i.agriculturejournals.org/index.php/ijeab/article/view/131

- 10. Ateeq, E. A., Ashqer, I., & Musameh, S. (2015). Biodiesel viscosity and flash point determination. ResearchGate. https://rb.gy/yu79ld
- 11. Banga, S., & Pathak, V. V. (2023). Biodiesel production from waste cooking oil: a comprehensive review on the application of heterogeneous catalysts. Energy Nexus, 10, 100209
- 12. Bharath, B., Perinbam, K., Devanesan, S., AlSalhi, M. S., & Saravanan, M. (2021). Evaluation of the anticancer potential of Hexadecanoic acid from brown algae Turbinaria ornata on HT–29 colon cancer cells. Journal of Molecular Structure, 1235, 130229. https://doi.org/10.1016/j.molstruc.2021.130229
- 13. Bhaskar, T., Bhavya, B., Singh, R., Naik, D. V., Kumar, A., & Goyal, H. B. (2011). Thermochemical conversion of biomass to biofuels. In Elsevier eBooks (pp. 51–77). https://doi.org/10.1016/b978-0-12-385099-7.00003-6
- 14. Binhweel, F., Pyar, H., Senusi, W., Shaah, M. A., Hossain, M. S., & Ahmad, M. I. (2023). Utilization of marine ulva lactuca seaweed and freshwater azolla filiculoides macroalgae feedstocks toward biodiesel production: kinetics, thermodynamics, and optimization studies. Renewable Energy, 205, 717-730.https://doi.org/10.1016/j.renene.2023.01.114
- 15. Brahma, S., Nath, B., Basumatary, B., Das, B., Saikia, P., Patir, K., & Basumatary, S. (2022). Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. Chemical Engineering Journal Advances, 10, 100284.
- 16. Bušić, A., Kundas, S., Morzak, G., Belskaya, H., Marđetko, N., Šantek, M. I., Komes, D., Novak, S., & Šantek, B. (2018). Recent trends in biodiesel and biogas production. Food Technology and Biotechnology, 56(2). https://doi.org/10.17113/ftb.56.02.18.5547
- 17. Cheah, W. Y., Sankaran, R., Show, P. L., Ibrahim, T. N. B. T., Chew, K. W., Culaba, A., & Chang, J. (2020). Pretreatment methods for lignocellulosic biofuels production: current advances, challenges and future prospects. Biofuel Research Journal, 7(1), 1115–1127. https://doi.org/10.18331/brj2020.7.1.4
- 18. Cheirsilp, B., & Maneechote, W. (2022). Insight on zero waste approach for sustainable microalgae biorefinery: Sequential fractionation, conversion and applications for high-to-low value-added products. Bioresource Technology Reports, 18, 101003. https://doi.org/10.1016/j.biteb.2022.101003
- 19. Costello, D. (2023). Completely randomized design: the One-Factor approach. ServiceScape. https://www.servicescape.com/blog/completely-randomized-design-the-one-factor-approach
- 20. Design and Analysis of Experiments. (2022). Montgomery, Douglas C. https://www.researchgate.net/publication/361342853_Design_and_Analysis_of_Experiments
- 21. Dizon, L. S., Pector, A. A., Demafilis R. B., Bataller, G. B., Badayos, B. R., Elepano R. A., & Gatdula, M. K. (2022). Environmental and economic viability of biodiesel production from palm oil in the Philippines. PIChE J, 19, 35-41.
