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ABSTRACT 

The aim of this study is to provide a short-term prediction of Human Immunodeficiency Virus (HIV) in the 

presence of opportunistic infections among farmers in Benue state, Nigeria using Autoregressive Integrated 

Moving Average with exogenous variables (ARIMAX) time series model. Monthly secondary data on HIV, 

Tuberculosis (TB), and Hepatitis B Virus (HBV) infections from January 2010 to December 2024 were 

sourced from the Benue State Epidemiological Unit, Makurdi. The study employed summary statistics, 

normality measures, time series plots; Ng-Perron modified unit root test, and ARIMAX model as methods of 

analysis. Employing the Box-Jenkins procedure, autocorrelation function (ACF), and partial autocorrelation 

function (PACF), a mixed ARIMAX (p,d,q) process was identified, with model selection based on log 

likelihoods (LogL), Akaike information criterion (AIC), Schwartz information criterion (SIC), and Hannan 

Quinn information criterion (HQC). The analysis revealed the series to be stationary in the first difference 

hence integrated of order one, I(1). The chosen ARIMAX (4,1,3) model, explaining 65.93% of data variability, 

forecasted HIV infections for 24 months from January 2025 to December 2026. The forecast depicted 

fluctuating trends in HIV infection rates, reflecting original dynamics, emphasizing the dynamic nature of HIV 

infection rates alongside opportunistic infections among farmers in Benue state, Nigeria. The forecast 

suggested 27,225 HIV total cases in the study area over 2025-2026, with an average monthly incidence of 

1134 persons. A reliability test using actual and forecast values indicated no significant difference, affirming 

the reliability and accuracy of the forecasts for policy implementation. The study advocates collaborative 

efforts among the government of Benue state, international donor agencies, health policymakers, and 

stakeholders to implement robust preventive and control measures to mitigate future HIV incidences in the 

study area. 

Keywords: ARIMAX Model, Human Immunodeficiency Virus, Opportunistic infections, Farmers, Benue 

state, Nigeria. 

INTRODUCTION 

The human immunodeficiency virus (HIV) remains a significant public health concern globally, particularly in 

sub-Saharan Africa, which bears the highest burden of the epidemic (UNAIDS, 2023). Nigeria, with an 

estimated 1.8 million people living with HIV as of 2022, continues to face substantial challenges in its 

prevention and control efforts (National Agency for the Control of AIDS [NACA], 2022). Benue State, often 

referred to as the “food basket” of the nation, is disproportionately affected, with one of the highest HIV 

prevalence rates in Nigeria, especially among rural farming communities (Federal Ministry of Health [FMoH], 

2020). The socio-economic consequences of HIV in these communities are far-reaching, affecting not only 

health outcomes but also agricultural productivity and food security. 
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HIV seropositivity among farmers has been associated with decreased physical capacity, lower productivity, 

and labour shortages, ultimately contributing to increased postharvest losses (FAO, 2014). Postharvest losses 

significantly undermine food security and rural livelihoods, particularly in agrarian regions like Benue State. 

The interplay between HIV infection and food production is further compounded by the syndemic interaction 

with other communicable diseases such as tuberculosis (TB) and hepatitis B virus (HBV), both of which are 

prevalent among HIV-infected populations due to shared modes of transmission and immunosuppressive 

effects (WHO, 2023; Musa et al., 2021). 

Tuberculosis remains the leading opportunistic infection and a major cause of death among people living with 

HIV (WHO, 2023). Similarly, co-infection with hepatitis B is a growing concern, especially in sub-Saharan 

Africa, where both viruses are endemic and often interact to worsen patient outcomes (Thio, 2009). Among 

farming populations who typically lack access to comprehensive healthcare, these comorbidities further 

exacerbate health deterioration and reduce the capacity for effective postharvest handling, storage, and market 

engagement. 

To effectively address this complex nexus of health and agriculture, there is a need for robust predictive 

models that can inform public health interventions and agricultural policy planning. Time series models, 

particularly the Autoregressive Integrated Moving Average with Exogenous variables (ARIMAX), offer a 

powerful framework for forecasting disease prevalence while accounting for influential external factors (Box 

et al., 2015). The ARIMAX model’s incorporation of exogenous predictors such as TB and HBV enables more 

precise forecasting of HIV seropositivity trends and supports evidence-based decision-making. 

This study aims to apply and evaluate an ARIMAX model for predicting HIV seropositivity among farmers in 

Benue State, using TB and hepatitis B prevalence as exogenous variables. By modeling the dynamic 

interactions among these infectious diseases, the research seeks to uncover the broader implications for 

agricultural productivity, specifically in terms of food postharvest losses. The findings are expected to guide 

integrated health and agricultural interventions that address the dual burden of disease and food insecurity in 

rural Nigerian communities. 

Many scholars have utilized different statistical models to study the prevalence of infectious diseases globally 

and locally. For example, Chen et al. (2022) conducted an ecological study that utilized an ARIMAX model to 

predict pulmonary tuberculosis incidence in Ningbo, China, considering air pollution and meteorological 

factors as exogenous variables. The model demonstrated high predictive accuracy, illustrating the utility of 

ARIMAX models in forecasting disease incidence when incorporating relevant external factors. Onovo et al. 

(2023) employed Bayesian statistical modeling to estimate HIV prevalence at the state level in Nigeria. Using 

national HIV testing services data from 2020 to 2021, the researchers adjusted for demographic, economic, 

biological, and societal covariates. Benue State was found to have the highest estimated HIV prevalence at 

5.7% among adults aged 15-49 years. The study underscores the importance of reliable state-level estimates for 

effective HIV surveillance and intervention planning. 

Musa et al. (2021) carried out a systematic review and meta-analysis to examine the prevalence of HBV 

among individuals living with HIV in Nigeria. The study found a significant co-infection rate, highlighting the 

need for integrated screening and management strategies for HIV and HBV. Kane et al. (2014) compared 

ARIMA and Random Forest models in predicting H5N1 avian influenza outbreaks in Egypt, finding that 

Random Forest models provided superior predictive accuracy. Imai et al. (2015) discussed the challenges and 

solutions in applying time series regression models to assess the relationship between infectious diseases and 

weather variables, using influenza and cholera as case studies. Zhou et al. (2023) Utilized an interrupted time 

series ARIMA model to analyze the impact of COVID-19 on the incidence rates of notifiable communicable 

diseases in China, revealing significant short-term declines in various disease categories. 

Abu and Kotur (2022) carried out a research focusing on the impact of HIV/AIDS on farm productivity in 

Benue State. Comparing HIV-infected and non-infected farming households, the study found that infected 

farmers had significantly lower labour productivity and smaller labour forces. The findings highlight the 

detrimental effects of HIV/AIDS on agricultural productivity and the need for targeted interventions to support 

affected farmers. 
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The impact of infectious diseases on agricultural productivity and postharvest losses of crops are also 

documented in empirical literature, for example, FAO (2014) report discusses how health challenges, including 

HIV/AIDS, can affect agricultural productivity and postharvest handling, leading to increased food losses. 

