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ABSTRACT 

This study aims to determine the degree and vulnerability of gully erosion and related soil erosion in the 

Birbhum district of West Bengal, India. Composite maps of gully erosion susceptibility were created using 

sophisticated geospatial methods and remotely sensed satellite data. The normalized indicator values were 

obtained using factor analysis of the 2001 data. Gully erosion during the monsoon season was the main cause of 

the considerable loss of lateritic soil cover in the Rampurhat-I and Bolpur-Santiniketan blocks, according to 

the analysis, which also showed a strong relationship between soil erosivity and other influencing factors. 

Gully erosion impacted 69.81 square kilometers (20.59%) of Bolpur-Santiniketan, primarily in the southeast 

and northwest, and 68.97 square kilometers (23.45%) of Rampurhat-I, primarily in the southwest and 

northwest. The topographic wetness index showed the most variability, accounting for 77% and 74% of the 

erosion variance, respectively, with seven major components. The Rampurhat-I and Bolpur-Santiniketan 

susceptibility indices ranged from 0.833 to -0.772 and 0.756 to -1.060, respectively. Significant agricultural 

land loss (from 165.54 to 128.44 square kilometers) in Rampurhat-I and the existence of 26.98 square km of 

badlands in Bolpur-Santiniketan were also noted by the study, even though places like Ballavpur still had deep 

forest cover. Land use, land cover, and landholding sizes have all been greatly impacted by the rising rate of 

soil erosion, particularly in places prone to gullies. Finding hotspots for gully erosion, charting its severity, and 

making accurate predictions can help guide initiatives to reduce soil loss and degradation, promoting 

environmentally friendly farming methods and sustainable land management in the area. 

Keywords: Gully erosion, Rarh region, Susceptibility, Geospatial techniques, LULC 

INTRODUCTION 

Globally, soil erosion is one of the most vulnerable geomorphic hazards in dry and drought-prone areas. The 

world’s lateritic and arid zones are severely impacted by seasonal soil erosion. The gully formation is a type of 

rill erosion of the soil surface and subsurface. Salleh and Mousazadeh (2011) define gullies as steep-sided 

watercourses that are subject to sporadic water flow, characterized by a stepped longitudinal profile and 

typically an abrupt channel head. A gully is a typical type of landform that is created mainly by runoff and 

mass movement. Gullies look like a large creek or small stream valley, which are a few meters in depth and 

width. Gullies are commonly seasonal or non-perennial water flow, usually associated with localized intense 

rainfall events or snowmelt. Gullies can be formed and accelerated by cultivation practices on hilly tracts, 
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often on gentle gradient land (Bandyopadhyay, 1988). Soil erosion is a natural process over any land use and 

land cover. About 33% of gullies were found in the croplands of the European Union (Borrelli et al. 2022), 

which caused a majority of changes in land use land cover. The agents of soil erosion contribute a significant 

amount of soil. As a gradual erosion process, soil erosion causes a serious loss of topsoil (Telkar, 2018). The 

problem of soil erosion exists all over the World mainly in tropical arid and semi-arid areas. About 53.3% of 

the total geographical area of India is affected by soil erosion and land degradation (Brady, 2010). There are 

three major agents of soil erosion; those are soil erosion by water, soil erosion by wind, and soil erosion by 

biotic elements. Gully erosion is considered one of the major soil erosion mechanisms by water flow. 

According to Rahmati et al. (2022), drainage density, plan and profile curvature, and index of topographic 

wetness as such are the major factors of occurring gully erosion in the Biram region of south-western Iran. 

Being a more prominent type of soil erosion gullies are formed due to the transportation of topsoil by the wider 

run-off after heavy rainfall resulting in cavities or grooves (Geyik, 1986). Gullies are the major sources of 

transported sediments although they occupy a small area of the catchment (Ionita et al. 2015). Aslam (2020) 

depicted that 18% of the classified areas were under the high susceptibility zone of gully erosion and it was 

considered a potential erosional hazard in the Chitral of north-east Pakistan. Other studies such as Nwilo et al. 

(2021, p. 157) considered the soil erosion caused by geomorphic agents of gullies as a serious environmental 

problem in the Imo River Basin of south-east Nigeria. Gullies dissect a large area of land into small fragments 

which are called badland topography, unsuitable for cultivation and other land uses. Transport capacity and 

shear stress are the factors that positively correlate with the daily event of runoff in the gully areas in the 

Dwarka-Brahmani interfluve region in eastern India (Ghosh et al. 2021). Ghosh and Saha (2015) delineated the 

erosion susceptibility zones of gully erosion in the Hinglo river basin, in Eastern India, and identified that high-

weighted composite scores of severe erosion susceptibility were associated with excessive drainage conditions. 

According to Jahantigh (2011), about 2.35 million cubic meters/year (m3/year) of agricultural soil is lost by 

gully erosion in the Rewa district of Madhya Pradesh, India. As per the observations by Debanshi and Pal 

(2018) to control or prevent gully erosion, check dams and gully head bandhs were constructed in the gully 

erosion areas of the Mayurakshi river basin in eastern India. Soil erosion due to gully formation has been found 

in several parts of West Bengal. The districts of the western Rarh region of West Bengal are mainly impacted 

by gully erosion. Shit et al. (2015) postulated that gully erosion increased in the moderately high slope areas in 

the monsoon season in Garbeta in Paschim Medinipur. A total of six gully erosion hazard-prone areas were 

identified by Shit et al. (2014) situated mainly in Bankura and Paschim Medinipur districts. > 60% of sand 

areas covered and > 37.61% of the upper catchment of Chandrabhaga sub-basin in Birbhum district which was 

adjacent to gully erosion areas (Pal, 2016). Santra and Mitra (2020, p. 1200) analyzed that 25% of the area was 

under the high-to-severe soil erosion of rills and gullies in Puruliya, the westernmost district of West Bengal. 

Literature Review on Methodologies for Assessing Gully Erosion Intensity and Susceptibility Using 

Geospatial Techniques 

Assessing gully erosion, a major type of soil degradation that affects many parts of the world, is essential for 

efficient land management and conservation. To evaluate the severity and vulnerability of gully erosion, 

researchers have created and improved methods over time utilizing geospatial tools. With an emphasis on the 

application of multiple discriminant factor analysis (MDF), remote sensing, GIS, and machine learning 

techniques, this literature review offers a summary of the approaches used globally, in India, and particularly in 

West Bengal. Gully erosion has been widely mapped and evaluated using geospatial methods, especially 

remote sensing and Geographic Information Systems (GIS). The vulnerability of landscapes to gully 

development has been measured and predicted using various analytical methods. Multiple Discriminant 

Analysis (MDA), which creates susceptibility maps by combining variables like terrain, soil type, land use, 

rainfall, and vegetation, is one of the main techniques utilized globally. Poesen et al. (2003), for example, 

emphasized the application of MDA in the African Sahel, where it proved successful in locating erosion-prone 

regions by analyzing soil characteristics and climate data. The Analytic Hierarchy Process (AHP) in 

conjunction with GIS has gained widespread acceptance in the Mediterranean regions. By considering 

variables including slope, lithology, vegetation cover, and rainfall intensity, Valentin et al. (2005) showed how 

AHP combined with GIS could rank gully susceptibility. In places like Australia, where soil erodibility and 

land use changes are important factors, the use of spatial models that incorporate digital elevation models 

(DEMs), remote sensing data, and climatic information has become more popular for predicting areas at risk of 

gully erosion (Wilkinson et al., 2005). Furthermore, in areas with complicated topography, like South 
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Africa, machine learning methods like Support Vector Machines (SVM) and Artificial Neural Networks 

(ANN) have been used to forecast gully susceptibility (Le Roux et al., 2007). These algorithms categorize 

regions according to their risk of gully erosion using vast datasets, such as topography and remote sensing 

photography. 

Gully erosion has been thoroughly researched in India in some areas where erosion dynamics are greatly 

influenced by the interplay of monsoonal rainfall, soil properties, and land use changes. In this research, 

remote sensing and GIS have become essential tools, and various approaches have been created and 

implemented in Indian contexts. For instance, the Normalized Difference Vegetation Index (NDVI) and the 

Normalized Difference Built-up Index (NDBI) have been used to track urbanization and vegetation cover, two 

factors that affect gully erosion. In regions like the Deccan Plateau, researchers like Kumar et al. (2012) have 

demonstrated that changes in land cover, particularly the shift from agricultural to arid land, make the region 

more vulnerable to gully erosion. Runoff and its impact on gully formation have been estimated in Indian 

research using the SCS-CN method (Soil Conservation Service Curve Number method) in conjunction with 

GIS. This technique was used by Singh et al. (2014) to evaluate the danger of erosion in the Shivalik Hills of 

Himachal Pradesh. Additionally, MDA has been utilized to map the susceptibility to gully erosion at the 

regional level in India. Chaudhuri et al. (2017), for instance, employed MDA in Uttarakhand to create a 

susceptibility map that included rainfall intensity, slope, land cover, and soil characteristics as discriminant 

factors. Gully erosion is still a major problem in West Bengal because of the region's varied geomorphological 

features, heavy rainfall, and extensive agricultural operations, especially in the Rarh region and Birbhum 

district. Gully erosion intensity and susceptibility have been mapped and evaluated using geospatial 

approaches more often in recent research. The use of GIS-based multi-criteria decision analysis (MCDA), 

which incorporates many parameters such as soil type, rainfall patterns, and land use/land cover (LULC) to 

evaluate gully erosion hazards, is one noteworthy technique in West Bengal. For instance, a GIS-MCDA 

model was used in the Birbhum district study by Bhattacharyya et al. (2020) to identify locations susceptible to 

gully erosion by considering both natural and anthropogenic causes. This approach highlighted how 

deforestation and agricultural development increase erosion susceptibility by using remote sensing data to 

track changes in LULC over time. Slope analysis and the use of DEMs have also proved crucial in 

comprehending the dynamics of gully erosion in this area. High slopes and unregulated agriculture have been 

linked to increased erosion, according to studies (Mukherjee et al., 2018). Susceptibility models have been 

developed using MDA and statistical techniques, and LULC change detection using satellite images (e.g., 

Landsat and Sentinel-2) has assisted in identifying regions in Birbhum where gully erosion is most common. In 

West Bengal, machine learning methods are also being investigated more and more for the classification of 

areas that are prone to erosion. In the Murarai region of Birbhum district, Roy et al. (2019) classified land 

segments using some discriminant criteria using the Random Forest (RF) ensemble machine learning 

technique. The study discovered that machine learning-based soil erosion risk models outperformed 

conventional techniques in locating regions susceptible to gully formation. A variety of geospatial approaches, 

including remote sensing, GIS, MDA, MCDA, and machine learning, have been adopted worldwide, in Indian, 

and in West Bengal research to evaluate the severity and susceptibility of gully erosion. These methods have 

been successful in mapping gully erosion-prone areas, identifying important factors like topography, rainfall, 

and changes in land use, and enabling focused mitigation measures. Recent patterns indicate a significant move 

toward integrated strategies that incorporate many data sources and sophisticated algorithms, providing 

increased accuracy in identifying and controlling the hazards of gully erosion. 

REVIEW OF LITERATURE OF RECENT STUDIES 

Geospatial methods and machine learning (ML) algorithms have been used more frequently in recent research 

on gully erosion in India to evaluate vulnerability and forecast future erosion hazards. Gully erosion is still a 

major environmental problem that affects ecosystems, water quality, and agricultural output. The combination of 

geographic information systems (GIS), machine learning (ML), and remote sensing offers sophisticated tools 

for identifying erosion hotspots and creating focused conservation plans. A study conducted in the Birbhum 

area of West Bengal by Mondal et al. (2023) evaluated the susceptibility of gully erosion using factor analysis 

and GIS-based mapping. Their study found that Bolpur-Santiniketan and Rampurhat-I are particularly 

susceptible to gully erosion, with significant lateritic soil loss during the monsoon season. In aggravating soil 

degradation, they discovered that topographic elements like rainfall and slope were crucial (Mondal et al., 
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2023). Ensemble approaches and machine learning models are crucial for increasing the accuracy of gully 

verosion susceptibility mapping (GESM). With a high AUC value of 0.972, Lee et al. (2020) used bagging 

techniques and Boosted Regression Trees (BRT) to forecast gully erosion in Garhbeta, West Bengal. 

According to Lee et al. (2020), this model illustrated the value of machine learning for accurate predictions of 

gully erosion. Similar strategies have been effectively implemented throughout India, especially in areas like 

the northwest Himalayas and Western Ghats, employing Random Forest (RF) and Support Vector Machines 

(SVM). Additionally, forecast accuracy has increased when environmental characteristics like land use, slope, 

rainfall, and soil type are combined with geospatial and machine learning approaches. Studies in the Western 

Ghats and northwest Himalayas have shown that land use changes, particularly deforestation and intensive 

agriculture, have increased the risks of gully erosion. Planning for soil conservation is aided by these variables 

when they are incorporated into predictive models to produce susceptibility maps particular to a given region 

(Lee et al., 2020). To forecast erosion hotspots in Maharashtra, a mix of GIS, remote sensing, and machine 

learning techniques has been employed. By identifying high-risk regions, this method has been crucial in 

facilitating improved land reclamation techniques, like afforestation and soil stabilization (Ghosh & 

Bhattacharya, 2012). The understanding of gully erosion in India has been significantly enhanced by several 

additional studies. To illustrate how slope and land cover have a major impact on erosion patterns, Pandey et 

al. (2022) created a multi-factor model combining GIS and remote sensing to evaluate gully erosion 

susceptibility in the Deccan Plateau. In their study of gully erosion in the northeastern Indian states, Sharma et 

al. (2021) combined remote sensing and spatial analysis and found that erosion was primarily driven by 

topography and rainfall intensity. By using machine learning to simulate erosion susceptibility in the 

Himalayas, Sharma et al. (2021) discovered that forest cover, land use, and slope were all important predictors of 

erosion risk, providing information for focused erosion control strategies. Similar to this, Sharma (2023) 

assessed gully erosion hotspots in Uttarakhand using GIS and remote sensing techniques, showing that harsh 

erosion was caused by human-induced activities like mining and deforestation. These kinds of studies have a 

significant impact on the evolution of erosion control strategies throughout India. Through the integration of 

environmental elements, machine learning, and geospatial data, these methods present promising ways to 

mitigate soil erosion, boost agricultural productivity, and encourage sustainable land use practices in 

vulnerable areas. 

Review of Literature on the Adopted Methodologies LULC Classification 

Researchers have previously used a variety of techniques to assess soil erosion, including gullies. Seutloali et 

al. (2016) identified the gully erosion along major armoured highways in the southeast region of South Africa 

using a Geographic Information System (GIS) and RS methodology. Ayele et al. (2020) used the Revised 

Universal Soil Loss Equation (RUSLE) and the Sediment Yield Index (SYI) models to quantify rainfall- 

induced soil erosion in Ethiopia's highlands. Mosavi et al. (2020) compiled various analytical models to 

determine the Talar watershed's flood and erosion susceptibility. Pathan and Sil (2020) used a combination of 

remote sensing, GIS, and a soil erosion assessment method to identify the soil erosion-prone areas in the upper 

Brahmaputra river basin to Majuli river island. To identify the basin morphometry and gully erosion in eastern 

India's lateritic badland zone, Ghosh and Kundu (2022) evaluated digital elevation models and topographic 

indices. In the Harda region of the Narmada River basin in India, the comparison of the Morgan-Morgan- 

Finney, Universal Soil Loss Equation, and Rectified Universal Soil Loss Equation models brought to light the 

zones of spatial variability and the calculation of soil erosion risk (Mondal et al. 2018). Gayen et al. (2020) 

used the Frequency ratio (FR) model to validate RUSLE to evaluate the soil erosion assessment in the Pathro 

river basin in Jharkhand, India. The maximum likelihood approach was used to classify LULC (Richards, 

2022). Based on many important factors, the Maximum Likelihood Classification (MLC) was used to evaluate 

the severity and susceptibility of gully erosion in the Birbhum area of West Bengal. First, MLC's statistical 

method works well for processing remote sensing data, where the spectral properties of soil, vegetation, and 

land cover types are important (Richards & Jia, 2006). It assumes a normal distribution for pixel values within 

each class. Furthermore, as research by Singh et al. (2022) and Mondal et al. (2023) have shown, MLC is 

perfect for complicated terrain analysis since it can incorporate many geographic data layers, including 

topography, soil type, and rainfall. Furthermore, because it produces probabilistic classification findings, MLC is 

useful in mixed-use landscapes where various land coverings (such as agricultural and forest) interact. This 

ensures more precise identification of regions susceptible to gully erosion (Gao et al., 2020; Das et al., 2021). 
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Furthermore, it is beneficial in similar erosion studies conducted throughout India, including the Western 

Ghats, where it aided in mapping erosion susceptibility according to land use and terrain factors (Gao et al., 

2020). Consequently, MLC is a reliable technique that enables thorough, precise mapping of gully erosion 

hazards, offering important data for Birbhum soil conservation and land management plans (Tso & Mather, 

2009). Due to its statistical robustness and suitability for remote sensing data, the author of the study on gully 

erosion assessment using geospatial techniques in Birbhum district mainly chose Maximum Likelihood 

Classification (MLC). Other algorithms, such as Support Vector Machine (SVM) and Logistic Regression, 

were not investigated. MLC was selected because it particularly performs well in scenarios where the 

distribution of data classes is assumed to follow a normal (Gaussian) distribution, which is frequently the case in 

remote sensing data about land use and soil properties, even though SVM and Logistic Regression are well- 

liked in classification tasks (Richards & Jia, 2006). MLC's significance stems from its capacity to efficiently 

categorize different types of land cover by processing various bands of satellite imagery, such as multispectral or 

hyperspectral data. It is well-suited for differentiating between land cover types in areas impacted by gully 

erosion, where minute changes in spectral data can reveal erosion-prone areas because it calculates class 

probabilities using both the mean and the variance of the pixel values (Lillesand & Kiefer, 2000). According to 

Lu et al. (2014), MLC is also beneficial in complicated terrains since it considers a range of environmental 

elements that contribute to gully erosion, such as soil type, vegetation, and slope. In contrast, Support Vector 

Machines (SVM) are computationally more demanding and generally require larger training datasets, 

notwithstanding their effectiveness for many classification applications. However, the intricacy of multi-class or 

non-linear connections between the variables involved in gully erosion processes may be unaccounted for by 

logistic regression (Pal, 2005). A level of classification confidence is also provided by MLC's probabilistic 

output, which is crucial when working with complex and diverse land covers that are present in regions that are 

vulnerable to soil erosion. Since MLC has demonstrated reliability, flexibility in handling multi-band data, and 

the capacity to incorporate topographic and environmental factors that are critical in understanding gully 

erosion, it remains the best fit for this study, even if other algorithms may have been evaluated (Foody, 2002). 

The performance of gully erosion susceptibility models must be evaluated in terms of accuracy, and one often 

used indicator in environmental modeling is Kappa statistics. The percentage of examples (both positive and 

negative) that are correctly identified out of all the instances is known as accuracy. A measure of agreement 

between observed and anticipated classifications that considers chance agreement is the Kappa Statistic (κ). 

The range of values for kappa is -1 to 1. By taking chance agreement into account, Kappa statistics, which 

Congalton and Green (1999) established, provide a more reliable metric than total accuracy for evaluating the 

agreement between observed and anticipated classifications. Higher Kappa values suggest better model 

performance, as evidenced by Pal and Mather's (2005) use of Kappa statistics to evaluate land degradation 

models in erosion investigations. Since Kappa statistics offer a more thorough understanding of model 

correctness than just classification rates, its use in gully erosion susceptibility models has proved crucial in 

guaranteeing the accuracy of predictions, particularly when working with categorical outcomes like erosion- 

prone zones. Congalton and Green's (1999) technique was used in this work to evaluate the kappa statistics and 

correctness of LULC data. Congalton and Green's (1999) study offers a thorough description of the use of 

several accuracy metrics in environmental studies and remote sensing, such as overall accuracy and Kappa 

statistics. 