- 22. Du, Y., Zhang, J., Jueterbock, A., & Duan, D. (2022). Prediction of the dynamic distribution for Eucheuma denticulatum (Rhodophyta, Solieriaceae) under climate change in the Indo-Pacific Ocean. Marine Environmental Research, 180, 105730. https://doi.org/10.1016/j.marenvres.2022.105730
- 23. Elder, M., & Hayashi, S. (2018). A regional perspective on biofuels in Asia. In Science for sustainable societies (pp. 223–246). https://doi.org/10.1007/978-4-431-54895-9_14El-Sheekh, M. M., Bases, E. A., El-Shenody, R. A., & Shafay, S. M. E. (2021). Lipid extraction from some seaweeds and evaluation of its biodiesel production. Biocatalysis and Agricultural Biotechnology, 35, 102087. https://doi.org/10.1016/j.bcab.2021.102087
- 24. El-Shenody, R. A., Elshobary, M. E., Ragab, G. A., Huo, S., & Essa, D. (2023). Towards biorefinery: Exploring the potential of seaweed-derived biodiesel and its residual biomass in improving the traits of Eruca vesicaria (L.) Cav. South African Journal of Botany, 155, 361–371. https://doi.org/10.1016/j.sajb.2023.02.029
- 25. Elshobary, M. E., El-Shenody, R. A., & Abomohra, A. E. F. (2021). Sequential biofuel production from seaweeds enhances the energy recovery: A case study for biodiesel and bioethanol production. International Journal of Energy Research, 45(4), 5457-6467.doi:10.1002/er.618
- 26. FAO Fisheries & Aquaculture. (2024). https://www.fao.org/fishery/en/culturedspecies/eucheuma_spp/en
- 27. Farouk, S. M., Tayeb, A. M., Abdel-Hamid, S. M. S., & Osman, R. M. (2024). Recent advances in transesterification for sustainable biodiesel production, challenges, and prospects: a comprehensive review. Environmental Science and Pollution Research, 31(9), 12722–12747. https://doi.org/10.1007/s11356-024-32027-4

- 28. Fasahati, P., Dickson, R., Saffron, C., Woo, H., & Liu, J. J. (2021). Seaweeds as a sustainable source of bioenergy: Techno-economic and life cycle analyses of its biochemical conversion pathways. Renewable and Sustainable Energy Reviews, 157, 112011. https://doi.org/10.1016/j.rser.2021.112011
- 29. Gebremariam, S., & Marchetti, J. (2018). Economics of biodiesel production: Review. Energy Conversion and Management, 168, 74–84. https://doi.org/10.1016/j.enconman.2018.05.002
- 30. Ganesan, S., Padmapriya, G., De Zoys, S. A., & Omoikhoje, I. D. (2022). Biofuel as an alternative for environmental sustainability. Physical Sciences source https://doi.org/10.1515/psr-2022-0209
- 31. Gollakota, A. R., & Shu, C. (2023). Comparisons between fossil fuels and bio-fuels. In Elsevier eBooks (pp. 67–85). https://doi.org/10.1016/b978-0-323-98363-1.00021-1
- 32. Gulliver, R. (2024, March 6). The Conflict Between Australia's Fossil Fuel Dependency and its Climate Adaptation and Mitigation Commitments -Climate Scorecard. Climate Scorecard. https://www.climatescorecard.org/2024/03/the-conflict-between-australiasfossil-fuel-dependencyand-its-climate-adaptation-and-mitigationcommitments/
- 33. Gülüm, M., & Bilgin, A. (2015). Density, flash point and heating value variations of corn oil biodiesel diesel fuel blends. Fuel Processing Technology. 134. 456-464. https://doi.org/10.1016/j.fuproc.2015.02.026
- 34. Ge, M. (2022). 4 Charts explain greenhouse gas emissions by countries and sectors. World Resources https://www.wri.org/insights/4-charts-explain-greenhouse-gas-emissions-countries-and-Institute. sectors
- 35. Ha, H. T., Cuong, D. X., Thuy, L. H., Thuan, P. T., Tuyen, D. T. T., Mo, V. T., & Dong, D. H. (2022). Carrageenan of Red Algae Eucheuma gelatinae: Extraction, Antioxidant Activity, Rheology Characteristics, and Physicochemistry Characterization. Molecules, 27(4),1268. https://doi.org/10.3390/molecules27041268
- 36. Hassan, A., Ilyas, S. Z., Jalil, A., & Ullah, Z. (2021). Monetization of the environmental damage caused by fossil fuels. Environmental Science and Pollution Research, 28(17), 21204-21211. https://doi.org/10.1007/s11356-020-12205-w
- 37. Hong, X. (2024). IEA Forecasts Surge in Biofuel Demand Until 2028. In chemanalyst.news. https://www.chemanalyst.com/NewsAndDeals/NewsDetails/iea-forecasts-surge-in-biofuel-demanduntil-2028-24589
- 38. Illijas, M. I., Kim, G., Honda, M., & Itabashi, Y. (2023). Characteristics of fatty acids from the red alga Kappaphycus alvarezii (Doty) Doty (Rhodophyta, Solieriaceae). Algal Research, 71, 103005. https://doi.org/10.1016/j.algal.2023.103005
- 39. Indonesia Investments. (2023, January 18). The Biodiesel Program of Indonesia; B35 scheduled to be imposed on 1 February 2023. https://www.indonesia-investments.com/news/todays-headlines/thebiodiesel-program-of-indonesia-b35-scheduled-to-be-imposed-on-1-february-2023/item9591