Aliyu and Akor (2023) identified measures to reduce postharvest losses of vegetable crops in Benue State, 

emphasizing the need for adequate storage and handling practices, which can be compromised by health-

related labour shortages. Agber and Aondofa (2023) focused on cassava farmers in Benue State, the study 

highlights how socio-economic challenges, potentially exacerbated by health issues, contribute to significant 

postharvest losses in the study area. Ikya and Igbokwe (2019) examined the determinants of postharvest losses 

among tomato farmers in Gboko Local Government Area of Benue State. The study identified many 

determinants of postharvest losses, noting that health-related labour constraints can impact timely harvesting 

and storage. 

MATERIALS AND METHODS 

Data Source 

The data used in this work comprised monthly time series secondary data on Human Immunodeficiency Virus 

(HIV), Tuberculosis (TB), Hepatitis B virus infection (HBV) co-infection of farmers in Benue state. The data 

spanned from January, 2010 to December, 2024 and was obtained from Benue State Epidemiological Unit. 

The data was sieved through occupation to retain only farmers in the study. To reduce and stabilize the mean 

and variance the data was transformed to natural logarithms using the following formula: 

𝑌𝑡
′ = ln𝑌𝑡                                                                                                                                           (1) 

Where 𝑌𝑡
′ represent the HIV, TB or HBV series at time 𝑡 and ln 𝑌𝑡 is the natural log of 𝑌𝑡

′. 

Methods of Data Analysis 

This study employs the following statistical tools for data analysis. 

Descriptive statistics and normality measures 

The mean of any given set of data is computed as: 

𝑦̅ =
1

𝑛
∑𝑦𝑖

𝑛

𝑖=1

                                                                                                                                 (2) 

The sample standard deviation is computed as: 

𝜎̂ = √
1

𝑛 − 1
∑(𝑦𝑖 − 𝑦̅)2
𝑛

𝑡=1

                                                                                                      (3) 

where 𝑦̅ is the sample mean, 𝑛 is the sample size. 

The Jarque-Bera test normality test statistic (JB) proposed by Jarque and Bera (1980, 1987) computed from the 

following formula:  

𝐽𝐵 =
𝑇

6
(𝑔1

2 +
1

4
(𝑔2 − 3)

2)                                                                                                (4) 

where 𝑔1 is the sample skewness computed as: 
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𝑔1 =
𝜇3

𝜇2
3 2⁄

= [𝑇
1
2∑(𝑦𝑖 − 𝑦̅

𝑇

𝑡=1

)3] [∑(𝑦𝑖 − 𝑦̅)
2

𝑇

𝑡=1

]

−3 2⁄

                                                  (5) 

and 𝑔2 is the sample kurtosis calculated from: 

𝑔2 =
𝜇4
𝜇2
2 = [𝑇∑(𝑦𝑖 − 𝑦̅

𝑇

𝑡=1

)4] [∑(𝑦𝑖 − 𝑦̅

𝑇

𝑡=1

]

−2

                                                              (6) 

where T is the total number of observations. The JB normality test checks the following pair of hypothesis: 

𝐻0: 𝜇̂3 = 0 and 𝜇̂4 = 0  (i.e., 𝑦𝑖 follows a normal distribution)  

𝐻1: 𝜇̂3 ≠ 0 and 𝜇̂4 ≠ 0  (i.e., 𝑦𝑖 does not follows a normal distribution).  

The test rejects the null hypothesis if the p-value of the JB test statistic is less than 𝛼 = 0.05  level of 

significance. 

Autocovariance and autocorrelation functions 

For a stationary time series process {𝑦𝑡}, the covariance between 𝑦𝑡 and 𝑦𝑡+𝑘  is given as 

𝛾𝑘 = 𝐶𝑜𝑣(𝑦𝑡, 𝑦𝑡+𝑘) = 𝐸(𝑦𝑡 − 𝜇)(𝑦𝑡+𝑘 − 𝜇)                                                            (7) 

and the correlation between 𝑦𝑡 and 𝑦𝑡+𝑘  is given as 

𝜌𝑘 =
𝐶𝑜𝑣(𝑦𝑡 , 𝑦𝑡+𝑘 )

√𝑣𝑎𝑟(𝑦𝑡)√𝑣𝑎𝑟(𝑦𝑡+𝑘)
=
𝛾𝑘
𝛾0
                                                                             (8) 

where 𝛾𝑘  is the autocovariance function and 𝜌𝑘  is the autocorrelation function (ACF) representing the 

covariance and correlation between 𝑦𝑡 and 𝑦𝑡+𝑘 from the same process separated only by 𝑘 time lags. For a 

given observed time series 𝑦1, 𝑦2, … , 𝑦𝑛, the sample autocorrelation function (ACF) is computed as 

𝜌̂𝑘 =
𝛾𝑘
𝛾0
= ∑(𝑦𝑡 − 𝑦̅)(𝑦𝑡+𝑘 − 𝑦̅)

𝑛−𝑘

𝑡=1

∑(𝑦𝑡 − 𝑦̅)
2

𝑛

𝑡=1

⁄ , 𝑘 = 0,1, 2,…              (9) 

where 𝑦̅ is defined in Equation (2). 

The partial autocorrelation between 𝑦𝑡 and 𝑦𝑡+𝑘 is equal to the ordinary autocorrelation between (𝑦𝑡 − 𝑦̂𝑡) and 

(𝑦𝑡+𝑘 − 𝑦̂𝑡+𝑘). Let 𝜙𝑘𝑘  denotes the partial autocorrelation between 𝑦𝑡 and 𝑦𝑡+𝑘, then we have 

𝜙𝑘𝑘 =
𝐶𝑜𝑣[(𝑦𝑡 − 𝑦̂𝑡)(𝑦𝑡+𝑘 − 𝑦̂𝑡+𝑘)]

√𝑣𝑎𝑟(𝑦𝑡 − 𝑦̂𝑡)√𝑣𝑎𝑟(𝑦𝑡+𝑘 − 𝑦̂𝑡+𝑘)
                                                         (10) 

A recursive procedure for computing the sample partial autocorrelation function, 𝜙𝑘𝑘  (PACF) starting with 

𝜙11 = 𝜌̂1 was given by Durbin (1960) as 

𝜙̂𝑘+1,𝑘+1 = 𝜌̂𝑘+1 −∑𝜙̂𝑘𝑗𝜌̂𝑘+1−𝑗

𝑘

𝑗=1

(1 −∑𝜙̂𝑘𝑗 𝜌̂𝑗

𝑘

𝑗=1

)⁄                               (11) 
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and𝜙̂𝑘+1,𝑗 = 𝜙̂𝑘𝑗 − 𝜙̂𝑘+1,𝑘+1𝜙̂𝑘,𝑘+1−𝑗 , 𝑗 = 1, 2,… , 𝑘. This procedure also holds for computing the theoretical 

PACF 𝜙𝑘𝑘 . 