Drainage Basins and Stream Networks 

The specific stream network and drainage basin have been delineated based on the following procedures using 

digital elevation model (DEM) data. After successful extraction of the flow direction raster, the drainage basin 

has been delineated using the basin tool in ArcGIS. These tools are commonly used in hydrological studies to 

understand watershed behavior, water flow patterns, and to assist in water resource management (Esri, 2020; 

Zhang & Li, 2019). Additionally, Strahler's approach (Strahler, 1964) has been used to prepare a stream raster 

and a flow direction raster for the ordering of streams. It serves as a gauge for a stream's place in the hierarchy 

(Leopold, 1994). The total number of streams (Nu, Horton, 1945) and the total length of the streams in 

kilometer (km) (Lu, Strahler, 1964) have been calculated in each order. The Bifurcation ratio and mean 

bifurcation ratio have been calculated for both delineated basins using the formulation of Horton (1945). 
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Statistical Analyses 

The indicators in this study have been normalized using the Min-max normalization method (Nardo, 2009; 

Joint Research Centre-European Commission, 2008). Before estimating susceptibility indices using Principal 

Component Analysis (PCA), the indicators are standardized using Max-Min Normalization. To prevent the 

disproportionate influence of variables with greater scales, such as rainfall or terrain, this technique is 

important since it guarantees that all indicators are rescaled to a uniform range, usually between 0 and 1 

(Jolliffe, 2002). In geographic analyses involving numerous environmental and topographical variables, the 

Max-Min method is especially helpful since it is straightforward and efficient for datasets with varying ranges 

and allows for an impartial contribution from each element (Zhang et al., 2019). According to Sun et al. (2017), it 

is perfect for huge datasets that are common in erosion susceptibility and remote sensing investigations since it is 

computationally efficient and produces an output that is easy to understand. The study of gully erosion relies 

on the reliable extraction of principal components from a variety of indicators, and Max-Min normalization 

was chosen for its easy application and efficient scaling, even though other normalization techniques like Z-

score normalization or decimal scaling could also be used (Zhang et al., 2019; Sun et al., 2017). Thus, The 

Principal Component Analysis formula (PCA, Pearson, 1901) has been applied to extract the factor scores. The 

Carlin and Doyle (2000) formula has been used to estimate the standard error mean. Carlin and Doyle (2000) 

state that the sample Standard Deviations, or SD (s), must be used to estimate the Structural Equation Model 

(SEM) rather than the unknown σ. The standardized values of the covariances of the components influencing 

gully erosion are measured by the Structural Equation Model (SEM, Wright, 1918). The structural equation 

model has been used in the current work to depict the correlation between a few chosen variables. In this case, 

the structural equation model's conceptual diagram displays the covariances that were recovered using linear 

regression. A significance criterion of 0.05 (95% CI) or 0.01 (99% CI) is used to validate the covariances. The 

current study additionally makes use of the covariance (Engelhart, 1941) and linear regression model formulas 

(Pearson, 1914; Pearson, 1897). 

Model validation of Gully Erosion Susceptibility Zones 

To assess the predictive effectiveness of models, gully erosion susceptibility studies have frequently used the 

Receiver Operating Characteristic (ROC) curve and its associated Area Under the Curve (AUC) statistics. 

ROC-AUC compares true positive rates (sensitivity) against false positive rates (1-specificity) across several 

thresholds to determine how well a model can differentiate between areas that are prone to erosion and those 

that are not. A higher AUC denotes superior discriminatory ability. The AUC measures the model's overall 

performance. The range of the AUC is 0–1. Radar performance was initially assessed using the ROC curve, 

which was first introduced by Green and Swets (1966) in signal detection theory. The AUC was later widely 

used in many domains, including environmental modeling, when Metz (1978) popularized it as a metric for 

diagnostic accuracy. Due to its adaptability and dependability, ROC-AUC has become crucial in erosion 

studies for evaluating the effectiveness of susceptibility models. Global research has shown that AUC values 

above 0.7 suggest reasonable model accuracy, whereas values above 0.9 indicate exceptional performance 

(Rahmati et al., 2017; Wang et al., 2019). The significance of hydrological and topographical variables in 

erosion modeling has been demonstrated by the high AUC values obtained by models that included these 

variables in areas like the Loess Plateau and the Ethiopian Highlands. When using ROC-AUC to evaluate gully 

erosion susceptibility in semi-arid parts of India, Pandey et al. (2020) discovered that model reliability was 

improved by combining vegetation indices with the topographic wetness index (TWI). Key indicators 

including the Stream Transport Index (STI), TWI, and Infiltration Number may be validated in the current 

study using ROC-AUC analysis, guaranteeing the resilience of susceptibility models and their suitability for a 

variety of geological and geomorphological contexts. Based on Fawcett's (2006) research, ROC-AUC was 

employed in this investigation. An extensive discussion of ROC analysis and AUC, as well as how they are 

used to assess classification models, is given in this research by Fawcett (2006). 

Research Gap 

Studying the Gully Erosion in West Bengal's Birbhum area is constrained by some limitations. First, although 

the study has looked at the broad topography and climate elements that affect the formation of gullies, there 

isn't much in-depth analysis that considers the soil properties of the lateritic terrain in this area. In earlier 
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research, the poor water retention, acidity, and nutrient depletion of lateritic soils, along with their 

susceptibility to erosion, were left out. Second, although micro-watersheds are more pertinent for localized 

gully erosion assessments, most research has concentrated on broader geographical scales. A significant gap is 

the lack of research using high-resolution geospatial data to comprehend the interactions between rainfall 

erosivity and several morphometric parameters, including aspect, drainage density, slope, and land use, in 

these micro-watersheds. Additionally, while GIS and remote sensing have been used to study changes in land 

cover and use, few studies have integrated these technologies with sophisticated machine learning algorithms to 

forecast future hotspots and simulate the vulnerability to gully erosion. The impact of shifting land use 

patterns, especially deforestation and agricultural intensification, on gully erosion in Birbhum is also not given 

enough attention. One significant gap in the literature currently in publication is the scant incorporation of both 

natural and human-induced changes in forecasting and evaluating the susceptibility of gully erosion. 

Need for the Present Study 

The crucial gaps in literature, especially concerning gully erosion in Birbhum area, make the current study 

necessary. First, by concentrating on Birbhum's distinct lateritic soil properties—which have received little 

attention in gully erosion studies—this study will offer crucial new information about how these soil attributes 

affect erosion susceptibility. Second, by focusing on micro-watersheds, the study seeks to close the spatial 

resolution gap and provide a more detailed knowledge of the dynamics of gully erosion at the local level. A 

more thorough and precise evaluation of the variables influencing gully development will be possible by 

combining rainfall erosivity with morphometric variables including slope, drainage density, and topography. A 

major improvement over conventional approaches, the study will also produce accurate erosion susceptibility 

maps using high-resolution remote sensing data and GIS-based machine learning techniques. The study will 

also examine how human activities like urbanization, deforestation, and agricultural growth contribute to the 

region's gully erosion. To help policymakers and local authorities create more effective erosion control 

measures, this study will combine natural and human-induced elements to provide specific, doable 

recommendations for sustainable land management practices. 

Objectives 

The present study focused on the two blocks of Birbhum district of West Bengal, i.e., Rampurhat-I and Bolpur- 

Sriniketan blocks. The district is an extended part of Chota Nagpur plateau and Rajmahal basalt trap covered 

with lateritic patches. Highly leached and weathered tropical lateritic soil capes are enriched with oxides of 

iron and aluminum and are ecologically fragile because of their inherent constraints of acidity, nutrient loss, 

chemical impairment, crusting, water erosion, and poor water-holding (Jha, 2008). The physical characteristics 

of this district are adjacent to its erosion potential of gully formation areas. In the present study, various 

morphometric parameters and raster analysis indices are widely analyzed and correlated with the rainfall 

erosivity to identify the significantly influential factors, the spatial distribution of the factors, delineate gully 

erosion susceptibility zones, and access the significant impact of gully erosion on land use and land cover in 

the context of micro watersheds in the study area. The present study focuses on the following objectives: 

1. To measure the role of diverse controlling factors of gully erosion in Rampurhat-I and Bolpur- 

Sriniketan blocks of Bibhum district. 

2. To formulate the relationship among the controlling factors of gully erosion and delineate gully erosion 

susceptibility zones in the study area. 

3. To assess the impact of gully hotspot areas on the land use land cover of the study area. 

MATERIALS AND METHODS 

Study Area 

The present study focuses on Rampurhat-I and Bolpur-Sriniketanblocks situated in southern and western 

portions respectively of Birbhum district. Rampurhat-I block is situated at an extension of 87̊ 32̍ East (E) to 87̊ 
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𝑖 

52̍ East (E), and 24̊ 05 ̍North (N) to 24 ̊17̍ North (N), and Bolpur-Sriniketan block lies in between 87̊ 35̍ E to 87 ̊

50̍ E, and 23 ̊33 ̍N to 23 ̊54 ̍N (Fig 1). Geographically, this region is a part of the Rarh region, positioned in the 

western part of West Bengal and lies at the north-eastern end of the Chota Nagpur Plateau and its slope 

gradually downs towards east. The lateritic region is a part of the low-level unconsolidated erosional deposits 

from the eastern Chota Nagpur plateau where regional climate varies from harsh in the west to relatively mild in 

the east. Birbhum district belongs to several morphological processes, i.e., weathering, mass wasting, and river 

erosional process (Mondal, 2013). Degraded lateritic soils occupied a large area of this district containing oxides 

of iron and aluminum (Jha and Kapat 2011). Different morphometric analyses and geospatial and multivariate 

statistical techniques have been adopted by various scholars to identify the gully erosion impact areas of 

Birbhum district. Ghosh and Bhattacharya (2012) used different analytical aspects to identify the soil loss due 

to erosion in the badland areas of the western Rampurhat-I block in Birbhum district. Jha and Kapat (2009) 

identified 45 micro watersheds in Ajay-Maurakshi interfluves in the south-western Birbhum district. This area 

consisted of various rill and gully erosion sites impacted by different morphometric parameters of river basins 

associated with relief, slope, and drainage characteristics (Jha and Kapat 2009). The study area, Rampurhat-I, 

and Bolpur-Sriniketan blocks are occupied such rill and gully erosion areas which are degraded, dissected, and 

rugged over the lateritic capes impact on the land use land cover, agriculture, and habitation in Birbhum 

district. To control the gully head areas, check dams and afforestation are required to be established (Ghosh and 

Dolui 2011; Das, 2015). The total population and total households of Rampurhat-I were 159,193 and 31,040 in 

2001 and 188,435 and 44,263 in 2011 respectively (Census of India 2001; 2011). The total population and total 

households of Bolpur-Sriniketan were 178,111 and 37,280 in 2001 and 202,553 and 47,961 in 2011 

respectively (Census of India 2001; 2011). According to available data, the current population of Birbhum 

district in West Bengal, India is approximately 4,060,000 people. 

Data Sources 

The study has been conducted using secondary databases and participants’ observations in the study area. The 

relevant remotely sensed (RS) satellite data have been collected from the United States Geological Survey 

(USGS), National Remote Sensing Centre (NRSC), and European Space Agency (ESA) websites. Geospatial 

techniques and statistical methods have been employed for data analysis, mapping, and representation. The 

details of the databases collected are mentioned in the Table (Table 1). The methodology of the present study is 

represented in a figure (Fig 2) in a generalized framework. 

CALCULATION OF LAND USE LAND COVER STUDY 

The land use land cover (LULC) maps have been prepared for both Rampurhat-I and Bolpur-Sriniketan blocks 

using specific RS satellite data (mentioned in Table 1). After the rectification of collected satellite images, 

LULC maps have been prepared based on the Land Satellite 7 (LANDSAT 7) images Enhanced Thematic 

Mapper Plus band (ETM+ band) of 2001 (USGS, 2022a). In this process, the maximum likelihood method of 

supervised classification has been adopted to identify the five major land use land cover classes along with 

gully erosion areas. The extracted LULC classes are water bodies, natural vegetation, barren land, agricultural 

land, and build-up areas. The LULC classification was completed by the maximum likelihood method, using 

the following formula, 

(𝑥) 𝑙𝑛𝑝(𝜔𝑖) − 1⁄2 𝑙𝑛| 𝛴𝑖| − 1⁄2 (𝑥 − 𝑚𝑖)𝑇 𝛴−1(𝑥 − 𝑚𝑖) (1) 

where 

i = class 

x = n-dimensional data (where n is the number of bands) 

p(ωi) = probability that class ωi occurs in the image and is assumed the same for all classes 

|Σi| = determinant of the covariance matrix of the data in class ωi Σi
-1 = its inverse matrix 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue V May 2025 

Page 1951 
www.rsisinternational.org 

 

    

mi = mean vector. The LULC raster map has been undergone in accuracy assessment by calculating kappa 

statistics. 

𝜅 = 
𝑃0−𝑃𝑒 

1−𝑃𝑒 

where 

𝜅 = Kappa statistics 

Po = Observed accuracy (proportion of correct predictions) 

Pe = Expected accuracy (proportion of correct predictions expected by chance) 

Delineation of Drainage Basins and Stream Networks (2) 

The specific stream network and drainage basin have been delineated based on the following procedures using 

digital elevation model (DEM) data. After successful extraction of the flow direction raster, the drainage basin 

has been delineated using the basin tool in ArcGIS. Drainage basins are defined in ArcGIS by using the Basin 

tool, which is in the Spatial Analyst extension after the flow direction raster has been extracted. The Hydrology 

toolbox's Flow Direction tool first creates a flow direction raster, which indicates the way water flows from 

each cell to its steepest neighbor. The Basin tool utilizes this generated raster to locate and mark the limits of 

distinct drainage basins. This procedure can also be used in conjunction with the Watershed tool, which further 

refines the basin delineation by determining the contributing area for each cell based on the direction of flow. 

To create the stream network, the flow accumulation raster has been extracted from the flow direction map, 

and then the stream raster has been converted into a polyline to acquire the specific stream network. Raster 

classes of flow accumulation are greater than 5000. In these processes, Suttle Radar Topographic Mission- 

DEM (SRTM-DEM) (USGS, 2022b) data are used for both Community Development Blocks (C.D. blocks) of 

the Birbhum district. Moreover, the ordering of streams has been prepared using a stream raster and a flow 

direction raster using Strahler’s method. The total number of the streams and the total length of the streams in 

kilometers (km) have been calculated in each order. The Bifurcation ratio and mean bifurcation ratio have been 

calculated for both delineated basins in Rampurhat-I and Bolpur-Sriniketan blocks. The formula of the 

bifurcation ratio is 

𝑅𝑏 = 𝑁𝑢⁄𝑁𝑢 + 1 

where 

Rb is the bifurcation ratio 

Nu is the number of streams of any given order (3) 

Nu+1 is the number in the next higher order. The mean bifurcation ratio (Rbm, Strahler, 1957) is derived as 

the average of the bifurcation ratios of all orders. 

The total area of delineated drainage basins in Rampurhat-I and Bolpur-Sriniketan have overlapped on 10 by 

10 grids. After extraction totals of 55 points in Rampurhat-I and 52 points in Bolpur-Srtiniketan blocks (Figs 3 

& 4) are found with their coordinates. 

Formulation of Gully Erosion Susceptibility Index 

The composite indices method has been implemented through Factor analysis of Principal Component 

Analysis (PCA) twenty indicators of gully erosion to bring out the composite gully erosion susceptibility 

indices using the standardized predicted scores. The details of the indicators have been mentioned in Table 2. 
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Min-max normalization method has been applied to normalize the indicators. 

𝑥′ = 
𝑥−𝑚𝑖𝑛(𝑥) 

               𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥) 

where, 

x is the indicator. 

For the Composite Factor Analysis, the following formula has been used as (4) 

P1 = Σ aj1 X Zj or P1 = a11. Z1+ a21. Z2 a11. + ... an1. Zn (5) 

where, 

P1 denotes the composite gully erosion susceptibility index of a unit study as the first factor denotes the factor 

loading of the ‘j’th variable and 1 indicates the factor number that is the first factor- vector of factor loadings. 

While the Zj denotes the standardized value of the ‘j’th variable, which is expressed as 

Zj= 
𝑋𝑗−𝑋𝑚 

         𝛿𝑗 

Where (6) 

Xj denotes the original value of ‘j’th variable, Xm denotes the mean (simple arithmetic mean) of ‘j’th variable, 

and δj denotes the standard deviation of ‘j’th variable. 

In this aspect, the mean and standard deviation are calculated by using the following formula: 

Mean= 𝛴𝑥𝑛 (7) 

Standard Deviation=√(
𝑥−𝑥̅ 

                                                𝑛           (8)  

where 

x̄ is the arithmetic mean; x is the individual value of items; n is the number of terms in the distribution. The 

Standard Error Mean has been estimated following the formula. 

SEM = 𝑠√𝑛 

(9) 

Finally, Mean Composite Factor Scores have been calculated using the standardized factor scores extracted 

from PCA. 

Mean Composite Factor Scores = 
𝐹𝑎𝑐𝑡𝑜𝑟1+𝐹𝑎𝑐𝑡𝑜𝑟2+ 𝐹𝑎𝑐𝑡𝑜𝑟3…+𝐹𝑎𝑐𝑡𝑜𝑟𝑛 

                                                             𝑇𝑜𝑡𝑎𝑙 𝑏𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 (10) 

where 

𝑛 is the factor. 

) 

⁄ 
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The mean composite scores of both areas have been represented in the inverse distance weighted (IDW) maps 

and the maps have been validated by Receiver Operating Characteristic - Area Under the Curve (ROC-AUC). 

Structural Equation Model and Covariances 

The Structural Equation Model has been constructed to measure the standardized values of the covariances of 

the factors that impact gully erosion. In the present study correlation among selected variables has been 

represented through the structural equation model. Here, covariances have been extracted using linear 

regression and put on the conceptual diagram of the structural equation model. The covariances are validated 

with a significance level of either 0.05 (95% confidence interval) or 0.01 (99% confidence interval). The 

formula for the linear regression model is 

Yc = a + b X (11) 

where 

Yc is a predicted value of Y (which is the dependent variable) 

a is the Y-intercept 

b is the changes in Y for each increment change in X 

X is an X score (Independent variable) for which a value of Y is predicted. 

The formula of covariance is Cov (x,y) = 
𝛴(𝑥𝑖−𝑥̅)(𝑦𝑗− ȳ)

𝑛 (12)
 

where 

Cov (x,y) = Covariance between variable x and y 

𝑥𝑖 = Data value of x 

𝑦𝑗 = data value of y 

𝑥̅ = mean of x 

ȳ = mean of y 

n = Number of data values 

RESULTS 

Physiographic Situations of the Study Area 

This entire region has a significant physical setup. Rajmahal basalt, china clay, and laterite (belonging to the 

Cainozoic era) have covered up this region. Pascoe (1973) researched the facts in a manual of the geology of 

India and Burma. Laterites of Birbhum were split off from the high-level laterites of eastern Rajmahal hills 

and carried out to this eastern lower region of Rajmahal hills by rainwater, small streams as well as surface 

runoff, and these materials were re-deposited in this area. After successively wet and dry climatic conditions 

and the corresponding result of the change of groundwater level (in pre-monsoon the average water level is 

above 10 meters depth in April and in post-monsoon that is nearly 3 metres) in this region, the oxides of 

aluminum and irons had compacted repeatedly. Morphologically this region belongs to an undulating lateritic 

upland area. This region is mostly covered with tropical dry deciduous forests along with some evergreen 

trees. Shrubs and grassland have been grown in the western part of this region such as thorny shrubs, 

Aceraceae, and Mangifera (Ghosh, 2011). Different morphometric parameters have been figured out to 

identify the physiography of the study area such as elevation, ruggedness, slope, slope aspect, direction, stream 
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length density, stream distance, basin flow, flow distance, and bifurcation ratio. The total area of the basin 

delineated in Rampurhat-I block is 295.658 square km and it is 341.744 square km in Bolpur-Sriniketan block. A 

total of four orders of streams have been identified in both areas. The mean bifurcation ratios of the two 

delineated basins are 4.15 and 3.46 which indicate that the areas are highly probable for surface runoff which 

aggravates the erosion of surface and sub-surface soil layers to a greater extent. Besides, the elevation and 

slope of those areas are increasing from east to west. The direction of the channels from west to east impacts 

the transportation of eroded materials from west to east originating from the head-cut erosional process. To 

comprehend the research area's vulnerability to gully erosion and soil degradation, it is essential to grasp its 

physiography (Figs 5 & 6). Geological deposits from the Cainozoic era, such as laterite, china clay, and 

Rajmahal basalt, compose the region's main physical structure. In A Manual of the Geology of India and 

Burma, Pascoe (1973) reported that lateritic materials in Birbhum were carried by surface runoff, small 

streams, and rainfall from the upper Rajmahal Hills to the lower eastern parts of the Rajmahal Hills, where 

they were then redeposited. These materials experienced compaction over time because of alternating dry and 

wet weather patterns. With the water level normally reaching more than 10 meters in depth in April during pre-

monsoon periods and falling to about 3 meters depth during post-monsoon periods, the shift in groundwater 

levels is substantial. The area's vulnerability to erosion was exacerbated by the accumulation and compaction of 

iron and aluminum oxides in the soil because of the frequent wet and dry circumstances. Erosion-prone 

features are further exacerbated by the region's morphology, which is classified as an undulating lateritic 

upland terrain. A range of evergreen trees and tropical dry deciduous forests make up much of this area. But the 

western part of the area is mostly grassland and shrubby, with common plant species like Aceraceae, 

Mangifera, and prickly shrubs (Ghosh, 2011). These varied ecosystems help to stabilize the soil, but compared 

to evergreen forests, the dry, deciduous vegetation is not as good at stopping erosion during the dry season. The 

physiography of the research area has been established and studied using a variety of morphometric criteria, 

including elevation, roughness, slope, slope aspect, and stream length density. The entire basin area of the 

Bolpur-Sriniketan block is 341.744 square kilometers, whereas the Rampurhat-I block is 295.658 square 

kilometers. Both regions have been divided into four stream orders, revealing a varied waterway network that 

influences erosion and surface runoff. The basins are likely to experience considerable surface runoff, as shown 

by the comparatively high mean bifurcation ratios for the two areas, which are 4.15 for Rampurhat-I and 3.46 

for Bolpur-Sriniketan. This excessive runoff exacerbates the erosion process overall by playing a significant role 

in the erosion of both surface and subsurface soil layers. Furthermore, these areas' slopes and elevations rise 

from east to west, causing water to move from the western to the eastern regions while carrying eroded 

material with it. The movement of eroded soil is improved by this directed flow pattern, particularly from head-

cut erosion zones in the western portions of the study region. 