- 40. Jafarihaghighi, F., Bahrami, H., Ardimand, M., & Mirzajanzadeh, M. (2021). The assessment of effect of fatty acid profile on the physical properties and emission characteristics of new feedstocks used for biodiesel. Journal of Renewable Energy and Environment. 8(3), 26 - 35. https://doi.org/10.30501/jree.2021.257527.1161
- 41. Jambo, S. A., Abdulla, R., Marbawi, H., & Gansau, J. A. (2019). Response surface optimization of bioethanol production from third generation feedstock-Eucheuma cottonii. Renewable energy, 132, 1-10.doi:10.1016/j.renene.2018.07.133
- 42. Jeliani, Z. Z., Fazelian, N., & Yousefzadi, M. (2021). Introduction of macroalgae as a source of biodiesel in Iran: analysis of total lipid content, fatty acid and biodiesel indices. Journal of the Marine Biological Association of the United Kingdom, 101(3), 527-534. https://doi.org/10.1017/s0025315421000382
- 43. Johnston, K. G., Abomohra, A., French, C. E., & Zaky, A. S. (2023). Recent advances in seaweed biorefineries and assessment of their potential for carbon capture and storage. Sustainability, 15(17), 13193. https://doi.org/10.3390/su151713193
- 44. Kim, T., Park, J., & Cho, H. (2020). Emission Characteristics under Diesel and Biodiesel Fueled Compression Ignition Engine with Various Injector Holes and EGR Conditions. Energies, 13(11), 2973. https://doi.org/10.3390/EN13112973
- 45. Kohse-Höinghaus, K. (2023). Combustion, chemistry, and carbon neutrality. Chemical Reviews,


- 123(8), 5139–5219. https://doi.org/10.1021/acs.chemrev.2c00828
- 46. Kumar, K. S., Ganesan, K., & Rao, P. V. S. (2014). Seasonal variation in nutritional composition of Kappaphycus alvarezii (Doty) Doty—an edible seaweed. Journal of Food Science and Technology, 52(5), 2751–2760. https://doi.org/10.1007/s13197-014-1372-0
- 47. Lacorte, G. (2022). Regreening Mindanao grid | Inquirer News. INQUIRER.net. https://newsinfo.inquirer.net/1698281/regreening-mindanao-grid
- 48. Lapuerta, M., Sanchez-Valdepeñas, J., Barba Salvador, J., Fernández Rodríguez, D., Andrés, J. P., Escuela Técnica Superior de Ingenieros Industriales. Universidad de Castilla La Mancha, Instituto de Carboquímica, ICB-CSIC, Miguel Luesma Castán 4, 50018, Zaragoza, Spain, & Lapuerta, M. (2021). Analysis of diesel soot derived from the use of butanol blends in a Euro 6 diesel engine. Energy Fuels. https://digital.csic.es/bitstream/10261/183758/1/EnergyFuels%2033_Lapuerta_2019.pdf
- 49. Ledesma, R. H. (2023, August 31). Farming seaweed (Kappaphycus) SEAFDEC/AQD. SEAFDEC/AQD Southeast Asian Fisheries Development Center | Aquaculture Department. https://www.seafdec.org.ph/seaweed-kappaphycus/
- 50. Lim, C., Yusoff, S., Ng, C., Lim, P., & Ching, Y. (2021). Bioplastic made from seaweed polysaccharides with green production methods. Journal of Environmental Chemical Engineering, 9(5), 105895. https://doi.org/10.1016/j.jece.2021.105895
- 51. Liu, N. (2023). Spatiotemporal evolution pattern of carbon emission performance in Asian countries. Global NEST Journal. https://doi.org/10.30955/gnj.005445
- 52. Liu, X., Xue, Q., Tian, Y., Jia, B., Chen, R., Huo, R., Wang, X., & Feng, Y. (2024). Potential toxic components in size-resolved particles and gas from residential combustion: Emission factor and health risk. Environment International, 185, 108551. https://doi.org/10.1016/j.envint.2024.108551
- 53. Li, Z. (2023). The CO2 Emission Forecasting in Asia in Context of Time-series and Machine Learning Approaches. The CO2 Emission Forecasting in Asia in Context of Time-series and Machine Learning Approaches. https://doi.org/10.1117/12.2672687
- 54. Mahapatra, S., Kumar, D., Singh, B., & Sachan, P. K. (2021). Biofuels and their sources of production: A review on cleaner sustainable alternative against conventional fuel, in the framework of the food and energy nexus. Energy Nexus, 4, 100036. https://doi.org/10.1016/j.nexus.2021.100036
- 55. Mamat, H., Aziz, A. H. A., Zainol, M. K., Pindi, W., Ridhwan, N. M., Kobun, R., & Putra, N. R. (2024). Utilizing seaweeds for food production and applications: A Comprehensive review of Kappaphycus alvarezii. Journal of Aquatic Food Product Technology, 33(7), 553–572. https://doi.org/10.1080/10498850.2024.2381011
- 56. Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and Health Impacts of Air Pollution: A review. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.00014
- 57. Mardhiah, H. H., Ong, H. C., Masjuki, H. H., Lim, S., & Lee, H. V. (2017). A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renewable and sustainable energy reviews, 67, 1225-1236.