Ljung-Box Q-statistic test  

A Ljung-Box Q-statistic test is a test used to investigate the presence of serial correlation or autocorrelation in 

the residuals of a series. The test checks the following pairs of hypotheses: 

𝐻0: 𝜌𝑘,1 = 𝜌𝑘,2 = ⋯ = 𝜌𝑘,𝑇 = 0 (all lags correlations are zero) 

𝐻1: 𝜌𝑘,1 ≠ 𝜌𝑘,2 ≠ ⋯ ≠ 𝜌𝑘,𝑇 ≠ 0 (there is at least one lag with non-zero correlation). The test statistic is given 

by: 

𝑄(𝐿𝐵) = 𝑇(𝑇 + 2)∑
𝜌̂𝑘
2

𝑇 − 𝑘

ℎ

𝑘=1

                                                                                                     (12) 

where 

𝜌̂𝑘
2 =

𝑇

𝑇 − 𝑘
(𝑇 ∑ (𝜀𝑡̂

2 − 𝜀)̅

𝑇

𝑡=𝑘+1

(𝜀𝑡̂−𝑘
2 − 𝜀)̅ ∑(𝜀𝑡̂

2 − 𝜀̅

𝑇

𝑡=1

⁄ )2) , for𝜀̅ = 𝑇−1∑𝜀𝑡
2

𝑇

𝑡=1

 

denotes the autocorrelation estimate of squared standardized residuals at 𝑘 lags. T is the sample size, Q is the 

sample autocorrelation at lag k. We reject 𝐻0 if p-value is less than 𝛼 = 0.05 level of significance (Ljung and 

Box, 1978). 

Ng and Perron (NP) modified unit root test 

To check the unit root and stationarity properties of the series, Ng and Perron modified unit root test is 

employed because of its good power property. Ng and Perron (2001) constructed four test statistics which are 

based on the Generalized Least Squares detrended series 𝑌𝑡
𝑑. The four test statistics are the modified forms of 

Phillips & Perron 𝑍𝛼 and 𝑍𝑡 statistics, the Bhargava (1986) 𝑅1 statistic, and the Elliot, Rothenberg & Stock 

Point Optimal statistic (Elliot et al., 1996). First, define the term: 

𝑘 =∑(𝑌𝑡−1
𝑑 )2 𝑇2⁄

𝑇

𝑡=2

                                                                                                              (13) 

The four modified statistics are then written as, 

𝑀𝑍𝛼
𝑑 = (𝑇−1(𝑌𝑇

𝑑)2 − 𝑓0) (2𝑘)⁄

𝑀𝑍𝑡
𝑑 = 𝑀𝑍𝛼 ×𝑀𝑆𝐵

𝑀𝑆𝐵𝑑 = (𝑘 𝑓0⁄ )0.5

𝑀𝑃𝑇
𝑑 = {

(−72𝑘 + 7𝑇−1(𝑌𝑇
𝑑)2)/𝑓0 ,              if  xt = {1}

(−13.52𝑘 + (1 + 13.5)𝑇−1(𝑌𝑇
𝑑)2)/𝑓0, if  xt = {1, t}}

 
 

 
 

                                  (14) 

where 𝑀𝑍𝛼
𝑑 is the modified detrended 𝑍𝛼 transformation of the standardized estimator given by:  

𝑇(𝛼̂ − 1) = {𝑇−1∑𝑦𝑡−1(𝑦𝑡 − 𝑦𝑡−1)

𝑇

𝑡=1

} {𝑇−1∑𝑦𝑡−1
2

𝑇

𝑡=1

}⁄                                         (14) 

  𝑀𝑍𝑡
𝑑 is the modified detrended 𝑍𝑡 transformation of the conventional regression 𝑡 statistic defined by: 
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𝑡𝛼 = (∑𝑦𝑡−1
2

𝑇

𝑡=1

)

1 2⁄

(𝛼̂ − 1) 𝑠⁄                                                                                                  (15) 

where                       𝑠2 = 𝑇−1∑(𝑦𝑡 − 𝛼̂𝑦𝑡−1)
2

𝑇

𝑡=1

                                                                    (16) 

𝑀𝑆𝐵 is the modified Bhargava 𝑅1 statistic (Stock, 1990). The 𝑅1 statistic is given by:  

𝑅1 =∑(𝑦𝑡 − 𝑦𝑡−1)
2

𝑇

𝑡=2

∑(𝑦𝑡 − 𝑦̅)
2

𝑇

𝑡=1

⁄ ;    𝑦̅ =
1

𝑇
∑𝑦𝑖

𝑇

𝑡=1

                                                        (17) 

 𝑀𝑃𝑇
𝑑 is the ERS modified detrended point optimal statistic (Elliot et al., 1996). The point optimal statistic is 

given as: 

𝑃𝑇 =
[𝑆(𝛼̂) − 𝛼̂𝑆(1)]

𝑠2
                                                                                                                  (18) 

𝑌𝑇
𝑑 is the trended series, 𝑥𝑡 is a series of observations at time 𝑡,  𝑓0 is the frequency zero spectrum define as: 

𝑓0 = ∑ 𝛾

𝑇−1

𝑗=−(𝑇−1)

(𝑗). 𝐾 (
𝑗

𝑙
)                                                                                                             (19)   

Where 𝑙 is a bandwidth parameter, 𝑇 is the sample size, 𝐾 is a kernel function and 𝛾(𝑗) is the j-th sample 

autocovariance of the residuals 𝑢̂𝑡 and is given by: 

𝛾(𝑗) = ∑ (𝑢̂𝑡𝑢̂𝑡−𝑗) 𝑇⁄

𝑇

𝑡=𝑗+1

                                                                                                                 (20) 

The 𝑀𝑍𝛼,𝑀𝑍𝑡, 𝑀𝑆𝐵 and 𝑀𝑃𝑇  statistices are collectively referred to as 𝑀 tests and are used in detecting the 

presence of unit root in a series (Ng & Perron, 2001). In addition to the 𝑀𝑍𝛼 and 𝑀𝑍𝑡 statistics, Ng and Perron 

also investigated the size and power properties of the 𝑀𝑆𝐵 statistic. Critical values for the demeaned and 

detrended case of this statistic were taken from (Stock, 1990).  

Model Specification 

Before we specify an autoregressive integrated moving average with exogenous variable (ARIMAX) model, 

we first specify an autoregressive (AR) process, a moving average (MA) process, autoregressive moving 

average (ARMA) process and autoregressive integrated moving average (ARIMA) process which are specified 

in the following subsections. 

Autoregressive (AR) model 

An autoregressive process (AR) is a process that has a significant relationship with its history observations 

(previous time lags). The general characteristic of autoregressive model of order p is given as 

𝑦𝑡 = 𝛼 + 𝜙1𝑦𝑡−1 +𝜙2𝑦𝑡−2 +⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡                                                                (21) 

where 𝑦𝑡 is the response variable at time 𝑡, 𝛼 is a constant, 𝜙1, 𝜙2, … , 𝜙𝑝 are autoregressive parameters to be 

determined and 𝜀𝑡 is a white noise process with mean zero and variance 𝜎2. 
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Moving Average (MA) model 

A moving average process (MA) is a process that has a significant relationship with its previous random errors. 

The general characteristic of a moving average model of order q is given as 

𝑦𝑡 = 𝛿 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 −⋯− 𝜃𝑞𝜀𝑡−𝑞                                                                    (22) 

where 𝜃𝑖  are the moving average parameters. The subscript on 𝜃𝑖  are called the orders of moving average 

parameters. 