Soil Loss in the Gully Formation Areas 

This region belongs to oxisol laterite, which is more convinced by weathering and erosion by climatic 

properties. This soil category is one of the significant aspects that induced the erosion procedure (Getnet et al. 

2021). Soil erodibility is very high in this region. The soil contains many silt-sized particles which are 

effectively susceptible to erosion by the surface and subsurface flow (Fig 7). This Kankara, which is the local 

name of this soil, is unconsolidated, fragile, and extensively susceptible to erosion in nature. The amount of 

soil loss in the study area is above 50%. The mean rainfall intensity, soil erodibility, and the process of 

originating gully hotspots highly increase the amount of soil loss in the study area (Fig 7). The subsoil areas of 

lateritic channels are eroded and degraded by the transportation process of materials along the gully channels 

(Fig 7). An important factor in the research area's susceptibility to erosion is the soil's properties. The oxisol 

laterite soils that predominate in the area are subject to erosion and weathering because of the local climate. Silt-

sized particles that are easily separated by water flow are abundant in these soils, which are naturally 

brittle and unconsolidated. Because of their erodible and unstable characteristics, these soils are known locally 

as Kankara. Because of their physical characteristics and the dynamic weathering processes they experience, 

these soil types are particularly vulnerable to erosion, citing research by Getnet et al. (2021). Because 

precipitation readily separates soil particles and carries them through surface and subsurface flows, the region's 

high soil erodibility makes gully formation more difficult. The research region has more than 50% soil loss, 

which suggests that erosion has significantly reduced the amount of fertile topsoil. The main causes of this high 

degree of soil loss are the development of gully hotspots, soil erodibility, and mean rainfall intensity. The 

erosive power of water flows increases with rainfall intensity, further loosening soil particles and hastening the 
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formation of gullies. Because silt-sized soils are more likely to be taken away by surface runoff and subsurface 

flows, causing significant soil deterioration, soil erodibility is especially important. The region's level of soil 

loss is further increased by the development of gully hotspots, which are regions that are more vulnerable to 

erosion because of concentrated runoff. Erosion is not restricted to the soil on the surface; it also affects the 

lateritic channels' subsurface layers, which progressively erode and deteriorate over time. Because eroded 

materials are transported to lower places and frequently result in the deposition of sediments in downstream 

areas, the movement of materials along gully channels exacerbates soil deterioration. The long- term reduction in 

soil fertility and the general deterioration of the landscape are both caused by this ongoing process. The study's 

figures, such as Fig 7, demonstrate the degree of soil loss and the deterioration of gully formation areas, 

demonstrating the further erosion of soil layers and the deepening of gullies. 

Factors of Gully Erosion and Gully Erosion Susceptibility Zones 

Analysis of Descriptive Statistics and Factor Analysis 

The Rampurhat-I block's descriptive statistics (Table 3) provide important information about the 

environmental and morphometric factors affecting gully erosion. Significant variation in terrain wetness and its 

direct influence on water buildup and soil erosion is highlighted by the Topographic Wetness Index (TWI), 

which has the highest standard deviation at 242.94 and a mean of -72.40. This element emphasizes how diverse 

the terrain is and how susceptible it is to erosion. The Normalized Difference Vegetation Index (NDVI) shows 

substantial spatial variability in vegetation density, with a mean of 0.0925 and a standard deviation of 0.117. 

Since vegetation is essential for supporting the soil, gully formation susceptibility is correlated with its mild 

variance. With a mean of 23.99°C and a low standard deviation of 1.12, the Land Surface Temperature (LST) 

suggests comparatively consistent thermal conditions that could affect soil moisture content and 

evapotranspiration, which in turn could have an indirect impact on erosion. With a mean of 0.0620 and an 

exceptionally low standard deviation of 0.0538, the drainage density (DD) on the hydrological front 

demonstrated regular drainage patterns that amplify surface runoff, a key contributor to gully erosion. Standard 

deviations for other morphometric indicators, such as the Slope (S) and Stream Power Index (SPI), were 2.01 

and 0.133, respectively, indicating the influence of topography gradient and river flow energy on erosion 

patterns. Furthermore, indices that measure the degree of exposed soil and moisture content variability—both 

of which are closely related to erosion processes—such as the Bare Soil Index (BSI) and Modified Normalized 

Difference Water Index (MNDWI), which have mean values of 252.37 and -0.0827, respectively, offer vital 

information. Factor analysis provides additional insight into the interactions between these variables, as seven 

main components together accounted for 77% of the variance. TWI, drainage density, and NDVI were the main 

factors, highlighting the interplay between plant cover, hydrological dynamics, and terrain shape in 

determining the likelihood and severity of gully erosion in the Rampurhat-I block. Critical environmental and 

morphometric parameters that contribute to gully erosion are also highlighted by the descriptive statistics for 

the Bolpur-Sriniketan block (Table 4). In contrast to Rampurhat-I, which has a significant impact on soil 

saturation and erosion concerns, the Topographic Wetness Index (TWI) once again showed the largest standard 

deviation of 505.88 with a mean of -110.40, suggesting even more substantial terrain wetness variability. With 

a mean of 0.1082 and a standard deviation of 0.147, the Normalized Difference Vegetation Index (NDVI) 

indicated moderate to high variability in vegetation density, which affects soil stability and erosion 

susceptibility. The Land Surface Temperature (LST), on the other hand, showed consistent temperature 

conditions comparable to Rampurhat-I, with a mean of 24.08°C and a standard deviation of 1.25. Compared to 

Rampurhat-I, the Drainage Density (DD), which had a mean of 1.1431 and a standard deviation of 0.987, 

showed more variability. This suggests that drainage networks are not evenly distributed, which can 

exacerbate runoff and soil erosion in some places. Stream Power Index (SPI) and Slope (S) were the most 

variable hydrological parameters, with standard deviations of 0.429 and 1.28, respectively. This highlights the 

importance of these elements in controlling water flow and enhancing the erosive capability of surface runoff. 

Additional indices, such as the Modified Normalized Difference Water Index (MNDWI) and the Bare Soil 

Index (BSI), which had mean values of -0.0526 and 0.2329, respectively, emphasized the block's exposed and 

moisture-deficient soil characteristics, which increased the risk of erosion. Seven components were identified 

as being responsible for 74% of the variance overall by the principal component analysis, which was 

marginally less than Rampurhat-I. The main causes of gully erosion in Bolpur-Sriniketan were TWI, slope, and 

NDVI, suggesting a complex interplay between vegetation patterns, water flow dynamics, and terrain 
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imperfections. In comparison to Rampurhat-I, Bolpur-Sriniketan exhibits greater geographical heterogeneity 

and intensity of gully erosion variables, as the data highlights overall. 

Total Variance Explained and Rotated Component Matrix 

The Rampurhat-I block's total variance explained (Tables 5 and 6) by principal component analysis offers 

important new information about the complex variables affecting gully erosion. Seven major components, 

which together accounted for 77.03% of the variation, were identified through analysis. The first factor alone 

accounted for 22.29% of the total, demonstrating its dominance in explaining the differences in erosion 

susceptibility. Land Surface Temperature (LST), Bare Soil Index (BSI), and NDVI were the main components of 

this component, indicating the significant influence of vegetation cover and thermal characteristics in reducing 

or accelerating erosion. The second factor, which contributed 15.88% of the variance overall, was highly 

correlated with hydrological variables including drainage density and the Stream Power Index (SPI), 

underscoring the role of network consistency and water flow energy in soil detachment processes. The 

substantial influence of elevation and water retention capacity on gully formation was highlighted by the third 

and fourth components, which accounted for 11.18% and 8.29% of the variation, respectively, and included 

terrain-related factors such as slope and Topographic Wetness Index (TWI). Components five through seven, 

which contained varying effects of minor vegetation indices and hydrological metrics, contributed 

progressively less to the variation, ranging from 7.48% to 5.18%. When taken as a whole, these elements 

highlight the intricate interactions between plants, hydrology, and terrain forms that influence the vulnerability of 

gullies to erosion. These relationships were further honed by the rotational analysis, which confirmed the 

significance of key variables in the erosion process by repeatedly displaying significant loadings for NDVI, 

drainage density, and BSI. A similar multi-factorial structure influencing gully erosion is revealed by the 

principal component analysis for the Bolpur-Sriniketan block (Tables 7 and 8), where seven components 

account for 74.32% of the variation. Vegetation-related indices like NDVI, BSI, and Land Surface 

Temperature (LST) dominated the first component, which explained 18.47% of the variance. This implies that 

soil exposure and vegetation cover are important factors that influence the danger of erosion. With a 14.22% 

contribution, the second component demonstrated the function of hydrological elements that control soil 

saturation levels and water flow patterns, such as drainage density and infiltration indices. The impact of slope 

and Topographic Wetness Index (TWI), which determines water retention and runoff dynamics on uneven 

terrain, was captured by the third and fourth components, which added 12.01% and 9.63%, respectively. The 

fifth component, which was linked to metrics like the Modified Normalized Difference Water Index (MNDWI) 

and highlighted the influence of moisture content and surface water distribution, accounted for 8.25% of the 

variance. With contributions of 6.25% and 5.50% respectively, the sixth and seventh components included small 

but significant factors such as flow length and the Stream Power Index (SPI), which represent the amount of 

water moving along gully channels and the erosive energy of runoff. The rotational analysis reaffirmed the 

importance of factors like TWI, drainage density, and slope as the main contributors to gully erosion 

susceptibility, even if the total variance explained is somewhat less than Rampurhat-I. According to these 

results, a slightly more diffused collection of variables influences the erosion processes in Bolpur- Sriniketan 

than in Rampurhat-I. 

The relationships between the factors influencing gully erosion are clarified by the rotational component 

matrix (Table 5) for the Rampurhat-I block. Seven components with unique variable clusters were found by the 

analysis. For indices like the NDVI (-0.838), the Bare Soil Index (BSI, 0.903), and the Land Surface 

Temperature (LST, 0.925), the first component showed considerable positive loadings, indicating their 

dependency in affecting soil stability. This illustrates how vegetation and temperature play a crucial role in 

controlling erosion susceptibility. Stream Power Index (SPI, 0.841) and Topographic Wetness Index (TWI, 

0.532) dominated the second component, indicating the impact of terrain wetness and hydrological energy. 

Drainage density (DD, 0.811) and infiltration indices demonstrated large loadings, highlighting drainage 

variables in the third component. Variables like directionality, flow length, and slope showed smaller but 

significant contributions to the remaining components, suggesting localized effects on erosion processes. 

Interpreting the intricate relationships between the environmental and morphometric components became 

easier because of the varimax rotation's successful separation of the variables into logical groups. Similar 

information on the relationships between variables can be found in the Bolpur-Sriniketan block's rotated 

component matrix (Table 7). The impact of vegetation and temperature fluctuations on soil erosion was 
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highlighted by the first component, which showed substantial positive loadings for NDVI (0.794), BSI (0.924), 

and LST (-0.937). The second component, which focused on the function of water distribution and soil 

moisture absorption, recorded drainage-related data such as drainage density (0.923) and infiltration indices. 

Significant loadings for slope (-0.774) and flow length (0.563) in the third component, which concentrated on 

topography variables, showed that these factors directly affected the erosive potential of runoff. Localized 

factors such as MNDWI (-0.832) and SPI were underlined by subsequent components, indicating their distinct 

functions in erosive energy and moisture management. The variables were efficiently grouped into significant 

clusters using the rotational matrix, which clarified the multifaceted factors influencing gully erosion in 

Bolpur-Sriniketan. With an emphasis on managing vegetation, drainage networks, and terrain irregularities, 

this comprehensive understanding helps identify priority sites for erosion mitigation techniques. 

Composite Factor Scores and Erosion Susceptibility Zones 

Based on the extracted principal components, the composite factor scores for the Rampurhat-I block (Table 9) 

show geographic diversity in erosion susceptibility. Figs 8, 9, 10, and 11 show the indicators and spectral 

indices used to measure the susceptibility zones for gully erosion. Latitude 24.188 and longitude 87.698, which 

are in the northwest of the block and are characterized by steep slopes and strong rainfall erosivity, had the 

highest composite score (5.38). This illustrates how hydrological and topographical elements work together to 

cause extreme erosion. In contrast, places with flatter terrain and better vegetation cover are associated with 

lower composite scores (e.g., -5.41 at 24.240, 87.780), which decreases susceptibility. The block-wide mean 

composite score was -0.53, indicating that while overall vulnerability is minimal, tailored intervention is 

necessary for specific hotspots. The main determinants of these scores were TWI, SPI, and NDVI, suggesting 

that the most important variables affecting erosion in this block are vegetation density, flow energy, and terrain 

moisture. The regional variation in gully erosion vulnerability is further supported by the composite factor 

scores in the Bolpur-Sriniketan block (Table 10). The southeast portion of the block, which is marked by steep 

slopes, little vegetation, and concentrated runoff, is identified as a key hotspot for erosion by the highest score 

(5.308) in latitude 23.633 and longitude 87.722. The lowest composite score (-7.464), on the other hand, was 

found at 23.569, 87.831, which is a flat area with comparatively abundant vegetation that provides natural 

erosion resistance. The block as a whole faces modest erosion risks, although some parts are highly 

susceptible, according to the mean composite score of -1.066, which is marginally lower than Rampurhat-I. 

The interrelationship of vegetation coverage, elevation, and water retention in forming erosion patterns was 

highlighted by the significant effects of NDVI, slope, and TWI on these scores. To stabilize the most 

susceptible places and preserve overall resistance against gully erosion, these findings highlight the necessity of 

specialized management techniques. The Rampurhat-I block's detailed composite factor scores are shown in 

Table 9, which sheds light on the regional variability of gully erosion susceptibility. Seven principal 

components are used in the analysis to get composite scores that represent the interplay of several 

morphometric and environmental elements. The northwestern part of the block, at latitude 24.188, and 

longitude 87.698, had the highest composite score (5.38) of all the extracted locations. Because of the area's 

steep slopes, high rainfall erosivity, and lack of vegetation, there is a lot of runoff and soil erosion. This hotspot 

demonstrates how erosion processes are made worse by hydrological factors and compounded terrain 

imperfections. On the other hand, latitude 24.240, and longitude 87.780, which is in a flat region with higher 

vegetation cover and less intense runoff, had the lowest composite score (-5.41). With a mean composite score of 

-0.53 for the entire block, the area is somewhat susceptible to gully erosion overall. The spatial variability is 

noteworthy, though. Zones with positive composite scores (above the mean) make up about 40% of the block 

(calculated from clustering of high scores), designating them as extremely vulnerable areas in need of urgent 

erosion control measures. However, over 60% of the blocks are in zones with negative scores, which are 

below the mean and indicate regions with comparatively reduced risks of erosion. The Topographic Wetness 

Index (TWI), Stream Power Index (SPI), and Normalized Difference Vegetation Index (NDVI) are important 

variables that affect these values. TWI highlights the uneven topography and water retention patterns due to its 

significant variability (SD = 242.94). In regions with greater slopes and less vegetation, the energy of runoff 

flow is captured by SPI and is directly correlated with the severity of erosion. The moderately variable NDVI 

shows how vegetation stabilizes the soil and lowers the risk of erosion. The interplay of these elements is 

highlighted by the composite ratings in Table 9, which focus attention on the block's most vulnerable areas for 

focused actions such as afforestation and slope stabilization. The Bolpur-Sriniketan block's composite factor 

scores are shown in Table 10, which highlights the regional variability in the susceptibility of gully erosion. 
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Latitude 23.633, and longitude 87.722, which is in the southeast part of the block, have the highest composite 

scores (5.308). This hotspot is crucial for erosion control because of its steep slopes, little vegetation, and high 

concentration of runoff. On the other hand, the location with the lowest composite score (-7.464) was latitude 

23.569, and longitude 87.831, which indicates a flatter topography with more dense vegetation, hence 

decreasing the sensitivity to soil erosion. Compared to Rampurhat-I, the block's mean composite score was -

1.066, indicating that Bolpur-Sriniketan has a comparatively higher percentage of low-susceptibility zones. 

However, around 35% of the block is made up of zones with positive composite scores (above the mean), 

which are mostly found in the southeast and northwest. These places are in line with those that were found to be 

extremely vulnerable in earlier evaluations because of their high hydrological energy, uneven terrain, and 

inadequate vegetative cover. With negative ratings, the remaining 65% of the block is classified as a reduced 

susceptibility zone, emphasizing areas with flatter slopes and higher vegetation densities. The Topographic 

Wetness Index (TWI), slope, and NDVI are major factors that affect these results. The NDVI emphasizes the 

vital function that vegetation plays in preventing erosion because of its moderate variance (mean = 0.1082; SD 

= 0.147). Because vegetation absorbs surface water and stabilizes the soil, areas with higher NDVI are often 

less susceptible. Erosion processes are significantly impacted by TWI, which shows significant fluctuation in 

water retention and flow concentration with a standard deviation of 505.89. Another important factor is slope 

since steeper terrain has higher runoff velocities, exacerbating gully erosion. The composite factor scores in 

Table 10 indicate the regional extent of erosion vulnerability, which also clearly shows the priority regions for 

interventions like check dam construction, contour farming, and reforestation. The trends in Figs 12 and 13 

demonstrate how these scores support the need for localized management strategies in high-susceptibility 

zones while maintaining the stability of lower-risk areas. According to Figs 12 and 13, the geographical 

distribution of gully erosion susceptibility in the Rampurhat-I and Bolpur- Sriniketan blocks categorize regions 

into five classes: very high, high, moderate, low, and very low. The majority of the extremely sensitive areas 

are in the southwest and northwest, making up about 23.45% of Rampurhat-I's total size (68.97 square km). 

These areas are characterized by high runoff intensity, scant vegetation, and steep slopes, all of which make 

soil erosion worse. The high SPI and TWI scores of Rampurhat-I's northwest correspond to areas of extremely 

high susceptibility. However, over 20.59% of the Bolpur-Sriniketan block's land (69.81 square kilometers) is 

categorized as extremely vulnerable. The hotspots have been identified in the block's southeast and northwest, 

where erosion risks are increased by concentrated runoff and less vegetation. Particularly susceptible to erosion 

are regions with steep slopes, limited vegetation cover, and high rainfall erosivity, as indicated by the regional 

variability in susceptibility in both blocks. This spatial study highlights the necessity of location-specific 

interventions to reduce gully erosion, such as slope stabilization in areas with steep gradients and afforestation 

in areas with scant vegetation. 

With an average ROC-AUC value of 0.97 for Rampurhat-I, the model performs exceptionally well, 

demonstrating its capacity to reliably differentiate between the two classes in 97% of cases. This high score 

indicates that the model exhibits nearly complete separability between positive and negative classes, indicating 

that the predictor variable, Mean Composite Value, is very successful for classification. Practically speaking, 

this type of model is dependable for forecasting since it demonstrates outstanding sensitivity (high true positive 

rate) and specificity (low false positive rate) across a range of thresholds. This is a robust result because the 

model's discriminative power increases with the AUC's proximity to 1. A model's capacity to differentiate 

between two classes at different threshold levels is graphically represented by the Bolpur- Sriniketan Receiver 

Operating Characteristic (ROC) curve. The model's ROC-AUC (Area Under the Curve) value in this analysis is 

0.975, which shows that it can effectively distinguish between the positive and negative classes. Positive 

occurrences are routinely given higher scores by the model than negative ones, according to an AUC value 

near 1. For binary classification tasks, this result demonstrates the model's great reliability by achieving a high 

true positive rate while retaining a low false positive rate across thresholds. There is little overlap in the 

prediction scores for the two classes, indicating high predictive performance, as indicated by the small 

departure from a perfect score of 1.0. 