- 58. Masarin, F., Cedeno, F. R. P., Chavez, E. G. S., De Oliveira, L. E., Gelli, V. C., & Monti, R. (2016). Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process. Biotechnology for Biofuels, 9(1). https://doi.org/10.1186/s13068-016-0535-9
- 59. Mendes, M., Cotas, J., Gutiérrez, I. B., Gonçalves, A. M. M., Critchley, A. T., Hinaloc, L. a. R., Roleda, M. Y., & Pereira, L. (2024). Advanced Extraction Techniques and Physicochemical Properties of Carrageenan from a Novel Kappaphycus alvarezii Cultivar. Marine Drugs, 22(11), 491. https://doi.org/10.3390/md22110491
- 60. Mizik, T., & Gyarmati, G. (2021). Economic and sustainability of biodiesel production—a systematic literature review. Clean Technologies, 3(1), 19-36.
- 61. Mohadesi, M., Gouran, A., & Dehnavi, A. D. (2021). Biodiesel production using low cost material as high effective catalyst in a microreactor. Energy, 219, 119671.
- 62. Mohiddin, M. N. B., Tan, Y. H., Seow, Y. X., Kansedo, J., Mubarak, N. M., Abdullah, M. O., ... & Khalid, M. (2021). Evaluation on feedstock, technologies, catalyst and reactor for sustainable biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 98, 60-81.
- 63. Noor, S., Tajik, O., & Golzar, J. (2022). Simple random sampling. www.ijels.net.



- https://doi.org/10.22034/ijels.2022.162982
- 64. Nortez, K. B., & Arguelles, E. D. (2023) Microalgae as A Potential Feedstock for Biodiesel Production in the Philippines: A Review.https://doi.org/10.15578/squalen.726
- 65. Mujtaba, M., Kalam, M., Masjuki, H., Razzaq, L., Khan, H. M., Soudagar, M. E. M., Gul, M., Ahmed, W., Raju, V. D., Kumar, R., & Ong, H. C. (2021). Development of empirical correlations for density and viscosity estimation of ternary biodiesel blends. Renewable Energy, 179, 1447–1457. https://doi.org/10.1016/j.renene.2021.07.121
- 66. Nunes, A., Azevedo, G. Z., De Souza Dutra, F., Santos, B. R. D., Schneider, A. R., Oliveira, E. R., Moura, S., Vianello, F., Maraschin, M., & Lima, G. P. P. (2024). Uses and applications of the red seaweed Kappaphycus alvarezii: a systematic review. Journal of Applied Phycology. https://doi.org/10.1007/s10811-024-03270-6
- 67. Núñez-Resendiz, M. L., Dreckmann, K. M., Sentíes, A., Wynne, M. J., & León-Tejera, H. P. (2019). Eucheumatopsis isiformis gen. & comb. nov. (Solieriaceae, Rhodophyta) from the Yucatan Peninsula, to accommodate Eucheuma isiforme. Phycologia, 58(1), 51–62. https://doi.org/10.1080/00318884.2018.1517536
- 68. Nurani, W., Anwar, Y., Batubara, I., Arung, E. T., & Fatriasari, W. (2024). Kappaphycus alvarezii as a renewable source of kappa-carrageenan and other cosmetic ingredients. International Journal of Biological Macromolecules, 260, 129458. https://doi.org/10.1016/j.ijbiomac.2024.129458
- 69. Ogunkunle, O., & Ahmed, N. A. (2019). A review of global current scenario of biodiesel adoption and combustion in vehicular diesel engines. Energy Reports, 5, 1560–1579. https://doi.org/10.1016/j.egyr.2019.10.028
- 70. Orozco-González, J. G., Amador-Castro, F., Gordillo-Sierra, A. R., García-Cayuela, T., Alper, H. S., & Carrillo-Nieves, D. (2022). Opportunities surrounding the use of sargassum biomass as precursor of biogas, bioethanol, and biodiesel production. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.791054
- 71. Padam, B. S., & Chye, F. Y. (2020). Seaweed components, properties, and applications. In Elsevier eBooks (pp. 33–87). https://doi.org/10.1016/b978-0-12-817943-7.00002-0
- 72. Palani, Y., Devarajan, C., Manickam, D., & Thanikodi, S. (2020). Performance and emission characteristics of biodiesel-blend in diesel engine: A review. Environmental Engineering Research, 27(1), 200338–0. https://doi.org/10.4491/eer.2020.338