Autoregressive Moving average (ARMA) Model 

A stochastic process resulting from the combination of autoregressive and moving average models is called an 

Autoregressive Moving Average (ARMA) model. An ARMA model of order p,q, ARMA (p,q) is specified as 

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 +⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 −⋯− 𝜃𝑞𝜀𝑡−𝑞             (23) 

Equation (23) can also be written as 

(1 −∑𝜙𝑖𝐵
𝑖

𝑝

𝑖=1

)𝑦𝑡 = (1 +∑𝜃𝑗𝐵
𝑗

𝑞

𝑗=1

)𝜀𝑡                                                                                   (24) 

where B is the back shift operator, the 𝜙𝑖 are the parameters of the autoregressive part of the model, the 𝜃𝑗 are 

the parameters of the moving average part and 𝜀𝑡 are error terms. 

Autoregressive integrated moving average (ARIMA) model 

Assuming that the polynomial (1 − ∑ 𝜙𝑖𝐵
𝑖𝑝

𝑖=1 ) has a unitary root of multiplicity 𝑑, then it can be written as: 

(1 −∑𝜙𝑖𝐵
𝑖

𝑝

𝑖=1

) = (1 +∑ 𝜃𝑗𝐵
𝑗

𝑝−𝑑

𝑗=1

)(1 − 𝐵)𝑑                                                                        (25) 

An ARIMA (p,d,q) process expresses this polynomial factorization property, and is given by: 

(1 −∑𝜙𝑖𝐵
𝑖

𝑝

𝑖=1

) (1 − 𝐵)𝑑𝑦𝑡 = (1 +∑𝜃𝑗𝐵
𝑗

𝑞

𝑗=1

)𝜀𝑡                                                              (26) 

An ARIMA (p,d,q) model can also be written as 

Ф(𝐵)∆𝑑𝑦𝑡 = 𝛩(𝐵)𝜀𝑡                                                                                                                    (27) 

Where B is the back shift operator, 𝑦𝑡 is the dependent variable in period 𝑡,  

∆𝑑= (1 − 𝐵)𝑑   denotes the difference from 𝑑 degree, 𝜀𝑡 is the white noise process. 

Ф(𝐵) is the autoregressive polynomial of order p expressed as 

Ф(𝐵) = 1 − 𝜙1𝐵
1 − 𝜙2𝐵

2 −⋯−𝜙𝑝𝐵
𝑝                                                                                   (28) 

𝛩(𝐵) is a moving average polynomial of order q given as 

𝛩(𝐵) = 1 − 𝜃1𝐵
1 − 𝜃2𝐵

2 −⋯− 𝜃𝑞𝐵
𝑞                                                                                       (29) 
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ARIMAX Model 

The Autoregressive Integrated Moving Average process with exogenous variable(s) (ARIMAX) model can be 

viewed as a time-series forecasting model using the multiple regression with ARIMA model that takes care of 

the residual’s serial correlations. The ARIMAX model has a form as follows: 

𝑦𝑡 = 𝛽𝑥𝑡 + 𝜙1𝑦𝑡−1 +𝜙2𝑦𝑡−2 +⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 −⋯− 𝜃𝑞𝜀𝑡−𝑞 (30) 

An ARIMAX model can also be written using a back shift operator as follows: 

Ф(𝐵)∆𝑑𝑦𝑡 = 𝜇 + 𝜑(𝐵)𝑥𝑡 + 𝛩(𝐵)𝜀𝑡                                                                                        (31) 

where 

𝜑(𝐵) = 1 − 𝜗1𝐵
1 − 𝜗2𝐵

2 −⋯− 𝜗𝑟𝐵
𝑟                                                                                 (32) 

𝑥𝑡 is the exogenous variable at time 𝑡.  

According to Andrews et al. (2013) the six assumptions for building an adequate ARIMAX time series are 

summarized: 

(i) Residuals of the estimated ARIMAX model must be stationary; 

(ii) The residual series must not exhibit significant serial correlation/autocorrelation; 

(iii) The estimated coefficient for an exogenous variable must be statistically significant; 

(iv) An exogenous variable must not display evidence of receiving feedback from the dependent 

variable; 

(v) Both the dependent variable and exogenous variable must have the same level of transformation 

and stationarity; 

(vi) The surviving exogenous variables comprising the final model must not exhibit a significant degree 

of multicollinearity. 

Model Identification and Selection 

To identify a number of parameters needed for AR and MA processes. The idea is to match the empirical 

autocorrelation patterns with the theoretical ones. An autocorrelation function (ACF) plot and a partial 

autocorrelation function (PACF) plot are primary tools used for identifying a number of parameters for AR and 

MA processes respectively.  

The standard method for parameter estimation is maximum likelihood estimation. The best model is selected 

base on the following information criteria: Akaike information criterion (AIC) due to Akaike (1974), Schwarz 

information Criterion (SIC) due to Schwarz (1978) and Hannan-Quinn Information Criterion (HQC) due to 

Hannan (1980) in conjunction with the log likelihood (LogL). Intuitively, AIC, SIC and HQC tell which model 

fits better to the data in term of the information loss. The information criteria are presented as: 

𝐴𝐼𝐶(𝑃) = −2 ln(𝐿) + 2𝑃                                                                                                 (33) 

𝑆𝐼𝐶(𝑃) = −2 ln(𝐿) + 𝑃𝑙𝑛(𝑇)                                                                                                       (34) 

𝐻𝑄𝐶(𝐾) = 2 ln[ln(𝑇)]𝐾 − 2 ln(𝐿)                                                                                            (35) 

where 𝑃 is the number of free parameters to be estimated in the model, T is the number of observations and L 

is the likelihood function given by: 

𝐿 =∏(
1

2𝜋𝜎𝑖
2)

1
2⁄

𝑒𝑥𝑝 [−∑
(𝑦𝑖 − 𝜇)

2

2𝜎𝑖
2

𝑛

𝑖=1

]

𝑛

𝑖=0

                                                                         (36) 

ln(𝐿) = 𝐼𝑛 [∏(
1

2𝜋𝜎𝑖
2)

1
2⁄

𝑛

𝑖=1

] −
1

2
∑

(𝑦𝑖 − 𝜇)
2

𝜎𝑖
2

𝑛

𝑖=1

                                                                 (37) 
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Given a set of time series data, the ARIMAX model with the least information criteria and large log likelihood 

value is the best fitting model. 

Model Forecast Evaluation 

We employed Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) accuracy measures to select 

an optimal model mode that is both parsimonious and accurately forecast the data based on minimum values of 

the accuracy measures.  

Root mean square error (RMSE) 

The Root Mean Square Error is a statistical tool for measuring the accuracy of a forecast method. It is 

computed as: 

𝑅𝑀𝑆𝐸 =
1

𝑛
∑(𝑌̂𝑡 − 𝑌𝑡)

2

𝑛

𝑡=1

                                                                                                             (38) 

Where 𝑌̂𝑡  is the forecast value of the series and 𝑌𝑡  is the actual series and 𝑛  is the number of forecast 

observations. 