Correlation Analysis of Gully Erosion Indicators 

The interdependence of important parameters influencing gully erosion is examined in the correlation analysis 

for the Rampurhat-I block (Table 11). Rainfall erosivity (R) and drainage density (DI) showed a strong 

negative association (-0.363, p < 0.01), indicating that locations with larger drainage densities are less 
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vulnerable to rapid runoff as erosivity rises, potentially because of improved water dispersion. The Modified 

Normalized Difference Water Index (MNDWI, -0.821, p < 0.01) and the Bare Soil Index (BSI, -0.620, p < 

0.01) showed a substantial negative connection with NDVI, indicating that denser vegetation reduces bare soil 

exposure and maintains soil moisture, hence decreasing erosion vulnerability. Similar to this, the relationship 

between slope (S) and stream power index (SPI, 0.310, p < 0.05) showed that steeper terrains typically have 

higher erosive energy from water flow, which leads to the construction of more noticeable gullies. Stream 

Power Index and Topographic Wetness Index (TWI) had a negative correlation (-0.305, p < 0.05), suggesting 

that erosion dynamics may be affected by wetter areas' lower flow velocity. The interplay of these elements 

highlights the vital roles that flora, hydrology, and terrain play in this block's erosional processes. Significant 

correlations between the erosion indicators are also highlighted by the correlation analysis for the Bolpur- 

Sriniketan block (Table 12). Higher rainfall intensities lead to concentrated runoff rather than widely dispersed 

flow via existing drainage networks, as evidenced by the strong negative connection between rainfall erosivity 

(R) and drainage density (DI, -0.781, p < 0.01). The stabilizing effect of vegetation on soil and water retention 

was demonstrated by the significant negative correlation of the Modified Normalized Difference Water Index 

(MNDWI, -0.807, p < 0.01) and the significant positive correlation of the NDVI with the Bare Soil Index (BSI, 

0.835, p < 0.01). Furthermore, there was a positive association between slope (S) and the Modified Normalized 

Difference Vegetation Index (0.471, p < 0.01), indicating that places with moderate slopes are likely to have 

more vegetative cover, which helps reduce erosion. The strong correlation between drainage parameters like 

drainage density (DD) and infiltration (IF) (0.922, p < 0.01) highlights how they work together to control surface 

water flow and lower the danger of erosion. Additionally, there was a negative correlation between rainfall 

erosivity and the Topographic Wetness Index (TWI) (-0.579, p < 0.01), suggesting that wetter regions tend to 

mitigate the immediate erosive effects of heavy rainfall. According to this analysis, Bolpur- Sriniketan's 

hydrological, topographical, and vegetation-related interactions are intricate and multifaceted, necessitating the 

use of integrated management techniques to reduce erosion. The interrelationships between 20 important 

parameters influencing gully erosion in Rampurhat-I block are examined using the correlation analysis in 

Table 11. These relationships demonstrate how morphometric, hydrological, and environmental factors interact 

to affect soil erosion processes. Rainfall Erosivity (R) and Drainage Density (DI) showed a significant negative 

correlation (-0.363, p < 0.01), indicating that areas with a dense drainage network are less likely to experience 

concentrated runoff as rainfall intensity increases because of improved water dispersion throughout the 

landscape. On the other hand, a positive association between Slope (S) and Stream Power Index (SPI, 0.310, p 

< 0.05) highlights how steeper topography boosts water flows' erosive power. This is crucial because steep 

slopes make up about 25% to 30% of Rampurhat-I, which raises SPI values and causes substantial soil erosion. 

Strong negative relationships were found between the vegetation indices, including the Normalized Difference 

Vegetation Index (NDVI), and markers of soil exposure and runoff, including the Modified Normalized 

Difference Water Index (MNDWI, -0.821, p < 0.01) and the Bare Soil Index (BSI, - 0.620, p < 0.01). These 

results demonstrate that regions with greater vegetation densities have better moisture retention and less soil 

exposure, which reduces their vulnerability to erosion. The protective function of vegetation, which stabilizes 

soil and lessens gully formation, is seen in the link between NDVI and BSI. These correlations highlight the fact 

that between 50% and 60% of regions with low NDVI values are more vulnerable to erosion. The Stream 

Power Index (SPI, -0.305, p < 0.05) showed a negative connection with the Topographic Wetness Index (TWI), 

indicating that wetter regions tend to slow down water flow, lowering its erosive potential. The variation in 

erosion intensity throughout Rampurhat-I can be explained by this, as flatter areas with higher TWI values are 

less vulnerable. DD demonstrated high positive associations with both flow length (Fl, 0.364, p < 0.01) and 

infiltration variables (IF, 0.926, p < 0.01), suggesting that regions with well- distributed drainage patterns 

effectively regulate runoff, reducing the susceptibility to erosion. Table 11 shows that the interplay of rainfall 

intensity, slope, plant cover, and drainage efficiency have a major impact on gully erosion in Rampurhat-I. 

Roughly 35–40% of the block is extremely prone to erosion, with steep slopes and limited vegetation creating 

localized hotspots. To reduce soil loss, this emphasizes the necessity of focused interventions such as 

afforestation and drainage network upgrades. The correlation matrix for the Bolpur- Sriniketan block is shown 

in Table 12, which clarifies the intricate connections between the 20 gully erosion indicators. Rainfall 

Erosivity (R) and Drainage Density (DI) have a substantial negative connection (-0.781, p < 0.01), indicating 

that regions with higher rainfall intensities are more likely to have concentrated runoff because of limited 

drainage dispersion. This demonstrates how 30% to 40% of the block is susceptible to significant gully 

erosion, especially in areas with inadequate drainage systems. Vegetation indices were important; the NDVI 
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had a negative connection with the Modified Normalized Difference Water Index (MNDWI, -0.807, p < 0.01) 

and a substantial positive correlation with the Bare Soil Index (BSI, 0.835, p < 0.01). This suggests that 

densely vegetated areas have more stable soil and higher moisture retention, both of which help prevent 

erosion. However, the absence of vegetation in low-NDVI areas—which make up roughly 45% to 50% of the 

block—exacerbates soil exposure and runoff, making the area more vulnerable to erosion. Wetter regions are 

less impacted by rainfall-induced erosion because water retention lessens the effect of runoff, according to the 

Topographic Wetness Index (TWI), which showed a substantial negative connection with Rainfall Erosivity 

(R, -0.579, p < 0.01). This result is consistent with findings showing lesser erosion hazards are experienced by 

25%–30% of the block's terrain, which is defined by high TWI values. Furthermore, a strong association was 

found between slope (S) and hydrological measures such as the Stream strength Index (SPI, 0.471, p < 0.01), 

highlighting the erosive strength of water flows being exacerbated by steep gradients. The crucial role drainage 

networks play in controlling runoff and minimizing erosion is demonstrated by the substantial 

interdependencies (0.922, p < 0.01) and positive correlations with flow length (Fl, 0.349, p < 0.05) and slope of 

drainage parameters, such as Drainage Density (DD) and Infiltration (IF). Nonetheless, 20% to 25% of the 

block is still made up of sections with inadequate drainage distribution, which makes them extremely 

vulnerable. In conclusion, Table 12 shows that the interaction of rainfall intensity, vegetation cover, slope, and 

drainage efficiency mostly affect gully erosion in Bolpur-Sriniketan. The remaining portions of the block show 

resilience because of efficient drainage patterns and superior vegetation covering, although 35%–40% of the 

block is extremely vulnerable to erosion because of inadequate drainage and sparse vegetation. As part of 

erosion mitigation methods, these findings highlight the need to increase vegetation density, strengthen 

drainage networks, and lower slope instability. Rainfall and Drainage: There is a strong negative correlation 

between rainfall erosivity (R) and drainage density (DI) in both blocks; however, the relationship is slightly 

stronger in Bolpur-Sriniketan (-0.781) than in Rampurhat-I (-0.363), suggesting that Bolpur-Sriniketan is more 

susceptible to runoff. plant and Erosion: Bolpur-Sriniketan had stronger NDVI associations with BSI and 

MNDWI (0.835, -0.807) than Rampurhat-I (-0.620, -0.821), indicating more spatial variability in plant cover 

and its protective roles. Hydrology and Slope: Both blocks exhibit a considerable link between SPI and slope, 

highlighting their combined influence on erosion intensity. This link demonstrates how steep terrain in 35%–

40% of Bolpur-Sriniketan and Rampurhat-I is vulnerable. These studies highlight the complexity of gully 

erosion and the requirement for integrated management strategies catered to the unique features of every block. 

Covariance among Gully Erosion Indicators (SEM) 

The covariance matrix for the main indicators of gully erosion in the Rampurhat-I block is shown in Table 13, 

providing information on the intricate interactions between several hydrological, topographical, and 

environmental factors. Rainfall Erosivity (R) and Drainage Density (DI) have a substantial negative correlation 

of -0.669, indicating that areas with high rainfall erosivity which are defined by heavy rainfall events 

frequently have low drainage densities. Gully formation is made worse by concentrated surface runoff brought 

on by ineffective drainage. Erosion risk is raised in these places because of inadequate drainage networks, 

which make it difficult for water that falls during intense rain to disperse. Conversely, regions with a strong 

drainage system aid in directing surplus water and lessening the effects of rainy erosivity. The correlation of 

0.310 between the Stream Power Index (SPI) and the Topographic Wetness Index (TWI) is another important 

discovery. Areas with higher moisture retention (higher TWI values) typically have higher water flow energy 

(higher SPI), which makes them more vulnerable to gully formation during periods of heavy rainfall. TWI is a 

measure of water accumulation and drainage. The protective function of vegetation against erosion is 

highlighted by the positive correlation (0.219) between the Normalized Difference Vegetation Index (NDVI) and 

the Bare Soil Index (BSI). In Rampurhat-I's gully-prone sections, high plant coverage stabilizes the soil and 

helps stop soil erosion by limiting the amount of bare soil exposed to water flow. Additionally, the cooling 

impact of vegetation on the land surface is shown by the negative covariance of -0.259 between the NDVI and 

LST. Densely vegetated areas usually have cooler surface temperatures, which helps retain moisture and 

lowers evaporation. By preventing the soil from drying out, this moisture retention enhances soil structure and 

lessens erosion vulnerability. greater drainage density areas also have greater rates of water infiltration, which 

means that more water is absorbed by the soil rather than flowing over the surface as runoff, according to the 

covariance of -0.481 between Drainage Density (DI) and Infiltration Factor (IF). This procedure lessens 

erosion by stopping the water from moving quickly, which would otherwise damage the soil. These covariance 

correlations show that Rampurhat-I contains areas that are particularly vulnerable to erosion due to a 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue V May 2025 

Page 1961 
www.rsisinternational.org 

 

    

combination of circumstances such as heavy rainfall, steep slopes, and a lack of vegetation. Targeted erosion 

control measures are necessary in these susceptible locations, as approximately 40–50% of the block is in areas 

with increased erosion risks because of these interconnected causes. The covariance study for the Bolpur-

Sriniketan block is shown in Table 14, which also highlights the intricate relationships between the main 

parameters affecting gully erosion in this area. The significant negative correlation of -0.781 between Drainage 

Density (DI) and Rainfall Erosivity (R) is a noteworthy finding that emphasizes a crucial link. In regions with 

heavy rainfall, the concentration of runoff is made worse by inadequate drainage systems, which speed up 

erosion. Because water cannot effectively spread out and penetrate the soil in these regions, there is a high 

surface runoff that separates soil particles and worsens gully formations, making these areas vulnerable to 

severe gully erosion. This correlation emphasizes how crucial it is to improve drainage infrastructure in areas 

with heavy rainfall to manage runoff and lessen the likelihood of erosion. Slope (S) and Stream Power Index 

(SPI) have another important covariance of 0.254, which shows that steeper terrain often has more erosive 

water flow because of the higher runoff velocity. The force of running water is increased on steep slopes, 

increasing the likelihood of gully development and soil erosion. This relationship emphasizes the necessity of 

slope stabilization measures in sensitive regions of the block, as locations with higher slope values are more 

prone to these erosive forces. Gully erosion is more likely to occur in areas with low plant cover (and hence high 

BSI values), according to the covariance between the Normalized Difference plant Index (NDVI) and the Bare 

Soil Index (BSI) of 0.232. Without the stabilizing influence of plants, the bare soil in these places is more 

vulnerable to rainfall, making it easier for runoff to separate the soil. Another important discovery is that the 

Topographic Wetness Index (TWI) and Stream Power Index (SPI) have an inverse connection (- 0.343). 

Greater water retention capacity is indicated by higher TWI values, which would typically slow down surface 

runoff's pace and erosive power. However, in regions with high TWI, the buildup of water may cause the soil to 

become more saturated, which increases the soil's susceptibility to erosion when significant amounts of water are 

released. Ultimately, the covariance of -0.433 between the Infiltration Factor (IF) and Drainage Density (DI) 

indicates that areas with higher drainage densities are better equipped to control water flow, enabling more 

water infiltration and lessening the severity of surface runoff. Therefore, these places are less susceptible to 

erosion than those with inadequate drainage systems. About 35% to 45% of Bolpur-Sriniketan is extremely 

susceptible to gully erosion, according to the covariance correlations in Table 14, especially in regions with 

steep slopes, little vegetation, and inadequate drainage. Reducing erosion hazards in the block requires 

addressing these problems through better slope management, drainage infrastructure, and vegetation cover. 

A solid mathematical foundation for comprehending how morphometric, hydrological, and environmental 

elements contribute to gully erosion in the area is provided by the Structural Equation Modeling (SEM) 

analysis for the Rampurhat-I block, as shown in Fig 14. To determine the factors that contribute to and hinder 

erosion, SEM is very helpful in assessing the direct and indirect correlations between important variables. The 

Topographic Wetness Index's (TWI) high standard deviation (SD = 242.94) highlights the landscape's 

variability in moisture retention and flow accumulation, making it one of the SEM model's most significant 

findings. The variability of TWI emphasizes how important it is in regulating runoff dynamics and soil 

moisture, both of which have a direct impact on the formation of gullies. Greater water accumulation in areas 

with higher TWI values is likely to cause soil saturation and increase erosion vulnerability. Another important 

component of the SEM model is the Stream Power Index (SPI), which measures the energy of runoff. SPI has a 

strong correlation with both rainfall erosivity and moisture retention (TWI), indicating that regions with high 

rainfall erosivity and TWI have more concentrated and powerful water flows, which speeds up the formation of 

gullies. Furthermore, the SEM model revealed a substantial correlation between the Normalized Difference 

Vegetation Index (NDVI) and the Bare Soil Index (BSI), indicating the protective function of vegetation in 

halting soil erosion. More vegetation cover is generally found in areas with higher NDVI values, which 

stabilizes the soil and lessens its vulnerability to erosion by shielding it from the direct effects of rainfall. 

According to the model, by promoting water infiltration into the soil and lowering the volume and velocity of 

surface runoff, Drainage Density (DD) and Infiltration Factor (IF), which had smaller standard deviations (SD= 

0.0534 and 0.0874, respectively), consistently help to mitigate runoff. The SEM also highlights the indirect 

impact of terrain characteristics like elevation and slope on erosion, mainly through their influence on 

hydrological elements like drainage efficiency and runoff. To put it another way, slope, and elevation affect 

how water moves across the landscape and how vulnerable some locations are to erosion, even though they do 

not directly cause erosion. The complicated nature of gully erosion in Rampurhat-I is explained by the 
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combination of these components, where successful erosion control requires consideration of both hydrological 

circumstances (such as water retention and flow) and environmental variables (such as vegetation cover). As 

shown in Table 14, the SEM analysis for the Bolpur-Sriniketan block builds on concepts like those found in 

Rampurhat-I, but it also identifies some significant distinctions in the way morphometric and environmental 

factors interact in this block. Like Rampurhat-I, the Topographic Wetness Index (TWI) had the largest standard 

deviation (SD = 505.89) and was found to be a dominant factor in the SEM model. This implies that TWI has a 

similar function in Bolpur-Sriniketan by highlighting regions that are extremely vulnerable to erosion due to 

their high-water retention and runoff potential. Nonetheless, Bolpur-Sriniketan's noticeably greater TWI 

variability indicates that the block's moisture retention varies more drastically, which may lead to more 

specialized erosion hotspots based on landscape characteristics and rainfall intensity. In Bolpur-Sriniketan, 

erosion dynamics are also significantly impacted by the Slope and Stream Power Index (SPI), which have 

standard deviations of 1.28 and 0.43, respectively. The significance of topography in influencing the velocity 

and erosive potential of water flows is highlighted by the covariance between these factors. Steeper slopes lead 

to higher SPI values, which raise water's erosive energy and exacerbate gully formation and soil detachment. 

Strong negative associations between the Normalized Difference Vegetation Index (NDVI) and the Bare Soil 

Index (BSI) were discovered by the SEM model in terms of vegetation. This suggests that places with dense 

vegetation, or high NDVI values, assist limit bare soil exposure and hence avoid erosion. This connection 

emphasizes how crucial vegetation is for stabilizing soil and lessening its vulnerability to erosion brought on 

by water. The model also emphasizes the relationship between Infiltration Factor (IF) and Drainage Density 

(DI), which were found to be highly associated. This suggests that regions with advanced drainage systems are 

better equipped to manage surface runoff, which lowers the risk of erosion. Gully development is largely 

influenced by concentrated flow, which is reduced when water is dispersed throughout the landscape with a 

high drainage density. The SEM findings for Bolpur-Sriniketan show that a combination of vegetation cover, 

moisture retention, and topography features significantly affects the block's vulnerability to gully erosion. This 

block's localized erosion highlights the necessity of specialized management approaches that take into 

consideration particular hydrological circumstances and vegetation distribution. 

The accuracy of the sample means in determining the population mean for different indicators is shown by the 

standard error of the mean (SEM) for the Rampurhat-I and Bolpur-Sriniketan blocks. Rainfall (R) has a higher 

SEM of 1.02322, indicating significant variability in rainfall patterns throughout the block, while SEM values in 

Rampurhat-I vary greatly among indicators. The region's large variety of wetness conditions, which may 

influence the susceptibility of gullies to erosion, is also indicated by the Topographic Wetness Index (TWI), 

which shows an even greater SEM of 32.75845. In comparison to Rampurhat-I, Bolpur-Sriniketan displays 

comparatively lower SEM values, with Slope (S) at 0.17708 and Rainfall (R) at 1.15830, indicating less 

variation in slope and rainfall. Although Bolpur-Sriniketan shows more homogeneity in these areas, 

Rampurhat-I's higher SEM values generally indicate greater uncertainty in the mean values for several 

variables, reflecting the more varied nature of the landscape and climate. 

Gully Hotspots and Their Impact on Land Use Land Cover 

This region is highly influenced by weathering, rill, and gully formation as well as soil loss and soil 

degradation. Gully erosion hotspot areas are identified from the two blocks shown in Fig 16. Gully erosion has 

severely escalated the degradation of agricultural land through an increase in surface runoff and a decrease in the 

groundwater level. The gully-affected area is about 31.01 square km in Rampurhat-I block. Agricultural land 

was 165.54 square km in 2011 (BAES, 2011), which has been reduced to 128.44 square km at present. 

Contrarily Rampurhat-I block belongs to a very low productivity zone, whereas Bolpur-Sriniketan block is 

under the high productivity zone of this district (Saha and Rudra 2019). Observable gully-affected badland 

areas (locally noted as Khoai) are 26.98 square km, originating in Bolpur-Sriniketan block. As per the impact of 

gully erosion, many agricultural workers have changed their occupation from agriculture to stone crackers, 

construction workers, and small retailers. The middle, southern, and south-western portions of Rampurhat-I 

block are less populated as they belong to the high gully susceptibility zone, compared to the rest of the areas. 

Similarly, the southeastern portion of Bolpur-Sriniketan block comes under the highly susceptible zone, and 

therefore, it is less populated. Gully erosion has gradually decreased the forest coverage area of both C. D. 

blocks. Besides, Chhora, Nrayanpur, Tejhati, and Hazarpur of Rampurhat–I block are highly deforested; the 

central and southern parts (Kurumgram, Kluha, Ambhaetc) of this block have been covered with part of the 
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vegetation patches. On the other hand, Ballavpur, Bonerpukur Danga, and Golbarietc are densely covered by 

forest areas. The eastern portion of this block is also deforested due to the impact of gully erosion and head- 

cut channel formation (Fig 17). The present study shows that the existing area under gully erosion is greater in 

Rampurhat-I than Bolpur-Sriniketan block, and it also impacts on the average landholding sizes in the two 

C.D. blocks. The Rampurhat-I consisted of 1.05 hectares of average landholding sizes, and Bolpur-Sriniketan 

consisted of 1.13 hectares of average landholding sizes in 2001 (Agricultural Census 2001 of India), which 

was decreased to 0.87 hectares in Rampurhat-I and 1.07 hectares in Bolpur-Sriniketan block. As per 

participants' observation, the drained-out soil and sediments transported through the degraded gully channels 

and deposited in the extended erosional land and thus impacting the neighboring areas during and after severe 

rainfall and deteriorating the fertility of the soil and agricultural lands. Fig 18 shows the situation of the cross 

profile of the gully channels along with the gully erosion land cover areas in Rampurhat-I and Bolpur- 

Sriniketan, respectively. Identification of Hotspots: Rampurhat-I and Bolpur-Sriniketan both have sizable 

hotspots for gully erosion, with the highest scores of 5.38 and 5.308, respectively. These sites are primarily 

found in areas with significant runoff, little vegetation, and steep slopes. Composite Mean Scores: Bolpur- 

Sriniketan's mean composite score is -1.066, while Rampurhat-I's is -0.53, suggesting that Rampurhat-I is 

comparatively more susceptible. Areas of High Susceptibility: About 40% of Rampurhat-I and 35% of Bolpur- 

Sriniketan are high-susceptibility zones, which call for focused interventions. Altogether, these findings 

provide a strong framework for organizing erosion control tactics, highlighting the necessity of flexible 

approaches catered to the unique patterns of susceptibility in every block. Gully erosion-related changes to 

land use and land cover (LULC) in both blocks show considerable losses in forest cover and substantial 

deterioration in agricultural fields. The gully-affected regions in Rampurhat-I cover 31.01 square km, which 

means that agricultural land has decreased by 22.4% from 165.54 square km in 2011 to 128.44 square km now. 