- 73. Pardilhó, S., Costa, E., Melo, D., Machado, S., Santo, L. E., Oliveira, M. B., & Dias, J. M. (2021). Comprehensive characterization of marine macroalgae waste and impact of oil extraction, focusing on the biomass recovery potential. Algal Research, 58, 102416. https://doi.org/10.1016/j.algal.2021.102416
- 74. Peters, M. A., Alves, C. T., & Onwudili, J. A. (2023). A review of current and emerging production technologies for BioMaSs-Derived Sustainable aviation fuels. Energies, 16(16), 6100. https://doi.org/10.3390/en16166100
- 75. Philippines Energy Research. (2022) Philippines Energy Information.https.www.enerdata.net/restore/energy-market/philippines
- 76. P Pedrosa, A. (Director). (2022). NATIONAL SEAWEED (Kappaphycus) INDUSTRY ROADMAP 2022-2026. In D. F Togonon, I. T Capacio, & F. B Fernandez Jr (Eds.), bfar.da.gov.ph. Bureau of Fisheries and Aquatic Resources. https://bfar.da.gov.ph/wp-content/uploads/2022/11/Seaweed-Industry-Roadmap.pdf
- 77. Raheem, I., Mohiddin, M. N. B., Tan, Y. H., Kansedo, J., Mubarak, N., Abdullah, M. O., & Ibrahim, M. L. (2020). A review on influence of reactor technologies and kinetic studies for biodiesel application. Journal of Industrial and Engineering Chemistry, 91, 54–68. https://doi.org/10.1016/j.jiec.2020.08.024
- 78. Quartz Business Media. (2024, June 11). Global biodiesel production rises to record level. Oils & Fats International. https://www.ofimagazine.com/news/global-biodiesel-production-rises-to-record-level
- 79. Rajasulochana, P., Krishnamoorthy, P., & Dhamotharan, R. (2012). Biochemical investigation on red algae family of kappahycus sp. ResearchGate. https://www.researchgate.net/publication/285854567_Biochemical_investigation_on_red_algae_family_of_kappahycus_sp
- 80. Risjani, Y., & Abidin, G. (2020). Genetic diversity and similarity between green and brown

- morphotypes of Kappaphycus alvarezii using RAPD. Journal of Applied Phycology, 32(4), 2253–2260. https://doi.org/10.1007/s10811-020-02223-z
- 81. Ritchie, H., Rosado, P., Roser, M. (2024). Energy Production and Consumption. OurWorldinData. org.https://ourworldindata.org/energy-production-consumption
- 82. Rupert, R., Rodrigues, K. F., Thien, V. Y., & Yong, W. T. L. (2022). Carrageenan From Kappaphycus alvarezii (Rhodophyta, Solieriaceae): Metabolism, Structure, Production, and Application. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.859635
- 83. Sabado, J, F., Villanueva, C, E., Tingson, K. G. (2022). Carbon Footprints and Economic Growth: A Study of the Philippines Co2 emissions. (2022). Journal of Management, 2, (2). ijmehd.com/index.php/ijemhd/article/view/5
- 84. Santos, S. M., Nascimento, D. C., Costa, M. C., Neto, A. M., & Fregolente, L. V. (2019). Flash point prediction: Reviewing empirical models for hydrocarbons, petroleum fraction, biodiesel, and blends. Fuel, 263, 116375. https://doi.org/10.1016/j.fuel.2019.116375
- 85. Shaah, M. a. H., Hossain, M. S., Allafi, F. a. S., Alsaedi, A., Ismail, N., Kadir, M. O. A., & Ahmad, M. I. (2021). A review on non-edible oil as a potential feedstock for biodiesel: physicochemical properties and production technologies. RSC Advances, 11(40), 25018–25037. https://doi.org/10.1039/d1ra04311k
- 86. Sherief, N., Anand, M., Ramachandran, M., & Vidhya, P. (2022). A Review on Various Biofuels and its Applications. REST Journal on Emerging Trends in Modelling and Manufacturing, 8(1), 1–9. https://doi.org/10.46632/jemm/8/1/1
- 87. Shravya, S. C., Vybhava Lakshmi, N., Pooja, P., Kishore Kumar, C. M., & Sadashiva Murthy, B. M. (2021). Seaweed a sustainable source for bioplastic: a review. International Research Journal of Modernization in Engineering Technology and Science, 3(7), 1405-1415.