Mean absolute error (MAE) 

The mean absolute error (MAE) is a statistical tool for measuring the average size of the errors in a collection 

of predictions, without taking their directions into account. It is measured as the average absolute difference 

between the predicted values and the actual values and is used to assess the effectiveness of a model. It is given 

as:  

𝑀𝐴𝐸 =
1

𝑛
(∑|𝑌̂𝑡 − 𝑌𝑡|

𝑛

𝑡=1

)                                                                                                           (39) 

where 𝑌𝑡 is the actual value of the series at time 𝑡, 𝑌̂𝑡 is the forecasted value of the series and 𝑛 is the number 

of observations. The lower the value of RMSE and MAE, the better the model ability to forecast future values 

(Pindyck & Rubinfeld, 1998). 

RESULTS AND DISCUSSION 

Descriptive Statistics and Normality Measures 

The descriptive statistics and normality measures are computed and reported in Table 1. 

The results depicted in Table 1 concerning descriptive statistics reveal that the monthly averages of HIV, TB, 

and HBV are all positive, indicating an upward trend in the number of cases of these diseases during the 

analyzed period. Moreover, the corresponding standard deviations are notably high, suggesting significant 

dispersion from the monthly average infection cases throughout the investigation period. The considerable 

disparities between the maximum and minimum values of infection cases provide further evidence of the 

diseases’ substantial variability in the study area over the examined duration. 

Regarding skewness coefficients, HIV and TB exhibit positive values, indicating that there are more extreme 

values on the right side of their distributions among the farming population in Benue state. Conversely, the 

skewness coefficient of HBV is negative, indicating more extreme values on the left side of its distribution 

within the study area. 

Kurtosis, a measure of distribution tail thickness typically around 3 for a normal distribution, varies from this 

standard for all variables in the study. The skewness and kurtosis coefficients for HIV suggest a distribution 
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pattern that aligns with normal distribution characteristics. The Jarque-Bera test results for the HIV series do 

not refute the null hypothesis of normality at a 5% significance level, as the p-value (p=0.295494) exceeds 

0.05. However, for TB and HBV, the skewness and kurtosis coefficients indicate non-normal distributions. 

The Jarque-Bera tests for these variables reject the null hypotheses of normality at a 5% significance level, as 

the p-values (p<0.05) fall below the threshold. 

Table 1: Descriptive Statistics and Normality Measures 

Variable  HIV TB HBV 

Mean  922.9423 217.6026 208.6218 

Maximum 2049.000 794.0000 398.0000 

Minimum 76.00000 11.00000 17.00000 

Standard Deviation 382.5985 183.0163 104.3128 

Skewness 0.099296 0.841162 -0.296118 

Kurtosis 3.579371 3.387442 2.076886 

Jarque-Bera Statistic 2.438213 19.37211 7.818740 

P-value 0.295494 0.000062 0.020053 

No. of Observations 156 156 156 

Graphical Examination of the Series 

The initial stage in examining time series and econometric data involves plotting the original series against 

time to observe its graphical characteristics. This aids in comprehending both the trend and the pattern of 

movement within the original series. Both the original series and the differenced series are graphed over time. 

Figures 1 and 2 display the time plots of the original and first differenced series, respectively. 

The time plots depicted in Figure 1, representing the natural log-transformed of HIV, TB, and HBV series, 

reveal trends characterized by irregularities, indicating that the series lack constant means (i.e., they are not 

mean-reverting). Moreover, the variability within the series seems non-uniform, suggesting the potential 

presence of changing variances over time (heteroskedasticity). These observations imply that the series are 

non-stationary in level. To attain stationarity, the log-transformed series have undergone first-order 

differencing, and the resulting time plots are showcased in Figure 2. 

 

Figure 1: Time Plot of Monthly HIV, TB and HBV Infection Cases in Benue State from 2010 to 2024 (Log 

Transformed Series). 
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Figure 2: Time Plot of Monthly HIV, TB and HBV Infection Cases in Benue State from 2010 to 2024 (First 

Differenced Series). 

Based on the findings depicted in Figure 2 for the first differenced series, it appears that the trends within the 

series exhibit a relatively smoother pattern, indicating the presence of constant means (i.e., mean reversion). 

Furthermore, the variability within the series appears to be consistent, suggesting that the variances may not be 

changing over time (homoskedasticity). These observations suggest that the first differenced series is 

covariance stationary. Consequently, it is inferred that the HIV, TB, and HBV infection data in Benue state are 

non-stationary in levels but become stationary after undergoing the first difference. Thus, the series are all 

integrated of order one, denoted as I(1).  

Ng-Perron Modified Unit Root Test Result 

In order to delve deeper into the properties of unit root and stationarity, as well as confirm the order of 

integration of the variables under investigation, the Ng-Perron modified unit root test has been employed. The 

outcome of this analysis is presented in Table 2. 

The results of the Ng-Perron modified unit root test, as shown in Table 2, indicate that HIV, TB, and HBV are 

all non-stationary in their original levels (i.e., they exhibit unit root characteristics). This non-stationarity is 

corroborated by the Ng-Perron M-statistics, which surpass their respective asymptotic critical values at the 5% 

significance level. However, when examining the first differenced series, the Ng-Perron modified unit root test 

suggests evidence of weak or covariance stationarity. This is evident as all four Ng-Perron M-statistics are 

lower than their corresponding asymptotic critical values at the 5% significance level, both for models with 

intercept only and for those with intercept and linear trend. Consequently, the HIV, TB, and HBV series are 

deemed to be integrated of order one, denoted as I(1). 

Table 2: Ng-Perron Modified Unit Root Test Results 

Variable  Option  𝑴𝒁𝜶 M𝒁𝒕 MSB MPT 

lnHIV Intercept only 0.0018 0.0159 0.9025 47.0626 

Intercept & trend -2.7505 -1.0767 0.3915 30.1895 

∇lnHIV Intercept only -119.38 -7.7259 0.0647 0.2053 

Intercept & trend -289.65 -12.0343 0.0416 0.3147 
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lnTB Intercept only -1.6857 -0.7839 0.4650 12.4801 

Intercept & trend -11.0467 -2.3064 0.2088 8.4765 

∇lnTB Intercept only -78.8135 -6.2759 0.0796 0.3143 

Intercept & trend -99.0403 -7.0366 0.0711 0.9219 

lnHBV Intercept only 0.0681 0.0590 0.8666 44.4673 

Intercept & trend -3.5792 -1.2568 0.3511 24.1625 

∇lnHBV Intercept only -78.0305 -6.2425 0.0800 0.3219 

Intercept & trend -91.9921 -6.7820 0.0737 0.9906 

5% Critical Values 

Intercept only -8.1000 -1.9800 0.2330 3.1700 

Intercept & trend -17.3000 -2.9100 0.1680 5.4800 

Model Identification Result 

Having established the correct order of integration for the series, the subsequent step involves identifying an 

appropriate process to model the stationary series. Following the Box-Jenkins procedure for model 

identification, we examine the autocorrelogram (ACF) and partial autocorrelogram (PACF) of the stationary 

series, as depicted in Figure 3. The ACF and PACF plot results in Figure 3 suggest a mixed ARIMAX process, 

as both the ACF and PACF exhibit rapid decay towards zero. Consequently, we proceed to search for an 

ARIMAX (p, d, q) model that can effectively model and forecast HIV infection while accounting for TB and 

HBV co-infections among farmers in Benue state. 