The rising gully erosion, which reduces soil fertility and renders vast tracts unusable for cultivation, is the 

direct cause of this decline in agricultural land. Similar to this, gully-affected areas in Bolpur-Sriniketan span 

26.98 square kilometers, resulting in noticeable deforestation, especially in the block's central and southern 

regions. Hotspots like Ballavpur in Bolpur-Sriniketan and Chhora and Nrayanpur in Rampurhat-I have 

experienced severe vegetation loss as a result of erosion. The wider socioeconomic effects of erosion are shown 

in the change in land usage from agriculture to alternate forms of income like stone-cracking and construction. 

Landholding sizes decreased from 1.05 hectares in 2001 to 0.87 hectares in Rampurhat-I and from 1.13 

hectares to 1.07 hectares in Bolpur-Sriniketan, respectively. To prevent additional LULC alterations and 

enhance agricultural output, these modifications underscore the pressing need for integrated land management 

methods that prioritize erosion prevention, sustainable land use practices, and the repair of degraded areas. 

Different levels of model accuracy are revealed by the Kappa statistic values for LULC accuracy evaluation 

and gully erosion susceptibility in Rampurhat-I and Bolpur-Sriniketan blocks. Strong agreement between the 

observed and predicted classifications is indicated by a higher Kappa value (e.g., 0.75 for Rampurhat-I), 

indicating that the gully erosion susceptibility model is highly accurate in this block and that there is a clear 

correlation between erosion-prone areas and changes in land use, such as deforestation and agricultural land 

loss. A lower Kappa value (such as 0.60) for Bolpur-Sriniketan, on the other hand, indicates moderate 

agreement and suggests that the model's predictions for gully erosion and the LULC changes that occur from it 

are less accurate. This lower Kappa indicates greater uncertainty in the Bolpur-Sriniketan erosion assessment, 

requiring additional model refining to increase accuracy. The need for region-specific approaches to regulating 

gully erosion and reducing its effects on land use is highlighted by these disparate Kappa values. 

Major Findings 

In summary, Gully erosion occurs mainly when the surface runoff concentrates strongly within a particular 

channel which detaches the soil particle and makes its channel. This type of erosion is very common in 

Rampurhat-I and Bolpur-Sriniketan blocks. Gully-susceptible zones are identified in these two blocks based on 

erosion vulnerability. The southwestern and north-western parts of the Rampurhat–I block are highly 

susceptible to gully erosion. This consists of a 68.97 square km area of this block. That means 23.45% of this 

block is badly affected by gully erosion. In the case of Bolpur-Sriniketan block, this value is 20.59% and the 

area coverage is 69.81 square km area. It is a clear indication that gully erosion in both blocks is going to be a 

matter of concern because this area’s coverage is increasing day by day. In the study, a total of twenty factors 

have been selected to formulate a composite gully erosion susceptibility zone in the case of both Rampurhat- I 
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and Bolpur-Sriniketan. A total of seven principal components are extracted which cumulatively justified the 

gully erosion with 77% in Rampurhat-I and 74% in Bolpur-Sriniketan blocks. The highest deviation (SD = 

242.94) of the factor topographic wetness index and lowest deviation (SD = 0.0534) of the factor drainage 

density are being followed; whereas in Bolpur-Sriniketan the highest deviation (SD = 505.89) is of the factor 

topographic wetness index and lowest deviation (SD = 0.054) is of the factor flow length. The highest standard 

error of the mean has been followed in the case of topographic wetness index in both of the areas, and the 

lowest standard error of the mean has been followed in the case of drainage density in Rampurhat-I and flow 

length in Bolpur-Sriniketan. The highest standard deviation values of the topographic wetness index depict that 

the impact of topographic elements on the hydrological elements of gully-originated river basin areas of the 

two blocks is variable, and, in this condition, the differential erosional process has occurred in those areas. Here, 

drainage density and flow length are mostly consistent in affecting the gully formation and sediment 

transportation in the study areas. They highlighted the bivariate trends of the relationship of rainfall erosivity 

with its predictors in Rampurhat-I and Bolpur Sriniketan, respectively. The most influential factors are slope, 

Normalized Difference Vegetation Index (NDVI), Modified Normalized Difference Water Index (MNDWI), 

Normalized Difference Buit-up Index (NDBI), Bare Soil Index (BSI), and Land Surface Temperature (LST) 

analysis in the scenarios of both Rampurhat-I and Bolpur-Sriniketan. The spatial variation of the selected 

factors which impact gully erosion formation and processes in the study area in Rampurhat-I, and Bolpur- 

Sriniketan. The composite gully erosion susceptibility indices show that very high (0.833-1.230), high (0.431- 

0.832), moderate (0.0298-0.431), low (-0.370 to -0.0297), and very low (-0.772 to -0371) gully erosion 

susceptibility areas are found in the north-west; north-west; north-west, west, middle and part of north, south, 

and east; mainly north, east and part of the south and north-east respectively in Rampurhat-I block. While, the 

areas of very high (0.393-0.756), high (0.0283-0.392), moderate (-0.335 to -0.0282), low (-0.669 to -0.336), 

and very low (-1.060 to -0.700) gully erosion susceptibility are found in the part of the south-east; south-east 

and north-west; part of the south-east, middle and north-east, parts of north-west and rarely in the north-east 

and middle-east portion of Bolpur-Sriniketan block respectively. The figures show the predicted zones of gully 

erosion susceptibility, respectively, in the two community development blocks. The structural equation model 

culminates in the correlation among the influential factors of the gully erosion process, respectively, in the two 

blocks. The broader categories are terrain analysis factors, drainage basin morphometry, and raster analysis, 

which assemble the composite gully erosion susceptibility indices. The value of covariances among the factors 

and statistical significances have been mentioned in a tabular format of Rampurhat-I and Bolpur- Sriniketan 

blocks, respectively. The overlapping map of gully erosion susceptibility isolines on rainfall erosivity index 

maps shows that higher rainfall erosivity creates high soil erosion in the gully susceptibility areas. 

DISCUSSION 

Indicators of Gully Erosion Susceptibility 

The Rampurhat-I and Bolpur-Sriniketan blocks differ greatly in their susceptibility to gully erosion because of 

variations in terrain, hydrology, and land use. The importance of the Topographic Wetness Index (TWI) as a 

crucial governing factor can be explained by examining the correlation of indicators to determine the 

dominating components in each block. Studies by Rahmati et al. (2017) and Wang et al. (2019) found that high 

STI values are strong drivers of erosion because they can quantify sediment transport capacity. In Rampurhat-

I, the STI is the best predictor of gully erosion susceptibility (r = 0.61). Demir and Kisi (2016) have 

highlighted the importance of Drainage Density (r = 0.51) and Average Slope (r = 0.51) as additional crucial 

indicators in their study of runoff-driven erosion. By efficiently channeling water, a denser drainage system 

produces concentrated flow routes that increase erosive force. As Pal et al. (2020) also point out, steeper slopes 

increase the danger of erosion by decreasing infiltration and speeding up soil separation. The Normalized 

Difference Built-up Index (NDBI) shows the effects of urbanization, with less vegetation increasing runoff (r = 

0.47). According to Zhang et al. (2021), impermeable surfaces in metropolitan areas make them more 

susceptible to erosion. This finding is consistent with their findings. The rough topography, which directly 

controls runoff and sediment transport, explains why TWI has a weak association (r = 0.057) in this case. In the 

Ethiopian highlands, Gessesse et al. (2016) reported similar findings, showing that in steep terrain, slope 

overshadowed TWI. The dominant factors are different in Bolpur-Sriniketan. The most important indicator is 

the Infiltration Number (r = 0.48), which confirms the findings of Tebebu et al. (2010), who showed that 

decreased infiltration increases the risk of erosion by accelerating runoff. Chen et al. (2017) found that 
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vegetation stabilizes soil and lessens the impact of raindrops. This protective role is supported by the NDVI (r 

= 0.45). Water channels are important, as indicated by hydrological indicators such as Flow Direction (r = 

0.43) and Stream Frequency (r = 0.40). Rahimi et al. (2020) discovered that stream frequency played a 

significant role in sediment mobilization. TWI has growing significance in areas with less steep topography, as 

evidenced by its moderate correlation (r = 0.16). According to studies like Sørensen et al. (2006) and Beven 

and Kirkby (1979), TWI directly measures soil saturation and water buildup, both of which are essential for 

gully start. Because the mild slopes in Bolpur-Sriniketan let water concentrate rather than immediately drain 

off, they strengthen the role of TWI. 

The Topographic Wetness Index (TWI) calculates the likelihood of water accumulation by combining drainage 

area and slope. Because saturated soils are more likely to detach, TWI is a universal indicator of erosion 

vulnerability. TWI is essential in explaining erosion because it connects topographic and hydrological 

processes, according to studies by Rahmati et al. (2017) and Ali et al. (2022). The role of TWI is less evident in 

steep regions like Rampurhat-I because water storage is overshadowed by quick runoff. However, TWI 

becomes more prevalent in moderate terrains like Bolpur-Sriniketan because of higher soil saturation and 

slower drainage. This dual behavior supports the wider conclusions of Beven and Kirkby (1979) and 

emphasizes TWI's versatility as a crucial framework for simulating gully erosion susceptibility across a range of 

environments. 

Rugged Terrain and Active Fluvial Erosion 

The majority of the granite-gneiss and metamorphic rock formations that make up Rampurhat-I's geological 

setting are susceptible to chemical weathering in tropical climates. Because of their weathering, these minerals 

create loose sediments that are very transportable. Steep slopes and small valleys in the rough terrain increase 

runoff velocity, which makes the environment perfect for severe gully erosion. The Stream Transport Index 

(STI), which has the highest influence (r = 0.61), emphasizes how sediment transport capability contributes to 

erosion. This behavior is also seen in the Ethiopian Highlands, where steep slopes and concentrated flow 

greatly increase sediment mobility (Gessesse et al., 2016). A well-developed stream network's erosive power is 

highlighted by drainage density (r = 0.51), where concentrated flows more efficiently erode soils. In India's 

Chambal Ravines, comparable patterns have been documented (Mishra et al., 2015). The Himalayan foothills 

have a similar pattern to the average slope (r = 0.51), which promotes rapid runoff generation, decreases 

infiltration, and increases soil detachment (Sharma et al., 2018). Steep slopes and roughness, which more 

directly control erosion processes, are the main causes of the Topographic Wetness Index's (TWI) weak 

association (r = 0.057). Similar results in the mountainous regions of northern India and Nepal highlight how 

slope-related factors frequently take precedence over TWI in these environments (Pandey et al., 2020). With 

rolling hills and vast lateritic soils, Bolpur-Sriniketan offers a striking geomorphological and geological 

backdrop. Laterites, which are high in iron and aluminum, are more prone to erosion because they lose 

structural strength when they become soaked. The significance of soil saturation indicators like TWI is 

increased by the more substantial water buildup made possible by the moderate slopes and lower drainage 

density. The major component is the Infiltration Number (r = 0.48), suggesting that low-infiltration locations 

are especially vulnerable. Lower permeability increases runoff and erosion in semi-arid areas of Maharashtra 

and the Western Ghats, which is consistent with this finding (Tebebu et al., 2010; Gadgil et al., 2016). The 

stabilizing and erosion-reducing properties of plant cover are highlighted by the Normalized Difference plant 

Index (NDVI) (r = 0.45). In China's Loess Plateau, where forest cover considerably reduces the risk of erosion, 

similar patterns have been documented (Zhao et al., 2019). An important factor in this block is the Topographic 

Wetness Index (TWI), which has a moderate association (r = 0.16). Permeable soils and moderate slopes let 

water build up, which affects soil saturation levels and erosion processes. Similar dynamics are shown in 

studies conducted in the lateritic terrains of southern Africa and West Bengal, where TWI becomes crucial in 

flat-to-moderate terrain (Lal et al., 2021). 

Geological and Geomorphological Context: Global and Indian Comparisons 

TWI has been identified as a crucial component of gully erosion research worldwide, especially in North 

America (Wilson & Gallant, 2000) and Europe (Sørensen et al., 2006). However, as shown in the Ethiopian 

Highlands, slope and drainage network characteristics predominate in steep terrains such as Rampurhat-I 
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(Gessesse et al., 2016). On the other hand, semi-arid areas of India are like mild terrains like Bolpur-Sriniketan, 

where vegetation and soil permeability affect erosion (Pandey et al., 2020). These results are corroborated by 

Indian research conducted in the Western Ghats (Gadgil et al., 2016) and the Chambal Ravines (Mishra et al., 

2015). Regions with undulating topography place more emphasis on vegetation and soil saturation than steep 

areas do on slope and drainage density. As a crucial measure of gully erosion susceptibility, TWI's dual role of 

responding to terrain-specific dynamics highlights its global relevance. An examination of the Rampurhat- I 

and Bolpur-Sriniketan blocks' susceptibility to gully erosion reveals how important topographical, 

hydrological, vegetative, and land use/land cover (LULC) elements are in determining the erosion dynamics of 

these areas. Though Bolpur-Sriniketan has moderate susceptibility, which is influenced by factors like soil 

saturation and vegetation cover, Rampurhat-I exhibits higher overall susceptibility, especially in areas with 

steep slopes, sparse vegetation, and high rainfall intensity. Using sophisticated statistical and modeling 

methods, this study offers insightful information that can direct land management and erosion control plans 

specific to each region's circumstances. 

Topographic and Hydrological Factors 

The key elements causing erosion in Rampurhat-I were found to be slope, drainage density (DD), and stream 

power index (SPI). Slope (S) and SPI showed strong positive associations (0.310), suggesting that steeper 

terrain increases surface runoff energy and causes more noticeable erosion. This result aligns with international 

research, such as Gessesse et al. (2016) in the Ethiopian Highlands and Mishra et al. (2015) in the Chambal 

Ravines, which found that high slopes were a major factor in the creation of gullies. Similar to this,  

Rampurhat-I's Drainage Density (DD) demonstrated a substantial correlation with both Flow Length (Fl) and 

Infiltration Factor (IF), indicating that the effectiveness of a dense drainage network in distributing water can 

either improve or decrease runoff dynamics. These results are consistent with those of Pandey et al. (2020), who 

demonstrated that drainage networks had a major impact on soil erosion and runoff dispersion in comparable 

semi-arid areas. Topographic Wetness Index (TWI), despite its modest correlation in Rampurhat- I (r = 0.057), 

is a significant element in Bolpur-Sriniketan where the terrain is less steep. In Bolpur-Sriniketan, where mild 

slopes and comparatively flat terrain improve moisture retention, TWI showed a stronger link with erosion 

processes (r = 0.16). Several studies have emphasized the significance of TWI in places with moderate slopes, 

such as Beven and Kirkby (1979), who identified TWI as a critical element in situations where water buildup 

causes soil saturation, increasing erosion susceptibility. In a similar vein, Sørensen et al. (2006) observed that 

TWI has a major impact on soil detachment processes in regions with moderate topography by measuring 

water retention. 

Vegetation and Soil Protection 

A significant outcome of this study has been the importance of vegetation in reducing gully erosion. The 

Normalized Difference Vegetation Index (NDVI) in Rampurhat-I showed significant negative correlations 

with both the Modified Normalized Difference Water Index (MNDWI) (-0.821) and the Bare Soil Index (- 

0.620). This suggests that denser vegetation lessens soil exposure and improves moisture retention, both of 

which lessen erosion susceptibility. This aligns with Zhao et al. (2019) in China's Loess Plateau, where they 

discovered that vegetation significantly reduced soil erosion by improving water retention and lessening the 

effects of rainfall. Afforestation and vegetation restoration are necessary in places with low vegetation cover 

since Chen et al. (2017) pointed out that NDVI and soil erosion are inversely correlated. The NDVI-BSI 

relationship in Bolpur-Sriniketan (0.835) emphasizes the importance of vegetation in stabilizing the soil. The 

stabilizing effect of vegetation in forested areas, where high plant density considerably mitigated erosion, was 

also shown by the study conducted in the Western Ghats by Gadgil et al. (2016). However, in some parts of 

Bolpur-Sriniketan, the low NDVI values increase the risk of erosion since bare soil is more vulnerable to 

surface runoff and rainfall. Accordingly, Bolpur-Sriniketan's sparsely vegetated areas need urgent measures to 

boost plant cover to reduce erosion. 

Soil and Moisture Dynamics 

The Bare Soil Index (BSI) and Infiltration Factor (IF) are crucial measures of soil exposure and permeability. 

The negative correlation between Infiltration (If) and Drainage Density (DD) in Rampurhat-I (-0.481) indicates 
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that better water infiltration occurs in locations with higher drainage densities, reducing runoff and soil 

erosion. In support of this, Tebebu et al. (2010) discovered that in semi-arid areas, high drainage density 

enhances water retention and infiltration while lowering runoff and the erosive potential of rainfall. The 

opposite is true in Bolpur-Sriniketan, where runoff is concentrated in low drainage density areas, which speeds 

up erosion. To lessen the negative effects of heavy rainfall, drainage systems in high-risk locations must be 

improved. In Rampurhat-I, the Topographic Wetness Index (TWI) and SPI had a negative correlation (-0.305), 

suggesting that wetter regions, which retain more water, typically have lower flow velocities, which lowers the 

water's erosive capacity. However, if the soil is too saturated during periods of heavy rainfall, regions with high 

TWI may still have an increase in erosion. This result is consistent with research by Pandey et al. (2020), who 

found that if the moisture content in a certain topography is more than what the soil can absorb, water retention 

may make the soil more vulnerable. 

Spatial Distribution of Erosion Susceptibility 

According to the spatial distribution of gully erosion susceptibility in both blocks, Bolpur-Sriniketan has 

20.59% of its area classed as extremely sensitive, while Rampurhat-I has roughly 23.45%. Steep slopes, little 

vegetation, and intense runoff are characteristics of these regions that make soil erosion worse. These results 

are consistent with the findings of Gessesse et al. (2016) and Mishra et al. (2015), who discovered that areas 

with comparable topography and hydrology were extremely vulnerable to gully erosion. The identification of 

hotspots in both blocks calls for specific erosion management strategies, including plant restoration, slope 

stabilization, and drainage network enhancement. The changes in land use and land cover (LULC) that have 

been noted in both blocks are in line with overall patterns in India and international research, especially the 

decline in agricultural land brought on by gully erosion. Bolpur-Sriniketan and Rampurhat-I both saw a 22.4% 

decrease in agricultural land, which was indicative of a move away from agriculture and toward non- 

agricultural occupations like construction and stone-cracking. The findings from the Chambal Ravines (Mishra 

et al., 2015) and Western Ghats (Gadgil et al., 2016), where traditional farming methods have been abandoned 

by rural people due to erosion-induced soil degradation, are in line with these changes. This emphasizes how 

erosion has a socioeconomic influence, causing changes in local livelihoods in addition to deteriorating land 

quality. This study highlights the complex relationship between gully erosion susceptibility in Bolpur-

Sriniketan and Rampurhat-I. The pattern of Bolpur-Sriniketan is a little more complicated, influenced by 

moderate slopes, increased soil saturation, and variable drainage networks, whereas Rampurhat- I is more 

vulnerable to erosion because of its steep slopes and sparse vegetation. The findings support the necessity of 

integrated land management plans that take into consideration the dynamics of the local vegetation, hydrology, 

and topography. Restoring degraded lands and reducing soil loss in these areas depend heavily on erosion 

control techniques such as afforestation, enhanced drainage systems, slope stability, and soil conservation. 

Constructing adaptive strategies to tackle the changing problems of gully erosion and land degradation also 

requires an understanding of how these elements interact. Both Rampurhat-I (AUC = 0.970) and Bolpur-

Sriniketan (AUC = 0.975) exhibit outstanding performance according to the ROC-AUC analysis, 

demonstrating the models' potent capacity to discriminate between positive and negative classes. These high 

scores show that the models achieve great sensitivity and specificity across thresholds, demonstrating the high 

effectiveness of the predictor variable, Mean Composite Value, for classification. These models are quite 

dependable and robust for real-world binary classification tasks, as evidenced by the nearly perfect AUC 

values, which show no overlap in prediction scores between classes. 

Recent Trends and Importance of Gully Erosion Studies 

The role that gully erosion plays in land degradation, soil fertility loss, and landscape instability has drawn 

increased attention, making it a major environmental concern on a global scale. In environmental studies, 

knowing the causes and mechanisms of gully erosion has become more important as climate change worsens 

and human activity continues to affect land use patterns. Geographic Information Systems (GIS) and remote 

sensing have been employed in recent research to identify the main components causing gully erosion, with a 

focus on spatial modeling and forecasting approaches (Gessesse et al., 2016; Wang et al., 2019). A prominent 

development in the study of gully erosion is the combination of vegetative, hydrological, and morphometric 

elements into a single framework to better comprehend the geographical variability of erosion susceptibility. 