- 88. Soeder, D. J. (2020). Fossil fuels and climate change. In Springer eBooks (pp. 155– https://doi.org/10.1007/978-3-030-59121-2_9
- 89. Solaymani, S. (2023). Biodiesel and its potential to mitigate transport-related CO2 emissions. Carbon Research, 2(1). https://doi.org/10.1007/s44246-023-00067-z
- 90. Statista. (2024, July 10). Global primary energy consumption 2023, by country. https://www.statista.com/statistics/263455/primary-energy-consumption-of-selected-countries/
- 91. Syafiuddin, A., Chong, J. H., Yuniarto, A., & Hadibarata, T. (2020). The current scenario and challenges of biodiesel production in Asian countries: A review. Bioresource Technology Reports, 12, 100608. https://doi.org/10.1016/j.biteb.2020.100608
- 92. Tahiluddin, A. B., Imbuk, E. S., Sarri, J. H., Mohammad, H. S., Ensano, F. N. T., Maddan, M. M., & Cabilin, B. S. (2023). Eucheumatoid seaweed farming in the southern Philippines. Aquatic Botany, 189, 103697. https://doi.org/10.1016/j.aquabot.2023.103697
- 93. Trono, G. C., Jr, & Gavino, C. (2020). Eucheuma and Kappaphycus: taxonomy and cultivation. ResearchGate. https://www.researchgate.net/publication/41957758_Eucheuma_and_Kappaphycus_taxonomy_and_cul
 - tivation
- 94. Tuli, D., & Kasture, S. (2022). Biodiesel and green diesel. In Elsevier eBooks (pp. 119–133). https://doi.org/10.1016/b978-0-323-88427-3.00010-6
- 95. Voumik, L. C., & Ridwan, M. (2023). Impact of FDI, industrialization, and education on the environment in Argentina: ARDL approach. Heliyon, 9(1), e12872. https://doi.org/10.1016/j.heliyon.2023.e12872
- 96. Wang, J., Singer, S. D., Souto, B. A., Asomaning, J., Ullah, A., Bressler, D. C., & Chen, G. (2022). Current progress in lipid-based biofuels: Feedstocks and production technologies. Bioresource Technology, 351, 127020. https://doi.org/10.1016/j.biortech.2022.127020
- 97. Wei, Y., Zhang, Y., Zhu, X., Gu, H., Zhu, Z., Liu, S., Sun, X., & Jian, X. (2022). Effects of Diesel Hydrocarbon Components on Cetane Number and Engine Combustion and Emission Characteristics. Applied Sciences, 12(7), 3549. https://doi.org/10.3390/app12073549
- 98. Webber, V., Carvalho, S. M. D., Ogliari, P. J., Hayashi, L., & Barreto, P. L. M. (2012). Optimization of the extraction of carrageenan from Kappaphycus alvarezii using response surface methodology. Food science and Technology, 32, 812-818.https://doi.org/10.1590/S0101-2061201200500011

- 100. Yusuf, S., Arsyad, M., & Nuddin, A. (2018). Prospect of seaweed development in South Sulawesi through a mapping study approach. IOP Conference Series: Earth and Environmental Science, 157, 012041. doi:10.1088/1755-1315/157/1/012041
- 101. Zhu, Z., Sun, J., Fa, Y., Liu, X., & Lindblad, P. (2022). Enhancing microalgal lipid accumulation for biofuel production. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1024441
- 102. Zulgarnain, N., Yusoff, M. H. M., Ayoub, M., Jusoh, N., & Abdullah, A. Z. (2020). The challenges of biodiesel implementation program Malaysia. Processes, 8(10), 1244. https://doi.org/10.3390/pr8101244