 

Figure 3: Autocorrelogram of Stationary Series  
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Model Order Selection Results 

In order to find the most suitable time series model for accurately modeling and forecasting HIV infection 

amidst the presence of TB and HBV among the farming population in Benue state, Nigeria, we utilize the 

Akaike Information Criterion (AIC), Schwarz Information Criterion (SIC), and Hannan-Quinn Criterion 

(HQC), along with the log likelihood (LogL), to identify the optimal model. The model that exhibits the lowest 

information criteria values and the highest log likelihood is considered the best fitting model, which is 

expected to provide the most accurate fit and forecast. The outcome of the model search is presented in Table 

3. 

Table 3: Model Order Selection  

S/n Model LogL AIC SIC HQC 

1 ARIMAX (0,1,1) -1.9786 0.0771 0.1557 0.1090 

2 ARIMAX (1,1,0) -5.9041 0.1286 0.2075 0.1607 

3 ARIMAX (1,1,1) -0.5837 0.0725 0.1711 0.1126 

4 ARIMAX (0,1,2) 0.0119 0.0644 0.1625 0.1042 

5 ARIMAX (2,1,0) -2.2545 0.0948 0.1939 0.1351 

6 ARIMAX (1,1,2) -0.3399 0.0823 0.2007 0.1304 

7 ARIMAX (2,1,1) 7.3374 -0.0175 0.1014 0.0308 

8 ARIMAX (2,1,2) 12.8764 -0.0768 0.0618 -0.0205 

9 ARIMAX (2,1,3) 11.9024 -0.0510 0.1074 0.0134 

10 ARIMAX (3,1,2) 8.0462 -0.0006 0.1585 0.0640 

11 ARIMAX (1,1,3) 13.2753 -0.0815 0.0565 -0.0254 

12 ARIMAX (3,1,1) 0.2124 0.0893 0.2286 0.1459 

13 ARIMAX (2,1,3) 11.9026 -0.0510 0.1074 0.0134 

14 ARIMAX (3,1,3) 11.3159 -0.0305 0.1486 0.0423 

15 ARIMAX (1,1,4) 13.2010 -0.0675 0.0902 -0.0035 

16 ARIMAX (4,1,1) 16.3177 -0.1102 0.0497 -0.0452 

17 ARIMAX (2,1,4) 13.4422 -0.0581 0.1202 0.0143 

18 ARIMAX (3,1,4) 11.4126 -0.0407 0.1582 0.1146 

19 ARIMAX (4,1,2) 16.0834 -0.0938 0.0860 -0.0208 

20 ARIMAX (4,1,3)** 28.7748 -0.2162 0.0184 -0.2350 

21 ARIMAX (4,1,4) 26.4467 -0.2046 0.0152 -0.1153 

22 ARIMAX (1,1,5) 19.1156 -0.1961 0.0261 -0.1264 

23 ARIMAX (2,1,5) 17.7123 -0.1876 0.0257 -0.1183 

24 ARIMAX (3,1,5) 15.2241 -0.1671 0.0365 -0.1175 

25 ARIMAX (4,1,5) 15.3428 -0.2031 0.0266 -0.1194 

Note: **denotes the model selected by the criteria 

Based on the findings from Table 3 regarding model order selection, the ARIMAX (4, 1, 3) model appears to 

offer a statistically satisfactory representation of the provided data. This conclusion is supported by its highest 

log likelihood value, along with the smallest AIC, SIC, and HQC values among the options. Consequently, we 

designate the ARIMAX (4, 1, 3) model as the optimal and most suitable candidate for modeling and 

forecasting HIV infection in the presence of TB and HBV co-infection within the study area. 

Model Estimation Result   

Once the optimal model has been selected, the subsequent step involves estimating the parameters of the 

model. The outcomes of the parameter estimates for the optimal ARIMAX (4, 1, 3) model are displayed in 

Table 4. 
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From the result of the parameter estimates of Table 4, the data fits an ARIMAX (4, 1, 3) model which is 

presented below: 

Yt = 0.570007X1 + 0.560817X2 + 0.004937Yt−1 − 0.454902Yt−2 + 0.270107Yt−3 + 0.216943Yt−4 + εt
− 1.075998εt−1 + 0.566001εt−2 − 0.489173εt−3   (39) 

where 𝑌𝑡 = HIV infection response (dependent) variable at time 𝑡, X1 = represents the first difference of the 

natural log of TB series (DLNTB) used as the first exogenous variable in the model, X2 = represents the first 

difference of the natural log of HBV series (DLNHBV) used as the second exogenous variable in the model, 

𝑌𝑡−1, 𝑌𝑡−2, 𝑌𝑡−3, 𝑌𝑡−4 =  HIV infection response variables at time t − 1, t − 2, t − 3, t − 4  respectively, 𝜀𝑡 = 

Error term at time 𝑡 and 𝜀𝑡−1, 𝜀𝑡−2, 𝜀𝑡−3  = Error terms in the previous time periods which are incorporated in 

the response variable 𝑌𝑡. 

Table 4: Parameter Estimate of ARIMAX (4,1,3) Model 

Variable Coefficient Std. Error t-Statistic P-value 

DLNTB 0.570007 0.090725 6.282792 0.0000 

DLNHBV 0.560817 0.139913 4.008315 0.0001 

AR(1) 0.004937 0.204881 2.806095 0.0057 

AR(2) -0.454902 0.196422 -2.315945 0.0220 

AR(3) 0.270107 0.119599 2.258440 0.0255 

AR(4) 0.216943 0.084827 2.557481 0.0116 

MA(1) -1.075998 0.207759 -5.179075 0.0000 

MA(2) 0.566001 0.278471 2.032535 0.0440 

MA(3) -0.489173 0.160807 -3.041998 0.0028 

R-squared 0.659262 AIC -0.216223  

Adjusted R2 0.524747 SIC 0.018359  

Log likelihood 28.77481 HQC -0.235045  

F-statistic 13.30609 Durbin-Watson stat 2.042812  

Prob(F-statistic) 0.000000    

The outcomes of the estimated ARIMAX (4, 1, 3) model, as presented in Table 4 and equation (39), reveal 

several key findings. Firstly, the AR and MA slope coefficients, along with the exogenous variables (DLNTB 

and DLNHV), are all statistically significant at a 5% significance level. 

The coefficient of determination (R2) for the regression model stands at 0.659262, indicating that 

approximately 65.93% of the total variations in HIV infection among the farming population in Benue state 

can be explained by the independent variables. The remaining 34.07% of unexplained variations are attributed 

to the error term or factors not accounted for in the model. Furthermore, the F-statistic, serving as a measure of 

the overall fitness of the regression parameters, yields a value of 13.30609 with a p-value of 0.00000, 

indicating a good fit for the regression model. Lastly, the Durbin-Watson statistic is calculated as 2.042812, 

suggesting the absence of positive serial correlation in the residuals of the estimated model and indicating that 

the model is not spurious. 