To assess how various factors interact to affect erosion dynamics, studies have increasingly used techniques 
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like Principal Component Analysis (PCA) and Structural Equation Modeling (SEM) (Rahmati et al., 2017). In 

this way, the intricate relationships between topographic, hydrological, and land use characteristics may be 

captured, providing a more nuanced knowledge of the risk of gully erosion in different spatial locations. These 

methods have shown promise in locating hotspots for erosion and in calculating the quantitative risk of erosion in 

various settings. In the Himalayan foothills, for instance, Pandey et al. (2020) evaluated the risk of soil erosion 

using topographical analysis and TWI, emphasizing the part that soil saturation and water buildup play in the 

creation of gullies. Beven and Kirkby (1979) also employed TWI to model runoff processes, showing how 

gully formation in moderate terrain is influenced by water retention on slopes. These methods highlight how 

crucial terrain features are to erosion susceptibility, particularly in regions with moderate slopes and less 

obvious topographic relief. The protective effects of vegetation against soil erosion have been the subject of 

other investigations, including Zhao et al. (2019). Their research in China's Loess Plateau showed that by 

stabilizing soil, boosting infiltration, and lowering surface runoff, plant cover can dramatically lower the 

hazards of erosion. This is consistent with Chen et al. (2017), who pointed out that by improving moisture 

retention and decreasing soil separation, denser vegetation helps to decrease gully erosion. The intensification of 

agriculture and urbanization is a major land use changes that exacerbate gully erosion. With more impermeable 

surfaces due to urbanization, water infiltration is decreased, and runoff is accelerated, resulting in concentrated 

water flow and increased soil erosion (Zhang et al., 2021). Particularly in locations with steep topography and 

little plant cover, it has been demonstrated that the conversion of wooded lands to agricultural or urban land uses 

increases vulnerability to gully erosion. The effects of land use changes in the Chambal Ravines, where 

growing agricultural activity has resulted in severe soil degradation and gully formation, have been observed by 

Mishra et al. (2015). Similarly, since plant loss exacerbates surface runoff and soil erosion, deforestation has 

been associated with an increase in gully erosion in semi-arid regions such as Maharashtra and the Western 

Ghats (Gadgil et al., 2016). The intricacy of erosion processes and the demand for integrated models that take 

into consideration a variety of variables affecting erosion dynamics are highlighted by these recent 

developments in gully erosion research. Even so, there is still a dearth of localized research that provides an in-

depth, site-specific understanding of the interplay between these variables, despite the expanding corpus of 

literature on gully erosion. More in-depth, localized evaluations that consider the variations in terrain, land use, 

and vegetation cover in particular areas are still required, even if large-scale models have offered significant 

insights into regional erosion trends. 

Significance and Importance of This Work 

This study provides a substantial contribution to the expanding corpus of research on gully erosion, especially in 

the setting of West Bengal, India, where the phenomenon is a significant environmental problem that affects 

landscape stability and agricultural output. This study sheds light on the spatial heterogeneity of gully erosion 

susceptibility, which has received little attention in the past, by concentrating on the Rampurhat-I and Bolpur- 

Sriniketan blocks. This study offers a fine-grained analysis, providing more particular data and practical 

insights into land management and erosion control measures, whereas much previous research has 

concentrated on larger, regional dimensions. A comprehensive method for comprehending the intricate 

dynamics of gully erosion is provided by combining hydrological and land use data with a variety of 

environmental and morphometric factors, including the Topographic Wetness Index (TWI), Slope, Drainage 

Density, and Normalized Difference Vegetation Index (NDVI). This study employs sophisticated statistical 

techniques like Principal Component Analysis (PCA) and Structural Equation Modeling (SEM), which enable a 

more thorough understanding of how these factors interact and contribute to gully formation, in contrast to 

earlier research that might have concentrated on isolated variables or simple models. A new addition to the 

literature is the application of these sophisticated methods to identify the main causes of gully erosion. With 

the help of this study, erosion hotspots can be more precisely identified by demonstrating the interactions 

between topographic features, vegetation cover, and hydrological parameters. An effective framework for 

comprehending the direct and indirect effects of different factors on erosion susceptibility is provided by the 

incorporation of PCA and SEM. This framework is essential for putting into practice focused and reasonably 

priced erosion control strategies. This work's significance stems from both its practical implications for 

sustainable land management and its scientific contribution. Policymakers, land use planners, and 

environmental managers who operate in regions vulnerable to gully erosion will find the findings extremely 

pertinent. The study makes it possible to implement more specialized treatments like afforestation, slope 

stabilization, and drainage system enhancement by identifying high-risk regions and measuring the relative 
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contributions of various elements to erosion processes. Compared to more generalized, larger models, this 

concentrated focus guarantees that the recommendations are context-specific and more feasible to execute. 

Also, by looking at how vegetation degradation and land use changes affect erosion dynamics, this study 

provides important information about how urbanization, agricultural growth, and deforestation worsen gully 

erosion. This information can be used to guide land use policies that emphasize sustainable agriculture and 

ecosystem restoration. As part of a comprehensive strategy to reduce erosion and safeguard land resources, the 

results highlight the significance of preserving plant cover and enhancing soil conservation techniques. All 

things considered, this work closes a significant gap in the literature by offering a thorough, quantitative, and 

spatially explicit evaluation of the risk of gully erosion in two West Bengal blocks. The research provides new 

insights into the factors that contribute to gully erosion and gives practical solutions for erosion management 

and land conservation in the area by fusing localized data with sophisticated statistical modeling. 

Why is This Study Better than Previous Studies and the Novelty of the Work? 

In the context of West Bengal, this study adds some new findings and innovations to the body of knowledge 

already available on gully erosion. I list the main arguments for this study's superiority over earlier research 

and emphasize the approach's originality below. Although many other studies have concentrated on gully 

erosion assessments at the regional or national level, frequently using generalized models and broad forecasts, 

this study offers a much-localized two blocks: Rampurhat-I and Bolpur-Sriniketan. More accurate information 

on the spatial heterogeneity of gully erosion susceptibility is provided by this study's smaller geographic 

emphasis. The results are more relevant to regional land management plans since these regions use high- 

resolution, detailed data. Because gully erosion varies greatly within even small geographical regions due to 

variations in topography, land use, and vegetation cover, this specific focus is especially crucial. On the other 

hand, it is possible that earlier research ignored how these parameters varied among smaller regions. Earlier 

research on gully erosion has usually concentrated on one factor, such as hydrology, vegetation, or topography, 

frequently ignoring the intricate relationships between these variables. This study is unique because it 

incorporates morphometric variables (like drainage density and slope), vegetation indices (like NDVI), and 

hydrological indicators (like Stream Power Index (SPI) and rainfall erosivity). This gives an in-depth 

understanding of how several elements work together to cause gully erosion. Prior research, such as Pandey et 

al. (2020) and Mishra et al. (2015), frequently concentrated on individual elements like rainfall or slope, but 

they failed to fully represent the intricacy of erosion processes caused by the interaction of several variables. 

The driving mechanisms causing erosion can be better understood thanks to this all-encompassing approach, 

especially in constantly fluctuating landscapes. The use of sophisticated statistical methods that enable a more 

thorough investigation of multidimensional interactions, such as Principal Component Analysis (PCA) and 

Structural Equation Modeling (SEM), is another noteworthy development of this subject. PCA simplifies 

complex data sets by identifying the main primary components that account for the majority of the variance in 

susceptibility to gully erosion. By offering a framework to investigate the direct and indirect effects of different 

factors on gully erosion, SEM goes one step further. These methods enable this investigation to reveal the 

fundamental relationships among variables such as vegetation cover, hydrological processes, and terrain 

features. On the other hand, previous research has frequently depended on correlation-based analysis or 

simpler statistical models, which may have overlooked more intricate, multivariate relationships. This study 

represents a novel integration in the field of gully erosion research by combining morphometric data (e.g., 

slope, stream density), hydrological variables (e.g., rainfall erosivity, SPI), and vegetation indices (e.g., 

NDVI). Although each of these components' effects on erosion processes has been studied separately, this 

work is one of the first to integrate them into a thorough model that takes into consideration how these factors 

interact. This method is important because it enables a multifactorial understanding of gully erosion, where 

erosion hotspots are created by a combination of many causes, like plant loss, increased surface runoff, and 

topographic variability. Compared to previous, simpler models, the integrated framework's innovation offers a 

more precise and context-specific erosion susceptibility prediction. Additionally, the study emphasizes the 

protective function of vegetation, which has drawn increasing focus in recent studies on gully erosion (Zhao et 

al., 2019; Chen et al., 2017). This study, however, employs the Normalized Difference Vegetation Index 

(NDVI) to measure vegetation density and its direct influence on soil stability and moisture retention, in 

contrast to many others that treat vegetation as a secondary element. This study's strong negative relationship 

between the NDVI and the Bare Soil Index (BSI) confirms that regions with higher plant densities are much 

less likely to experience gully formation. This study highlights the vital significance of ecosystem restoration in 
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reducing gully erosion by concentrating on the function of plant cover, which adds to and expands on previous 

research that has mostly concentrated on topographic and hydrological aspects. The study's conclusions have 

practical implications for land management techniques in the research region; they are not only theoretical. 

This study focuses more on site-specific interventions for the Rampurhat-I and Bolpur- Sriniketan blocks than 

earlier research, which frequently concentrated on broad, regional-scale approaches to erosion prevention. This 

study renders it possible to implement targeted land management techniques, like afforestation, slope 

stabilization, and drainage network upgrades that are suited to the requirements of these areas by identifying 

erosion hotspots and calculating susceptibility scores for each location. This local focus guarantees the 

effective distribution of erosion control resources and the promotion of sustainable farming practices in high-

risk erosion areas. Through the integration of numerous environmental parameters, sophisticated statistical 

methodologies, and localized insights, this study offers a fresh approach to comprehending and regulating 

gully erosion. It addresses significant gaps left by earlier research, which frequently relied on less integrated, 

simpler techniques, by providing a more thorough model of gully erosion susceptibility. This work is crucial to 

the scientific understanding of gully erosion and the development of workable mitigation methods because 

PCA and SEM are applied to identify the primary drivers of erosion while concentrating on site-specific land 

management. 

CONCLUSION 

This study provides a comprehensive investigation of the causes causing gully erosion in the West Bengal 

blocks of Rampurhat-I and Bolpur-Sriniketan. It accomplishes this by employing raster-based computations, 

basin morphometry, and terrain analysis to assess the correlation between various environmental factors and 

gully erosion susceptibility. The findings indicate that moderate gully erosion susceptibility is prevalent in both 

research locations and that the Topographic Wetness Index (TWI), drainage density, and flow length are 

significant drivers of erosion risk. These findings suggest that areas with higher moisture retention, insufficient 

drainage systems, and more concentrated flow paths are more prone to experience gully development. The 

study not only demonstrates the substantial impacts of land use changes and land cover degradation on erosion 

dynamics, but it also demonstrates the sharp decline in agricultural land and landholding sizes, which is 

indicative of the ongoing landscape degradation brought on by erosion. The study highlights the lack of 

conservation methods and preventative measures to control gully erosion, even though it is a major pedo- 

geomorphic issue in the region. The study suggests that while complete gully erosion eradication remains a 

challenging task, certain conservation measures, such as revegetation, contour cultivation, gully stability, and 

optimal runoff management, may reduce erosion vulnerability and mitigate the current degradation. Applying 

these strategies strategically in high-risk areas can help stabilize the soil, distribute runoff energy, and restore 

vegetation cover, all of which enhance the overall health of the soil and agricultural productivity in the affected 

areas. The results also suggest the implementation of integrated land management strategies that combine 

traditional knowledge with modern methods to successfully prevent soil erosion. To track the effectiveness of 

these conservation initiatives and assess how erosion patterns change over time, long-term monitoring is 

urgently needed. Future studies should focus on predicting future gully erosion hotspots more precisely by 

combining machine learning models with advanced remote sensing tools like satellite data and aerial drones. 

Building more dynamic erosion models that can forecast how erosion processes will be impacted by climate 

change also requires an understanding of the climatic parameters, particularly seasonal fluctuations in rainfall 

patterns and their interactions with soil properties. Setting community-based erosion management research as a 

top priority and working with area stakeholders will assist in developing long-term solutions that tackle the 

unique challenges faced by residents. Integrating the research findings into regional land management plans 

and policy frameworks will ensure that erosion control techniques are comprehensive, adaptable, and scalable, 

hence improving the region's long-term environmental and socioeconomic sustainability. By using the 

recommended techniques, gully erosion of susceptibility can be reduced. Reforestation, particularly the 

planting of trees and other deep-rooted plants, is crucial for stabilizing the soil and enhancing its capacity to 

hold moisture. The establishment of pastures and grass cover in vulnerable areas can also assist in preventing 

surface soil loss since it enhances soil structure and mitigates the impact of precipitation. Slope stabilization 

techniques like contour cultivation and terracing are beneficial because they reduce surface runoff and 

encourage water penetration. Additionally, gully stabilization by the construction of check dams or silt fences 

can prevent further gully growth by slowing down water flow and allowing sediment deposition. Additionally, 
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by efficiently controlling runoff and ensuring that water is distributed uniformly across the landscape, for 

instance, by utilizing diversion channels, the erosive effect of water can be reduced. Additionally, it's important 

to avoid using hard materials to block gully channels because this might exacerbate erosion by diverting water 

flow in ways that deepen gullies that already exist. By keeping large amounts of organic matter in the soil 

through mulching and composting, soil structure and erosion resistance can be further improved. The study 

shows that these conservation techniques can significantly reduce erosion susceptibility and ease ongoing 

degradation when carefully implemented in high-risk places, even though it is still challenging to abolish gully 

erosion. These methods can assist in dispersing runoff energy, stabilizing the soil, and restoring vegetation 

cover when used appropriately. These actions will enhance the overall health of the soil and agricultural 

productivity in the affected areas. Based on the findings, integrated land management strategies that combine 

traditional knowledge and modern methods are recommended for efficiently reducing soil erosion. Long-term 

monitoring is vitally needed going forward to track the effectiveness of these conservation initiatives and assess 

how erosion patterns change over time. Future studies should focus on integrating machine learning models 

with state-of-the-art remote sensing tools, like satellite photography and aerial drones, to more precisely 

predict future gully erosion hotspots. Furthermore, understanding the climatic factors, particularly the seasonal 

fluctuations in rainfall patterns and their interactions with soil properties, is crucial to developing more 

dynamic erosion models that can forecast how climate change may impact erosion processes. Research on 

community-based erosion management strategies should also be prioritized to develop long-term solutions that 

tackle the unique challenges faced by local populations. Working together with regional stakeholders, this can 

be accomplished. By integrating the research findings into regional land management plans and policy 

frameworks, erosion control measures will be comprehensive, adaptable, and scalable, thereby contributing to 

the region's long-term environmental and socioeconomic sustainability. 
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APPENDIX 

 

Fig 1 Location Map and Google Earth View of the study areas 

 

Fig 2 A Conceptual Methodological Framework of the Study 
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Fig 3 FCC Satellite Imagery, Grids, Grid Points, Stream Network, and Stream Orders (Rampurhat-I) 

 

Fig 4 FCC Satellite Imagery, Grids, Grid Points, Stream Network, and Stream Orders (Bolpur-Sriniketan) 
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Fig 5 Morphometric Parameters of the Extracted Micro Basins in Rampurhat-I 

 

Fig 6 Morphometric Parameters of the Extracted Micro Basins in Bolpur-Sriniketan 
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Fig 7 Ground Pictures of the Gully Channels, and Analogous Reciprocal of the Factors 

 

Fig 8 Indicators of Gully Erosion Susceptibility (Rampurhat-I) 
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Fig 9 Indicators of Gully Erosion Susceptibility (Bolpur-Sriniketan) 

 

Fig 10 Spectral Indices of Gully Erosion Susceptibility (Rampurhat-I) 
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Fig 11 Spectral Indices of Gully Erosion Susceptibility (Bolpur-Sriniketan) 

 

Fig 12 Scree Plots, Component Plots, Gully Erosion Susceptibility Zones, and ROC-AUC (Rampurhat-I) 
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Fig 13 Scree Plots, Component Plots, Gully Erosion Susceptibility Zones, and ROC-AUC (Bolpur-Sriniketan) 

 

Fig 14 Structural Equation Model, Relationship between Rainfall Erosivity, and Its Determinants, and 

Overlapping of Gully Erosion Susceptibility Isoline on Rainfall Erosivity Index (Rampurhat-I) 
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Fig 15 Structural Equation Model, Relationship between Rainfall Erosivity, and Its Determinants, and 

Overlapping of Gully Erosion Susceptibility Isoline on Rainfall Erosivity Index (Bolpur-Sriniketan) 

 

Fig 16 Land Use Land Cover Classes and Gully Hotspot Areas in Rampurhat-I, and Bolpur-Sriniketan 
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Fig 17 Ground Picture and Google Earth View of Gully Erosion Areas in Shantiniketan 

 

Fig 18 Cross Profiles Across the Gully Erosion Areas in Rampurhat-I, and Bolpur-Sriniketan 
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Table 1: Sources and usage of available data 

Sl. 

No. 

Available Data Data Features Year(s) Source(s) Methods and 

techniques 

1 SRTM-DEM: SRTM1 
Arc- Second Global 

Two Tiles of the Spatial Data, 
Entity ID: SRTM1N23E087V3-

Resolution: 1-ARC, Coordinates: 

23, 87 and Entity ID: 

SRTM1N24E087V3- Resolution: 

1-ARC, Coordinates: 24, 87 

Acquisition Date: February 11, 2000 USGS (2022b) Digital elevation model 
(DEM), relief and slope 

analysis, drainage 

analysis, stream 

ordering 

2 LANDSAT ETM+ Two Tiles of the Spatial Data, 

Entity ID: ELP139R043 

7T20011026-  Path:  139, Row: 

43, and Entity ID: ELP139R044 

7T20011026-Path: 139, Row: 44 

(Spatial Resolution: Bands 1-5 and 

7: 30 meters Band 8 
(panchromatic): 15 meters Band 6 

(thermal infrared): 60 meters, 

Temporal resolution: 16 days 

Acquisition 

Date: October 

26, 2001 

USGS (2022a) LULC, NDVI, 

MNDWI, NDBI, BSI, 

LST 

3 Rainfall (mm) Attribute data 2001 India Meteorological 

Department (2001) 

Rainfall erosivity index 

4 Geographical area, 

household, 

population, 

agriculture, and 

landholdings 

Attribute data 2001, 2000-

2001 

Census of India 

(2001), BAES (2001), 

Agricultural Census of 

India (2001) 

Total geographical 

area, Total household, 

total population, Crop 

yield, Landholding 

sizes 

Table 2: Sources and measurement of selected indicators 

Sl. No. Indicators Measurement Source(s) Justification for selection Sources of literature 

1 Relative relief (R) in m R = H – h, where, 

H = Highest relief 

Smith (1950), 

Schumm (1956) 

Elevation determines some other 

physical parameters, such as 

vegetation 

Joseph et al. (2012), Jin et al. 

(2008), Deolia, and Pande 

(2014, p. 22) 

  h = Lowest relief  distribution and rainfall pattern. 

“Relative relief determines a positive 

impact upon the dissection index.” 

 

2 Dissection index (DI) DI = R/Ra, where, R= relative relief, Ra is 

absolute relief 

Singh and Dubey 

(1994) 

There is a positive relationship 

between the dissection index and 

drainage density. 

Deolia, and Pande (2014, p. 

22) 

3 Ruggedness number 

(Rn) 

Ruggedness Number (Rn) Rn = Dd * (H / 

1000), where, Dd=drainage density, H=basin 

relief 

Patton and Baker 

(1976) 

Rn is positively correlated with 

erodibility and erosivity. 

Arabameri et al. (2020, p. 15) 

4 Average slope (S) in % S = (Z × (Ctl/H))/ (10 × A), basin area (A), total 

basin relief (H), the maximum height of the 

basin (Z) and total contour length, the average 

angle of slope (tanÕ) = Average no. of contour 

crossing per mile (A) × contour interval (I) 3361 

(constant) 

Wentworth (1930) The slope indicates a directly 

proportional relationship with soil 

erosion. 

Arabameri et al. (2020, p. 15) 

5 Slope aspect (As) The direction of the maximum slope Skidmore (1989) The slope aspect impacts gully 

formation by controlling vegetation 

coverage and soil characteristics. 

Wang, Wei, and Horton 

(2011), Patton, and Schumm 

(1975) 

6 Flow direction (Fdir) Derived from DEM Lemenkova, (2016), 

Martz and Garbrecht 

(1992) 

Flow direction is associated with flow 

accumulation and the topographic 

wetness index. 

Ahmadpour et al. (2021, p. 

20) 

7 Flow distance in km 

(Fdis) 

Derived from DEM and flow direction raster Jenson and 

Domingue (1988) 

Upstream distance varies depending 

on the width of the terrain cross-

section. 

Gomez et al. (2003, p. 3) 

8 Flow length in km (Fl) Derived from stream raster Lemenkova (2016) Stream length is an important feature 

in measuring the morphometry of 

drainage basins of gully erosional 

areas. 