ARIMAX (4, 1, 3) model validation and diagnostic checks 

After fitting the model, we conduct various tests to assess its adequacy. These include the Ljung-Box Q-

statistic test for serial correlation (autocorrelation), the Breusch-Godfrey serial correlation LM test, and a 

heteroskedasticity test for ARCH effect of the residuals from the fitted model. The outcomes of these tests are 

presented in Tables 5 and 6. 
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Furthermore, we evaluate the goodness of fit by examining the autocorrelation and partial autocorrelation plots 

of the residuals from the fitted model. If the majority of sample autocorrelation coefficients of the residuals fall 

within the limits of ±1.96/√T, where T represents the number of observations used to build the model, it 

indicates that the residuals resemble white noise, suggesting a good fit. Additionally, we scrutinize a plot 

displaying the residuals alongside the actual and fitted values. The ACF and PACF plot is depicted in Figure 4.  

Based on the results from Tables 5 and 6, we fail to reject the null hypotheses of no serial correlation and no 

ARCH effect in the residuals of the fitted ARIMAX (4, 1, 3) model across all lags, as the p-values of the 

Ljung-Box Q-statistic test, Breusch-Godfrey serial correlation LM test, and heteroskedasticity test for ARCH 

effect are not statistically significant (i.e., all greater than 0.05). This indicates that the estimated model is both 

stationary and dynamically stable. Consequently, we conclude that the model is adequate, valid, and effective 

for forecasting purposes. 

Table 5: Ljung-Box Q-statistics Test for Serial Correlation of Residuals 

Lag ACF PACF Q-Stat P-value 

1 -0.061 -0.061 0.5703 0.450 

2 0.001 -0.003 0.5703 0.752 

3 0.022 0.022 0.6475 0.885 

4 0.041 0.043 0.9057 0.924 

5 0.046 0.052 1.2425 0.941 

6 0.041 0.047 1.5075 0.959 

7 0.061 0.066 2.1122 0.953 

8 -0.002 0.003 2.1129 0.977 

9 0.224 0.221 10.241 0.331 

10 -0.072 -0.053 11.084 0.351 

15 0.075 0.067 15.274 0.432 

20 0.053 0.017 16.666 0.675 

25 -0.019 -0.012 18.178 0.835 

30 0.022 0.035 19.610 0.926 

35 -0.053 -0.020 22.592 0.948 

36 0.058 0.069 23.267 0.950 

Table 6: Test for serial Correlation and ARCH Effect 

Variable F-statistic P-value nR2 P-value 

Breusch-Godfrey Serial Correlation LM Test 1.678296 0.1905 3.464030 0.1769 

Heteroskedasticity Test: ARCH Effect 0.552867 0.4587 0.557247 0.4554 

The findings from Figure 4 indicate that nearly all sample autocorrelation coefficients of the residuals fall 

within the confidence bounds, suggesting that the residuals exhibit characteristics akin to white noise. This 

implies that the fitted model is both dynamically stable and stationary. A model deemed adequate, valid, and 

effective should possess the capability to forecast future values of the relevant series. In the subsequent 

subsection, we will assess the model’s ability to forecast future values. 

Forecast evaluation results 

Now that our model has been validated, our focus shifts to selecting the most suitable forecast mode for 

predicting future relevant series. In this regard, we evaluate both in-sample and out-of-sample forecasts using 

two accuracy measures. The forecast mode with the lowest accuracy measures is considered the most effective 

for predicting HIV infection in the presence of opportunistic infections among the farming population in 

Benue state, Nigeria. The outcomes of the forecast comparison are outlined in Table 7. 
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Figure 4: ACF and PACF of Residuals of the Estimated ARIMAX (4, 1, 3) Model 

Table 7: Forecast Comparison using Accuracy Measures 

 RMSE MAE 

In-Sample 0.326152 0.273158 

Out-of-Sample** 0.213680 0.155000 

Note: ** denotes forecast mode selected by accuracy measures. 

Analyzing Table 7, we utilize two benchmarks, Root Mean Square Error (RMSE) and Mean Absolute Error 

(MAE), to compare the performance of in-sample and out-of-sample forecasts generated by the estimated 

ARIMAX (4, 1, 3) model. This assessment aims to evaluate the model’s forecasting capability and determine 

which mode of forecast is superior. Notably, we observe that the RMSE and MAE values for the out-of-sample 

forecast are lower than those for the in-sample forecast. Based on this criterion, a smaller forecast error 

indicates better forecasting ability for the model. Consequently, our analysis suggests that the model is well-

suited for future forecasts. 

Short-Term Forecast of HIV in the presence of opportunistic infections in Benue State 

Opting for the out-of-sample forecast method for the series, we employ the estimated ARIMAX (4, 1, 3) model 

to predict future values of HIV infection in the study area over a span of 2 years (24 months), spanning from 

January 2025 to December 2026. The forecast outcomes are detailed in Table 8. 
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Table 8: Forecast of HIV in the Presence of Opportunistic Infections in Benue State from 2025-2026 

Year: 

Month 

Forecast (natural log form) Actual Forecast (No. of Persons) 

Forecast Std. error LCL Forecast UCL 

2024:12  --- --- 1121 --- 

2025:01 7.03389 0.25774 685 1135 1880 

2025:02 7.04711 0.30683 630 1150 2098 

2025:03 7.04477 0.33112 599 1147 2195 

2025:04 7.03199 0.36568 553 1132 2319 

2025:05 7.0214 0.40642 505 1120 2485 

2025:06 7.02242 0.44543 469 1122 2685 

2025:07 7.03378 0.47764 445 1134 2893 

2025:08 7.04458 0.50191 429 1145 3067 

2025:09 7.04465 0.52227 412 1147 3192 

2025:10 7.03423 0.54414 391 1135 3297 

2025:11 7.02342 0.57031 367 1123 3433 

2025:12 7.02241 0.5984 347 1122 3624 

2026:01 7.03187 0.62329 334 1132 3841 

2026:02 7.04259 0.64283 325 1144 4034 

2026:03 7.04445 0.65927 315 1147 4174 

2026:04 7.03596 0.67646 302 1137 4280 

2026:05 7.0254 0.69692 289 1125 4409 

2026:06 7.02277 0.71957 274 1122 4597 

2026:07 7.03031 0.74063 265 1130 4827 

2026:08 7.04064 0.75777 259 1142 5043 

2026:09 7.04395 0.77217 253 1146 5205 

2026:10 7.03734 0.78677 244 1138 5321 

2026:11 7.02731 0.80385 233 1127 5447 

2026:12 7.02339 0.82309 224 1123 5634 

Total 168.81063   27225  

Average 7.03377625   1134.375  

Note: For 95% confidence intervals, 𝑍0.025 = 1.96. LCL and UCL denote lower and upper confidence limits 

respectively. 

The forecast data provided in Table 8 offer insights into the anticipated trajectory of HIV infection rates in the 

study area, factoring in other opportunistic infections. For instance, the forecasted value of HIV infection for 

January 2025 is projected to be 1135 persons, with a 95% confidence interval spanning from 685 to 1880 

persons. This interval suggests that there is a 95% probability that the actual number of HIV infections in the 

presence of other opportunistic infections will fall within this range for the upcoming period. 