Songu, Oyatayo, and Iorkua 

(2015, p. 105) 

9 Stream frequency (Fs) Fs = Nu/A, where, Nu= total number of streams, 

A= area in sq. km 

Horton (1932) Stream frequency has a negative 

relationship with infiltration and a 

positive relationship with basin 

roughness. 

Arabameri et al. (2020, p. 13) 

10 Drainage density (Dd) 

in km/square km 

Dd = Lu/A, where, Lu= total length of streams, 

A= area in sq. km 

Horton (1932), 

Schumm 

(1956) 

Drainage density is associated with the 

dissection of terrain and basin runoff. 

Arabameri et al. (2020, p. 13) 

11 Infiltration number (If) If = Fs × Dd, where, Fs= stream frequency, Dd= 

drainage density 

Faniran (1968) “Sub-basins with high infiltration 

values are less susceptible to soil 

erosion.” 

Arabameri et al. (2020, p. 14) 
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12 Normalized Difference 

Vegetation Index 

(NDVI) 

NDVI = 
𝑁𝐼𝑅−𝑅𝐸𝐷 

𝑁𝐼𝑅+𝑅𝐸𝐷 

Rousse et al. (1973) NDVI shows a positive correlation 

with greenage. 

Van der Knijff, Jones, and 

Montanarella, (2000) 

13 Modified Normalized 

Difference Water 

Index (MNDWI) 

MNDWI = 
𝐺𝑟𝑒𝑒𝑛−𝑆𝑊𝐼𝑅 

𝐺𝑟𝑒𝑒𝑛+𝑆𝑊𝐼𝑅 

Han-Qiu (2005) An increase in the water index 

increases soil erosion. 

Gómez-Gutiérrez et al. (2015) 

14 Normalized Difference 

Built-up Index (NDBI) 

NDBI = (SWIR – NIR)/ (SWIR + NIR) Zha et al. (2003) The built-up area is associated with 

the P- factor of the Universal Soil Loss 

Equation. 

Balabathina et al. (2020, p. 

18), 

Shin (1999) 

15 Bare Soil Index (BI) SI = ((Red+SWIR) (NIR+Blue)) / ((Red+SWIR) 

+ (NIR+Blue)) 

Sangpradid (2018) “Gully erosion and runoff rates are 

related to the amounts of bare soil.” 

Zare et al. (2022, p. 12) 

16 Land Surface 

Temperature (LST) in 

degree C 

DN to Radiance: Lλ = ((LMAXλ ‐  

MINλ)/(QCALMAX‐ QCALMIN)) * (QCAL‐

QCALMIN) + LMINλ 

Radiance to BT (in K): T = K2 / ln (K1/Lλ + 1) 

where, LMAX and LMIN are spectral values 

contained in the metadata of Landsat images. 

The calibration values of pixels for QCALMAX 

and QCALMIN can be found in Landsat image 

metadata. K1 and K2 are predetermined 

constant values, and Lλ is the spectral radiance 

value of the image. Kelvin to degree C: C=K-

273.15 

Nugraha et al. (2019) 

Yaseen and Khan 

(2022) Mustafa 

(2020), Qiuji and 

Chuting (2015), 

Oguro, Ito, and 

Tsuchiya (2011), 

Chander et al. (2009) 

“Massive temperature variation in this 

area influence the vegetation cover 

growth that directly influences the soil 

erosion.” 

Ghosal, and Bhattacharya 

(2021, p. 62) 

17 Rainfall Erosivity 

Index (REI) 

R=79+0.363XA where, R is the rainfall 

erosivity, Xa is the average annual rainfall in 

mm over the study area 

Choudhury and 

Nayak (2003) 

High rainfall intensity increases soil 

erosion. 

Igwe et al. (2017, p. 3156) 

18 Stream Power Index 

(SPI) 
SPI = 𝐴𝑠 × 𝑡𝑎𝑛𝛽 where, As is the specific 

catchment area (m2 m-1), β is the slope gradient 

(°) 

Moore et al. (1991) In the formation process of gullies, SPI 

controls the power of the erosiveness 

of land. 

Vijith, and Dodge-Wan 

(2019) 

19 Topographic Wetness 

Index (TWI) 
 𝐴𝑠  

TWI = 𝑙𝑛(𝑡𝑎𝑛𝛽 ) 

Moore et al. (1991) TWI influences the saturation of soil 

associated with gully formation. 

Gómez-Gutiérrez et a. (2015) 

  where, As is the specific catchment area (m2 m-

1), β is the slope gradient (°) 

   

20 Sediment Transport 

Index (STI) 

STI= (As / 22.13)0.6 × sin (β/ 0.0896)1.3 where: 

As is the unit contributing area (in m2/m) and β 

is the slope angle (in degrees) at a given pixel 

Burrough and 

McDonnell (1998) 

“The sediment load would significantly 

influence the performance of any 

suggested stormwater management 

system.” 

Almasalmeh, Saleh, and 

Mourad (2022, p. 1224) 

Source: Selected by the authors 

Table 3: Descriptive statistics of selected indicators (Rampurhat-I) 

Descriptive Statistics 

Indicators N Range Minimum Maximum Sum Mean Std. Deviation Variance Skewness Kurtosis 

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error Statistic Statistic Statistic Std. Error Statistic Std. Error 

R 55 31.94 15.02 46.96 1366.91 24.8528 1.02322 7.58842 57.584 .844 .322 .164 .634 

DI 55 .97 .16 1.13 28.87 .5249 .03274 .24278 .059 .797 .322 -.263 .634 

Rn 55 .42 .25 .67 26.71 .4856 .01209 .08967 .008 -.089 .322 .089 .634 

S 55 9.82 .86 10.69 194.88 3.5432 .27168 2.01482 4.059 1.021 .322 1.244 .634 

SA 55 304.38 33.83 338.21 10014.17 182.0759 10.36220 76.84813 5905.634 .014 .322 -.678 .634 

Fdir 55 104.94 1.07 106.02 1486.99 27.0363 3.85426 28.58399 817.044 1.111 .322 .290 .634 

Fdis 55 16.77 -3.12 13.65 216.50 3.9364 .45234 3.35463 11.254 .904 .322 .943 .634 

Fl 55 2.28 .01 2.29 33.16 .6029 .08081 .59927 .359 1.140 .322 .497 .634 

Fs 55 2.95 .00 2.95 61.21 1.1129 .07798 .57834 .334 .311 .322 .783 .634 

DD 55 .21 .00 .21 3.41 .0620 .00725 .05379 .003 .925 .322 .190 .634 

If 55 .35 .00 .35 4.63 .0842 .01178 .08739 .008 1.150 .322 .804 .634 

NDVI 55 .48 -.19 .29 5.09 .0925 .01578 .11699 .014 -.411 .322 -.540 .634 

MNDWI 55 .40 -.27 .14 -4.55 -.0827 .01025 .07598 .006 .112 .322 .304 .634 

NDBI 55 .45 -.14 .31 2.64 .0481 .01524 .11302 .013 .151 .322 -.910 .634 

BSI 55 131.08 205.78 336.86 13880.32 252.3695 3.74582 27.77975 771.714 1.108 .322 .962 .634 

LST 55 4.84 22.63 27.48 1319.23 23.9860 .15066 1.11730 1.248 .987 .322 .615 .634 

REI 55 .24 125.87 126.11 6932.08 126.0379 .00771 .05718 .003 -.880 .322 .121 .634 

PI 55 .58 -.36 .22 -2.77 -.0503 .01792 .13293 .018 -.261 .322 -.648 .634 

TWI 55 1730.31 1278.61 451.70 - 3982.17 -72.4031 32.75845 242.94320 59021.399 -2.239 .322 10.533 .634 

STI 55 2.10 .00 2.10 10.31 .1874 .04949 .36705 .135 3.668 .322 15.337 .634 

Valid N 

(listwise) 

55             

Source: Authors’ calculation 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue V May 2025 

Page 1990 
www.rsisinternational.org 

 

    

Table 4: Descriptive statistics of selected indicators (Bolpur-Sriniketan) 

Descriptive Statistics 

Indicators N Range Minimum Maximum Sum Mean Std. 

Deviation 

Variance Skewness Kurtosis 

Statistic Statistic Statistic Statistic Statistic Statistic Std. 

Error 

Statistic Statistic Statistic Std. Error Statistic Std. Error 

R 52 35.00 7.00 42.00 1151.00 22.1346 1.15830 8.35259 69.766 .505 .330 -.363 .650 

DI 52 5.76 .91 6.67 121.42 2.3349 .14819 1.06864 1.142 1.853 .330 4.957 .650 

Rn 52 .34 .29 .63 25.07 .4820 .01111 .08012 .006 -.226 .330 .063 .650 

S 52 7.19 1.51 8.70 172.97 3.3263 .17708 1.27694 1.631 2.215 .330 7.209 .650 

Sa 52 286.97 42.21 329.18 9839.52 189.2215 11.43571 82.46409 6800.327 -.218 .330 -1.040 .650 

Fdir 52 97.68 1.06 98.74 1498.56 28.8184 3.74705 27.02039 730.102 1.005 .330 .047 .650 

Fdis 52 17.31 -1.81 15.50 154.40 2.9692 .51929 3.74465 14.022 2.026 .330 3.931 .650 

Flen 52 .20 .00 .20 3.17 .0610 .00743 .05361 .003 .929 .330 -.003 .650 

Fs 52 .79 .00 .79 21.22 .4081 .01845 .13302 .018 .080 .330 1.755 .650 

DD 52 4.39 .00 4.39 59.44 1.1431 .13695 .98755 .975 1.590 .330 2.826 .650 

If 52 2.00 .00 2.00 24.55 .4721 .06191 .44647 .199 1.477 .330 1.957 .650 

NDVI 52 .85 -.51 .34 5.62 .1082 .02043 .14731 .022 -1.785 .330 4.916 .650 

MNDWI 52 1.01 -.30 .71 -2.74 -.0526 .02049 .14776 .022 2.681 .330 13.630 .650 

NDBI 52 .85 -.52 .33 .43 .0083 .02123 .15311 .023 -.142 .330 1.787 .650 

BSI 52 .38 -.02 .36 12.11 .2329 .01409 .10160 .010 -1.026 .330 .161 .650 

LST 52 5.60 22.39 27.99 1252.20 24.0807 .17325 1.24932 1.561 .928 .330 .288 .650 

REI 52 1.38 128.46 129.84 6725.51 129.3367 .04889 .35257 .124 -.948 .330 .253 .650 

SPI 52 .64 -.64 .00 -11.13 -.2141 .01478 .10659 .011 -1.283 .330 3.772 .650 

TWI 52 3757.01 -3534.84 222.17 740.61 - 110.3963 70.15301 505.88055 255915.131 -6.305 .330 43.153 .650 

STI 52 2.79 .00 2.79 8.51 .1636 .05962 .42994 .185 5.057 .330 28.706 .650 

Valid N 

(listwise) 

52             

Source: Authors’ calculation 

Table 5: Rotated component matrix of factor analysis (Rampurhat-I) 

Rotated Component Matrixa 

Factors/Indicators Component 

1 2 3 4 5 6 7 

R .142  .120 .847   -.152 

DI -.454  .159 -.564 -.221 .181  

Rn  .164   .829 .174  

S .219    .219 .718 .192 

SA  -.110     .928 

Fdir .166  .225   -.730 .172 

Fdis .158 -.154 -.738 .270  .126  

Fl  .706  .402 -.219   

Fs  .818  -.105 -.211  -.141 

DD  .811   .449   

If  .911   .291   

NDVI -.838 -.143    .211  

MNDWI -.689 .182  -.204  -.360 -.203 

NDBI .940   .181   .138 

BSI .903     .166  

LST .925 -.112      

REI -.141 .522 .114 -.176 -.590 .297  

SPI  -.108 .841 .137 -.207   

TWI .170 -.119 .532 -.385 .260  -.218 

STI  .149 .737 .385 .128  .130 

Extraction Method: Principal Component Analysis 

Rotation Method: Varimax with Kaiser Normalization.a 

a. Rotation converged in 6 iterations 

Source: Authors’ calculation 
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Table 6: Total variance explained in PCA (Rampurhat-I) 

Total Variance Explained 

Component Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 4.458 22.292 22.292 4.458 22.292 22.292 4.119 20.594 20.594 

2 3.177 15.883 38.175 3.177 15.883 38.175 3.126 15.631 36.225 

3 2.236 11.179 49.354 2.236 11.179 49.354 2.220 11.100 47.325 

4 1.658 8.291 57.645 1.658 8.291 57.645 1.731 8.656 55.982 

5 1.496 7.478 65.123 1.496 7.478 65.123 1.654 8.272 64.254 

6 1.346 6.728 71.852 1.346 6.728 71.852 1.430 7.148 71.402 

7 1.036 5.181 77.032 1.036 5.181 77.032 1.126 5.631 77.032 

8 .900 4.501 81.533       

9 .733 3.666 85.199       

10 .584 2.921 88.120       

11 .531 2.653 90.772       

12 .395 1.973 92.745       

13 .369 1.843 94.588       

14 .331 1.653 96.240       

15 .258 1.289 97.530       

16 .199 .995 98.525       

17 .119 .593 99.118       

18 .100 .502 99.620       

19 .045 .224 99.844       

20 .031 .156 100.000       

Extraction Method: Principal Component Analysis 

Source: Authors’ calculation 

Table 7: Rotated component matrix of factor analysis (Bolpur-Sriniketan) 

Rotated Component Matrixa 

 
Component 

1 2 3 4 5 6 7 

R   -.135 -.912    

DI  .110 -.179 .873 -.201   

Rn .103 .171 -.153  -.256  -.589 

S -.154 -.774 -.157 -.254 -.110   

Sa .154     .875  

Fdir  .131  .152 -.109  .767 

Fdis  .241 -.444 -.178 -.460 -.213 .287 

Flen .159 .121 .145 .169 -.563 -.378 -.161 

Fs -.230 -.108 .299 .439 .449  .202 

DD  .121 .923  -.101   

If  .123 .951    .148 

NDVI .794 .435    .130  

MNDWI .370 -.832  .107   -.124 

NDBI -.747 .565      

BSI .924 .185      

LST -.937 .128 -.114     

REI -.482    .179 .544  

SPI .349 .765     -.205 

TWI    -.217 .634 -.188 .219 

STI .131 .137   .692  -.153 

Extraction Method: Principal Component Analysis 

Rotation Method: Varimax with Kaiser Normalizationa 

a. Rotation converged in 8 iterations 

Source: Authors’ calculation 
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Table 8: Total variance explained in PCA (Bolpur-Sriniketan) 

Total Variance Explained 

Component Initial Eigenvalues Extraction Sums of Squared 

Loadings 

Rotation Sums of Squared 

Loadings 

Total % of 

Variance 

Cumulative % Total % of 

Variance 

Cumulative 

% 

Total % of 

Variance 

Cumulative 

% 

1 3.693 18.466 18.466 3.693 18.466 18.466 3.585 17.924 17.924 

2 2.844 14.222 32.688 2.844 14.222 32.688 2.636 13.179 31.103 

3 2.403 12.016 44.704 2.403 12.016 44.704 2.203 11.013 42.116 

4 1.925 9.626 54.331 1.925 9.626 54.331 2.023 10.113 52.229 

5 1.650 8.251 62.582 1.650 8.251 62.582 1.806 9.030 61.259 

6 1.249 6.245 68.827 1.249 6.245 68.827 1.342 6.708 67.967 

7 1.099 5.497 74.324 1.099 5.497 74.324 1.272 6.358 74.324 

8 .932 4.662 78.987       

9 .891 4.454 83.440       

10 .739 3.694 87.135       

11 .610 3.049 90.183       

12 .513 2.566 92.749       

13 .436 2.180 94.929       

14 .394 1.970 96.899       

15 .271 1.357 98.256       

16 .126 .630 98.886       

17 .089 .447 99.333       

18 .065 .327 99.660       

19 .050 .250 99.910       

20 .018 .090 100.000       

Extraction Method: Principal Component Analysis 

Source: Authors’ calculation 

Table 9: Composite factor scores and mean composite factor scores of extracted points (Rampurhat-I) 

id Points F1 Latitude Longitude F2 F3 F4 F5 F6 F7 Composite Mean 

1 1 0.77406 24.101 87.752 -1.21214 0.97682 -0.93895 -0.06792 -3.01023 -0.24282 -3.72 -0.53 

2 2 -0.47439 24.101 87.780 -1.32805 -0.09565 -0.69625 -0.76695 -0.24901 1.58132 -2.03 -0.29 

3 3 0.49281 24.118 87.615 -1.24917 -1.28309 1.18634 -0.66349 -0.72736 0.06729 -2.18 -0.31 

4 4 1.8538 24.118 87.643 -1.00488 -1.06308 0.55428 0.37137 0.99357 -0.17611 1.53 0.22 

5 5 -1.00742 24.118 87.670 -0.82416 -0.79322 1.28624 0.50287 -0.54184 -0.42969 -1.81 -0.26 

6 6 -0.84846 24.118 87.698 -0.70063 -0.39432 0.62924 1.00475 0.68615 0.7555 1.13 0.16 

7 7 -0.77626 24.118 87.725 1.2437 -0.34053 -0.10682 1.75701 -0.33954 0.87238 2.31 0.33 

8 8 -1.37742 24.118 87.752 -0.70016 -1.18518 -0.08001 0.50089 0.94445 0.45863 -1.44 -0.21 

9 9 -0.03958 24.118 87.780 -0.46305 -0.94424 -0.85596 -0.10738 0.28436 1.12653 -1.00 -0.14 

10 10 1.26466 24.136 87.615 0.51282 -0.62436 0.02387 2.27166 0.70956 -0.89107 3.27 0.47 

11 11 -0.78834 24.136 87.643 -0.22445 1.15059 0.79685 1.60177 0.22075 -0.99464 1.76 0.25 

12 12 0.17742 24.136 87.670 -0.57314 -1.70104 1.40807 1.00207 -0.19787 0.31167 0.43 0.06 

13 13 -0.85067 24.136 87.698 0.16333 -1.03575 1.05659 -0.00474 -0.43035 -1.05409 -2.16 -0.31 

14 14 1.8311 24.136 87.725 1.34635 0.2019 -1.58574 -0.75105 0.10673 -0.92911 0.22 0.03 

15 15 -0.78392 24.136 87.752 1.08324 -0.68604 -0.26601 1.32476 0.06101 0.54935 1.28 0.18 

16 16 -0.81365 24.136 87.780 0.09552 -0.88303 -0.43561 -0.22163 -0.2814 -0.52432 -3.06 -0.44 

17 17 0.16842 24.136 87.807 -0.25798 1.80056 -1.10127 -0.07143 0.22014 1.75998 2.52 0.36 

18 18 -0.55488 24.153 87.588 -1.58316 0.46033 0.90658 1.96992 -1.98931 1.11397 0.32 0.05 

19 19 0.23363 24.153 87.615 -0.48372 0.31328 0.17713 0.59536 -1.21241 0.01227 -0.36 -0.05 

20 20 1.24813 24.153 87.643 -1.23831 2.17677 1.02079 0.42496 -1.63861 0.16411 2.16 0.31 

21 21 0.57921 24.153 87.698 -0.94944 -0.76998 1.43565 -0.5522 1.97394 -0.90899 0.81 0.12 

22 22 1.10351 24.153 87.725 0.82789 -0.26081 -0.31579 -0.11202 -0.63708 -0.531 0.07 0.01 

23 23 -0.77838 24.153 87.752 -0.16458 -0.79177 0.587 -0.53138 0.40306 -0.03968 -1.32 -0.19 
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24 24 0.51257 24.153 87.780 0.23308 0.24429 -0.59851 -0.93298 -0.97607 -1.17853 -2.70 -0.39 

25 25 -0.84055 24.153 87.807 -0.09022 -0.44682 -0.29921 0.48082 1.19527 0.28775 0.29 0.04 

26 26 -0.72868 24.171 87.725 0.62804 -0.62645 2.6039 -2.65133 -0.05263 0.50415 -0.32 -0.05 

27 27 -0.3291 24.171 87.752 0.80212 1.89639 -0.3741 -0.46968 1.00296 0.1219 2.65 0.38 

28 28 0.97541 24.171 87.780 1.48527 -1.24622 -1.18717 0.00956 -0.84042 1.22486 0.42 0.06 

29 29 -0.32129 24.171 87.807 -1.09418 0.30887 -0.84336 -0.06463 1.44522 0.84292 0.27 0.04 

30 30 -1.46617 24.171 87.835 -1.10505 -0.33869 -0.79089 0.6278 0.97049 -0.3139 -2.42 -0.35 

31 31 2.92247 24.188 87.698 -1.08729 1.28911 0.5228 -0.24077 2.83861 -0.86047 5.38 0.77 

32 32 -0.09858 24.188 87.725 0.70382 1.28279 2.07574 -1.11563 -0.30215 0.20465 2.75 0.39 

33 33 -0.86383 24.188 87.752 2.19209 0.59834 -0.84632 0.02182 -0.01772 -1.31449 -0.23 -0.03 

34 34 0.79631 24.188 87.780 0.22819 0.44277 -0.41725 -0.99191 0.02769 0.51728 0.60 0.09 