Comparing this forecasted value with the number of infections reported in December 2024 (which stood at 

1121 persons), we anticipate a marginal increase of 14 persons in HIV infections for January 2025. However, 

the confidence interval [685, 1880] implies a potential range of outcomes, indicating that HIV infections could 

decrease by as much as 450 persons or increase by as many as 745 persons compared to the previous month. 

Further examination of the forecast reveals specific projections for HIV infections throughout 2025 and 2026. 

For instance, the forecast predicts at least 1147, 1122, 1147, and 1122 persons to be infected with HIV in 

Benue state during the months of March, June, September, and December 2025, respectively. Similarly, in 

2026, approximately 1132, 1147, 1122, 1146, and 1123 persons are forecasted to contract the disease in 

January, March, June, September, and December, respectively. Cumulatively, the forecast suggests a total of 

27,225 persons will be afflicted with HIV in the study area over the years 2025 and 2026 with an average 

monthly morbidity incidence of 1134 persons per month. 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/


Page 1756 

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue V May 2025 

 

 

www.rsisinternational.org 

 
 

 
 

Moreover, the forecast unveils a fluctuating trend in HIV infection rates over time throughout the forecasted 

period, exhibiting both increasing and decreasing patterns. This fluctuation mirrors the trends observed in the 

original series, highlighting the dynamic nature of HIV infection rates in the presence of opportunistic 

infections among farmers in Benue state, Nigeria. 

Model implications on the postharvest losses and agricultural productivity 

The implications of HIV/AIDS and other opportunistic infections among farmers in relation to postharvest 

losses of crops and agricultural productivity in Benue state can be multifaceted: 

(1) Reduced Labour Force: HIV/AIDS can lead to a reduced labour force among farmers due to illness and 

death, impacting their ability to effectively manage postharvest activities such as harvesting, storage, and 

transportation of crops. This reduction in manpower can result in delays in handling crops, leading to increased 

spoilage and losses. 

(2) Decreased Productivity: Farmers living with HIV/AIDS may experience decreased productivity due to 

illness, fatigue, and weakened immune systems, affecting their capacity to properly handle crops during 

postharvest stages. This decreased productivity can contribute to inefficient postharvest management practices 

and higher rates of crop spoilage. 

(3) Limited Access to Resources: HIV/AIDS can lead to economic challenges for affected farmers, including 

decreased income and limited access to resources such as agricultural inputs, storage facilities, and 

transportation. This can result in inadequate infrastructure and technologies for postharvest handling, 

increasing the susceptibility of crops to spoilage and losses. 

(4) Increased Vulnerability to Infections: Individuals living with HIV/AIDS are more susceptible to 

opportunistic infections, which can further compromise their ability to effectively manage postharvest 

activities. These infections may exacerbate health issues, leading to absenteeism, reduced efficiency, and 

increased risks of contamination of crops during handling and storage. 

(5) Stigma and Discrimination: Farmers living with HIV/AIDS may face stigma and discrimination within 

their communities, impacting their ability to access support networks, agricultural markets, and extension 

services. This social isolation can hinder their capacity to adopt improved postharvest technologies and 

practices, thereby increasing the likelihood of crop losses. 

Addressing the implications of HIV/AIDS and opportunistic infections among farmers requires comprehensive 

strategies that integrate healthcare, social support, and agricultural interventions. Efforts to provide access to 

healthcare services, promote awareness and education on HIV/AIDS prevention and treatment, and enhance 

agricultural productivity and resilience can contribute to mitigating the impact of these diseases on postharvest 

losses of crops and improving the livelihoods of affected farmers. 

Paired samples t-test result 

The paired samples t-test was conducted on the actual and forecast values for an in-sample period of 24 

months starting from January, 2023 to December, 2024 with 24 sample points. The paired samples statistics 

and correlations are presented in Table 9 while the paired samples t-test result is reported in Table 10. 

The paired samples statistics reported in Table 9 showed a mean of 6.9833 for the actual series and a mean 

value of 6.9792 for the forecast series. These means indicate no significant difference between the actual and 

the forecast series. Also, the paired samples correlation for the actual and forecast series reported in the lower 

panel of Table 9 showed that both the actual and forecast series move in the same direction. That is, increase in 

the values of the actual series will lead to a corresponding increase in the values of the forecast series and vice 

versa. 

The paired samples t-test statistic result reported in Table 10 showed a t-statistic value of 0.450 with an 

insignificant p-value of 0.657 (𝑝 > 0.05). This result indicates that there is no significant difference between 
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the actual and the forecast series. Thus, it is concluded that the forecast values of HIV infection in Benue state 

are reliable, valid and accurate and can be relied upon for policy implementation. 

Table 9: Paired Samples Statistics and correlations  

Paired Samples Statistics 

Variable Mean N Std. Deviation Std. Error Mean 

Actual 6.9833 24 0.05130 0.01047 

Forecast 6.9792 24 0.04995 0.01020 

Paired Samples Correlations 

Variable N Correlation p-value 

Actual & Forecast 24 0.598 0.002 

Table 10: Paired Samples Test Result 

 Mean Std. Dev. Std. Error 

Mean 

95% CI of the Difference t-stat. df p-value 

Lower  Upper  

Actual - Forecast 0.00417 0.0454 0.0093 -0.0150 0.0233 0.450 23 0.657 

CONCLUSION  

This study provides a valuable contribution to understanding and predicting the burden of HIV infection in the 

presence of co-infections among farmers in Benue State, Nigeria. Using monthly epidemiological data 

spanning fifteen years (2010-2024), an Autoregressive Integrated Moving Average with Exogenous Variables 

(ARIMAX) model was employed to forecast HIV seropositivity with Tuberculosis (TB) and Hepatitis B Virus 

(HBV) as significant opportunistic predictors. The ARIMAX (4,1,3) model, selected through rigorous 

diagnostic and model selection criteria, effectively captured the underlying patterns and variability in the data, 

explaining approximately 65.93% of the total variability. 

The predictive analysis forecasted a total of 27,225 HIV cases for the 2025-2026 period, with an average 

monthly incidence of 1,134 individuals, revealing a fluctuating yet dynamic trend in HIV infection rates over 

time. The reliability of the model was affirmed through comparative tests between actual and forecast values, 

showing no statistically significant differences. This indicates that the model is robust and suitable for use in 

practical health planning and policy formulation. 

Given the persistent burden of HIV in the agricultural population, especially in the context of 

immunosuppressive co-infections like TB and HBV, the findings underscore the need for integrated and data-

driven interventions. The study strongly advocates for collaborative efforts involving the Benue State 

government, international donor organizations, public health stakeholders, and agricultural extension services 

to implement context-specific HIV prevention and control strategies. Emphasis should be placed on 

community-based awareness programmes, increased access to testing and treatment, and the strengthening of 

surveillance systems to prevent the worsening of HIV epidemics among vulnerable farming communities. 

Ultimately, this research not only provides a methodological framework for short-term infectious disease 

prediction using ARIMAX models but also serves as a strategic guide for evidence-based policy-making in the 

fight against HIV and its consequences on rural livelihoods and food security in Benue State and similar 

settings. 
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