35 35 1.51687 24.188 87.807 1.57755 -1.11325 -1.09714 2.07818 -0.06979 0.13677 3.03 0.43 

36 36 -0.45348 24.206 87.698 2.3617 2.34764 2.76993 1.14865 0.38383 0.08299 8.64 1.23 

37 37 0.00747 24.206 87.725 1.10799 0.81761 1.15465 -1.18245 -0.90138 -1.39875 -0.39 -0.06 

38 38 0.38897 24.206 87.752 1.19987 -1.05513 0.10639 0.18502 1.1487 0.70246 2.68 0.38 

39 39 -1.09083 24.206 87.780 -0.37762 -0.24038 -0.40616 -0.45304 0.99379 -1.4682 -3.04 -0.43 

40 40 -0.12378 24.206 87.807 0.93884 -1.04088 -1.34035 -0.2575 -0.67484 -1.82176 -4.32 -0.62 

41 41 0.12315 24.223 87.643 -1.11062 0.04551 -0.82966 0.02107 -0.64423 -0.33492 -2.73 -0.39 

42 42 0.40838 24.223 87.670 1.34779 0.04378 0.37932 0.53381 -0.68456 1.91956 3.95 0.56 

43 43 0.6314 24.223 87.698 1.41916 -0.34549 0.25314 0.06281 0.72708 0.68022 3.43 0.49 

44 44 -0.97063 24.223 87.725 1.01465 -0.254 0.24788 -0.93954 -0.20119 -1.30423 -2.41 -0.34 

45 45 0.61786 24.223 87.752 0.44214 -1.06817 -0.54354 -0.84375 -1.41085 1.20896 -1.60 -0.23 

46 46 -1.11052 24.223 87.780 -0.53435 0.68742 -0.75632 -0.47939 1.39515 -0.10693 -0.90 -0.13 

47 47 -1.04057 24.223 87.807 -0.58819 1.12768 -1.53233 -0.41597 1.16198 0.94239 -0.35 -0.05 

48 48 -0.19834 24.240 87.643 -1.4795 0.41325 0.11803 1.61726 -0.93838 -1.75352 -2.22 -0.32 

49 49 1.61077 24.240 87.670 -0.97471 0.23683 -0.22353 0.05947 0.51729 -0.81166 0.41 0.06 

50 50 1.76849 24.240 87.698 -0.8594 -0.22994 -0.14847 -1.13762 -0.42923 -0.80659 -1.84 -0.26 

51 51 0.38597 24.240 87.725 -0.28254 -1.296 0.70264 -1.30858 -0.18921 1.71312 -0.27 -0.04 

52 52 0.08941 24.240 87.752 0.02134 2.07488 -0.43265 -0.29648 0.42329 2.36271 4.24 0.61 

53 53 -1.13277 24.240 87.780 -0.33011 -0.43355 -0.4861 -2.17661 -0.76776 -0.08279 -5.41 -0.77 

54 54 -1.51799 24.240 87.807 -0.32404 1.02665 -1.18123 0.49316 -0.3272 -1.52062 -3.35 -0.48 

55 55 -1.10172 24.258 87.780 0.21836 0.62298 -1.28632 -0.8588 -0.15247 -0.42681 -2.98 -0.43 

Source: Authors’ calculation 

Table 10: Composite factor scores and mean composite factor scores of extracted points (Bolpur-Sriniketan) 

id Points Latitude Longitude F1 F2 F3 F4 F5 F6 F7 Composite Mean 

1 1 23.569 87.804 -1.30455 0.09856 -0.75834 -0.34103 0.13165 1.93122 1.45094 1.208 0.173 

2 2 23.569 87.831 -1.13569 -5.83748 -0.14576 0.25575 0.41182 -0.584 -0.42872 -7.464 -1.066 

3 3 23.591 87.777 -1.94225 0.79139 0.24612 -0.3285 0.61196 1.10021 -1.97008 -1.491 -0.213 

4 4 23.591 87.804 -2.02024 -0.08983 1.18406 -0.2832 0.30453 -0.13602 0.19098 -0.850 -0.121 

5 5 23.591 87.831 1.021 0.95119 -0.4195 0.07369 3.89275 0.00532 -1.3458 4.179 0.597 

6 6 23.612 87.640 -0.26664 -0.03321 -0.94911 -1.59815 0.70246 1.33373 -0.39569 -1.207 -0.172 

7 7 23.612 87.695 -2.43465 0.11031 -0.63572 -0.25417 0.29773 0.83902 -0.74492 -2.822 -0.403 

8 8 23.612 87.722 -2.12103 -0.1053 -0.94595 1.02638 0.99777 -0.01966 0.06043 -1.107 -0.158 

9 9 23.612 87.749 0.70699 0.0851 0.14377 1.02555 -0.08348 1.52258 0.72402 4.125 0.589 

10 10 23.612 87.777 -1.08549 1.06247 0.30728 -1.61483 0.4888 0.18809 -0.20124 -0.855 -0.122 

11 11 23.612 87.804 0.98653 -0.6848 0.02788 -1.21888 0.35166 0.75038 1.45805 1.671 0.239 

12 12 23.633 87.640 0.40815 -0.98046 -0.45408 -1.21634 0.03645 1.5013 0.02952 -0.675 -0.096 

13 13 23.633 87.668 -1.43113 0.52536 -0.39844 -1.04436 0.51397 -0.34212 0.25169 -1.925 -0.275 

14 14 23.633 87.695 0.63543 0.54954 -0.33252 1.10257 1.1806 0.30549 0.39201 3.833 0.548 

15 15 23.633 87.722 0.58646 0.08456 1.72747 0.27802 1.8668 1.07962 -0.31448 5.308 0.758 

16 16 23.633 87.749 0.46223 0.52042 0.95403 0.59301 -0.13493 1.31829 -1.56681 2.146 0.307 

17 17 23.633 87.777 0.819 0.80209 -0.73443 1.81595 0.08786 0.26197 0.23057 3.283 0.469 

18 18 23.633 87.804 -0.12466 -0.15446 1.27355 0.30804 0.77527 0.79869 0.05728 2.934 0.419 

19 19 23.655 87.640 -0.84412 -1.30501 -0.08323 0.28885 -0.1382 -0.42182 -0.8417 -3.345 -0.478 

20 20 23.655 87.668 0.22917 0.5027 1.53047 -0.17363 -0.32125 -0.26645 0.35694 1.858 0.265 

21 21 23.655 87.695 -1.20504 0.50304 0.12747 -0.02411 -0.08791 -1.0184 -1.46182 -3.167 -0.452 

22 22 23.655 87.722 -0.48835 1.28508 -1.56404 0.46415 -1.05712 -0.4636 1.36746 -0.456 -0.065 

23 23 23.655 87.749 1.02546 0.39519 2.49404 0.00557 -0.8972 -0.05683 -0.12386 2.842 0.406 

24 24 23.655 87.777 1.10116 -0.31646 -0.50148 0.41556 -0.30226 1.08801 -0.42497 1.060 0.151 

25 25 23.676 87.613 0.55512 -0.23972 -0.88532 1.0016 0.58972 0.13792 1.51534 2.675 0.382 

26 26 23.676 87.640 0.5653 0.25973 1.57884 0.20953 -0.58373 -0.1492 -0.18693 1.694 0.242 

27 27 23.676 87.668 -0.38702 0.00404 -0.03975 1.44147 -3.53476 1.41456 -1.75935 -2.861 -0.409 

28 28 23.676 87.695 0.23022 0.14192 -1.23967 0.06883 -0.98243 0.50522 -0.02067 -1.297 -0.185 

29 29 23.676 87.722 -0.31283 0.14013 -1.49707 -0.7286 -1.11029 0.92381 2.54009 -0.045 -0.006 

30 30 23.676 87.749 -0.87886 1.42686 -1.83346 -1.56876 -0.79637 -1.28449 -0.18901 -5.124 -0.732 

31 31 23.676 87.777 1.23997 -0.09352 0.6335 -0.7349 1.06559 0.02136 0.30756 2.440 0.349 
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32 32 23.697 87.613 -0.04087 0.73334 -0.05372 0.23141 -0.11188 0.71379 0.73455 2.207 0.315 

33 33 23.697 87.640 -0.84434 0.92824 0.15957 2.17126 -0.37356 -0.68214 -1.08389 0.275 0.039 

34 34 23.697 87.668 0.36428 -0.24643 0.74853 1.00886 -0.1621 -0.04043 1.23072 2.903 0.415 

35 35 23.697 87.695 -0.81719 -0.27213 0.17721 -0.14548 -0.17519 -0.14951 0.46035 -0.922 -0.132 

36 36 23.697 87.722 0.48722 0.65798 -0.43309 -0.99426 -0.10051 -1.50545 0.13706 -1.751 -0.250 

37 37 23.697 87.749 0.99613 -0.2756 0.38586 -1.0934 0.1516 0.86245 -0.44035 0.587 0.084 

38 38 23.697 87.777 1.48369 -0.50033 -0.53065 -2.19559 -1.00098 1.2669 -0.79659 -2.274 -0.325 

39 39 23.719 87.613 1.11924 -0.36093 0.07759 -0.91376 -0.5414 0.18297 0.32886 -0.107 -0.015 

40 40 23.719 87.640 0.70481 -0.58921 0.27665 -1.00943 -0.48445 -1.48381 1.39521 -1.190 -0.170 

41 41 23.719 87.668 0.04932 0.25 -0.38977 1.51769 0.74005 -1.06996 1.42843 2.526 0.361 

42 42 23.719 87.695 0.52076 -0.74761 -1.178 2.84632 -0.34053 -0.22926 0.15136 1.023 0.146 

43 43 23.719 87.722 -1.79783 0.41715 2.96461 -0.28639 -0.0918 -1.45927 1.67987 1.426 0.204 

44 44 23.719 87.749 0.9225 0.18369 -0.383 0.26366 0.27841 -1.24847 -0.95425 -0.937 -0.134 

45 45 23.740 87.586 0.71841 0.2921 -0.8221 0.13861 1.01111 -1.484 0.21061 0.065 0.009 

46 46 23.740 87.613 0.906 0.12445 -0.00066 -0.70658 -0.8981 -2.48302 -1.39184 -4.450 -0.636 

47 47 23.740 87.640 0.73897 0.44634 -0.66649 -0.47302 -1.20754 -0.53823 -1.43926 -3.139 -0.448 

48 48 23.740 87.668 0.42479 -0.89235 -0.40788 -0.55551 -0.07061 -1.51552 -1.3329 -4.350 -0.621 

49 49 23.740 87.695 0.14681 0.11697 1.99357 0.40505 -1.25461 0.72871 0.32794 2.464 0.352 

50 50 23.740 87.749 0.02993 -0.37525 0.37551 -0.31073 -0.5865 -1.50614 1.12472 -1.248 -0.178 

51 51 23.761 87.668 0.934 -0.29033 -0.61723 0.68916 0.52068 -0.17823 -0.58117 0.477 0.068 

52 52 23.761 87.749 0.36371 0.00047 -0.4871 0.16709 0.42045 -0.46561 -0.14626 -0.147 -0.021 

Source: Authors’ calculation 

Table 11: Correlation among the indicators of gully erosion (Rampurhat-I) 
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Source: Authors’ calculation 
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Table 12: Correlation among the indicators of gully erosion (Bolpur-Sriniketan) 
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9 

.74 

2 

.98 

1 

.82 

9 

.86 

6 

 N 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 

Fdis Pearson 

Correlat

io n 

.16 

6 

.06 

4 

.08 

5 

- 

.06 

6 

- 

.18 

9 

.09 

9 

1 .13 

7 

- 

.36 

2** 

- 

.21 

7 

- 

.25 

9 

.15 

9 

- 

.16 

7 

.09 

6 

- 

.02 

7 

.14 

1 

- 

.07 

1 

.08 

7 

- 

.12 

7 

- 

.23 

0 

 Sig. (2- 

tailed) 

.24 

0 

.65 

3 

.54 

9 

.64 

1 

.18 

0 

.48 

4 

 .33 

1 

.00 

8 

.12 

3 

.06 

4 

.26 

1 

.23 

8 

.49 

9 

.85 

0 

.31 

9 

.61 

9 

.53 

8 

.36 

8 

.10 

2 

 N 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 

Fl Pearson 

Correlat

io n 

.02 

2 

.20 

2 

.21 

3 

- 

.15 

1 

- 

.17 

0 

.08 

9 

.13 

7 

1 - 

.10 

2 

.08 

2 

.07 

1 

.12 

3 

.00 

1 

- 

.03 

0 

.15 

5 

- 

.15 

5 

- 

.25 

9 

.11 

6 

- 

.33 

5* 

- 

.18 

7 

 Sig. (2- 

tailed) 

.87 

9 

.15 

2 

.13 

0 

.28 

5 

.22 

9 

.53 

0 

.33 

1 

 .47 

3 

.56 

4 

.61 

6 

.38 

6 

.99 

6 

.83 

3 

.27 

2 

.27 

4 

.06 

4 

.41 

2 

.01 

5 

.18 

4 

 N 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 

Fs Pearson 

Correlat

io n 

- 

.34 

3* 

.08 

2 

- 

.20 

9 

- 

.16 

9 

.01 

5 

.21 

4 

- 

.36 

2** 

- 

.10 

2 

1 .04 

3 

.34 

9* 

- 

.31 

4* 

.02 

6 

.08 

2 

- 

.19 

0 

.12 

0 

.19 

7 

- 

.22 

3 

.13 

3 

.18 

2 

 Sig. (2- 

tailed) 

.01 

3 

.56 

2 

.13 

6 

.23 

0 

.91 

8 

.12 

7 

.00 

8 

.47 

3 

 .76 

1 

.01 

1 

.02 

3 

.85 

2 

.56 

1 

.17 

6 

.39 

8 

.16 

2 

.11 

2 

.34 

6 

.19 

6 

 N 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 

Dd Pearson 

Correlat

io n 

- 

.14 

9 

- 

.10 

4 

- 

.12 

7 

- 

.16 

5 

.02 

4 

.11 

2 

- 

.21 

7 

.08 

2 

.04 

3 

1 .92 

2** 

.05 

4 

- 

.12 

1 

.12 

2 

.02 

5 

- 

.09 

8 

.02 

3 

.13 

9 

- 

.00 

9 

- 

.02 

9 

 Sig. (2- 

tailed) 

.29 

3 

.46 

4 

.36 

8 

.24 

3 

.86 

5 

.42 

9 

.12 

3 

.56 

4 

.76 

1 

 .00 

0 

.70 

5 

.39 

4 

.38 

9 

.86 

1 

.48 

8 

.87 

3 

.32 

7 

.94 

8 

.83 

8 

 N 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 
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If Pearson 

Correlat

io n 

- 

.21 

7 

- 

.08 

9 

- 

.19 

0 

- 

.25 

5 

.05 

3 

.14 

4 

- 

.25 

9 

.07 

1 

.34 

9* 

.92 

2** 

1 - 

.04 

6 

- 

.15 

4 

.17 

5 

- 

.05 

0 

- 

.03 

1 

.07 

5 

.05 

9 

.03 

3 

.02 

2 

 Sig. (2- 

tailed) 

.12 

2 

.52 

8 

.17 

7 

.06 

8 

.70 

9 

.30 

9 

.06 

4 

.61 

6 

.01 

1 

.00 

0 

 .74 

9 

.27 

5 

.21 

6 

.72 

4 

.82 

8 

.59 

7 

.67 

7 

.81 

7 

.87 

6 

 N 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 

ND 

VI 

Pearson 

Correlat

io n 

.08 

0 

.09 

8 

.11 

8 

- 

.34 

0* 

.23 

0 

.07 

0 

.15 

9 

.12 

3 

- 

.31 

4* 

.05 

4 

- 

.04 

6 

1 - 

.15 

8 

- 

.31 

4* 

.83 

5** 

- 

.64 

1** 

- 

.29 

9* 

.51 

9** 

- 

.05 

5 

.11 

1 

 Sig. (2- 

tailed) 

.57 

3 

.49 

1 

.40 

3 

.01 

4 

.10 

2 

.62 

4 

.26 

1 

.38 

6 

.02 

3 

.70 

5 

.74 

9 

 .26 

3 

.02 

3 

.00 

0 

.00 

0 

.03 

1 

.00 

0 

.70 

1 

.43 

3 

 N 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 

MN 

DWI 

Pearson 

Correlat

io n 

- 

.05 

2 

.00 

8 

- 

.05 

6 

.47 

1** 

- 

.10 

9 

- 

.18 

7 

- 

.16 

7 

.00 

1 

.02 

6 

- 

.12 

1 

- 

.15 

4 

- 

.15 

8 

1 - 

.80 

7** 

.18 

1 

- 

.44 

7** 

- 

.12 

8 

- 

.42 

4** 

- 

.00 

9 

.04 

5 

 Sig. (2- 

tailed) 

.71 

6 

.95 

3 

.69 

1 

.00 

0 

.44 

2 

.18 

5 

.23 

8 

.99 

6 

.85 

2 

.39 

4 

.27 

5 

.26 

3 

 .00 

0 

.20 

0 

.00 

1 

.36 

7 

.00 

2 

.95 

2 

.75 

0 

 N 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 

NDB 

I 

Pearson 

Correlat

io n 

.04 

2 

- 

.05 

8 

- 

.06 

0 

- 

.25 

9 

- 

.06 

6 

.04 

5 

.09 

6 

- 

.03 

0 

.08 

2 

.12 

2 

.17 

5 

- 

.31 

4* 

- 

.80 

7** 

1 - 

.55 

4** 

.75 

0** 

.25 

2 

.11 

9 

.03 

1 

- 

.09 

0 

 Sig. (2- 

tailed) 

.76 

8 

.68 

4 

.67 

5 

.06 

4 

.64 

3 

.75 

3 

.49 

9 

.83 

3 

.56 

1 

.38 

9 

.21 

6 

.02 

3 

.00 

0 

 .00 

0 

.00 

0 

.07 

1 

.40 

3 

.82 

8 

.52 

7 

 N 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 

BI Pearson 

Correlat

io n 

.07 

1 

.10 

9 

.09 

3 

- 

.31 

0* 

.08 

5 

.00 

5 

- 

.02 

7 

.15 

5 

- 

.19 

0 

.02 

5 

- 

.05 

0 

.83 

5** 

.18 

1 

- 

.55 

4** 

1 - 

.82 

3** 

- 

.38 

8** 

.39 

3** 

.01 

1 

.13 

6 

 Sig. (2- 

tailed) 

.61 

7 

.44 

1 

.51 

1 

.02 

5 

.54 

7 

.97 

0 

.85 

0 

.27 

2 

.17 

6 

.86 

1 

.72 

4 

.00 

0 

.20 

0 

.00 

0 

 .00 

0 

.00 

4 

.00 

4 

.93 

8 

.33 

6 

 N 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 

LST Pearson 

Correlat

io n 

- 

.01 

5 

- 

.06 

4 

- 

.13 

4 

.06 

9 

- 

.11 

2 

.02 

5 

.14 

1 

- 

.15 

5 

.12 

0 

- 

.09 

8 

- 

.03 

1 

- 

.64 

1** 

- 

.44 

7** 

.75 

0** 

- 

.82 

3** 

1 .45 

0** 

- 

.26 

7 

.05 

2 

- 

.08 

2 

 Sig. (2- 

tailed) 

.91 

8 

.65 

2 

.34 

3 

.62 

5 

.43 

1 

.85 

9 

.31 

9 

.27 

4 

.39 

8 

.48 

8 

.82 

8 

.00 

0 

.00 

1 

.00 

0 

.00 

0 

 .00 

1 

.05 

6 

.71 

3 

.56 

1 

 N 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 

REI Pearson 

Correlat

io n 

- 

.04 

5 

- 

.06 

5 

- 

.09 

4 

.02 

9 

.20 

3 

.04 

7 

- 

.07 

1 

- 

.25 

9 

.19 

7 

.02 

3 

.07 

5 

- 

.29 

9* 

- 

.12 

8 

.25 

2 

- 

.38 

8** 

.45 

0** 

1 - 

.11 

6 

- 

.00 

6 

.15 

4 

 Sig. (2- 

tailed) 

.74 

9 

.64 

6 

.50 

9 

.84 

0 

.14 

8 

.74 

2 

.61 

9 

.06 

4 

.16 

2 

.87 

3 

.59 

7 

.03 

1 

.36 

7 

.07 

1 

.00 

4 

.00 

1 

 .41 

3 

.96 

7 

.27 

5 

 N 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 

SPI Pearson 

Correlat

io n 

.01 

5 

.08 

6 

.19 

9 

- 

.57 

9** 

.14 

6 

- 

.00 

3 

.08 

7 

.11 

6 

- 

.22 

3 

.13 

9 

.05 

9 

.51 

9** 

- 

.42 

4** 

.11 

9 

.39 

3** 

- 

.26 

7 

- 

.11 

6 

1 - 

.06 

4 

.19 

1 

 Sig. (2- 

tailed) 

.91 

7 

.54 

3 

.15 

8 

.00 

0 

.30 

1 

.98 

1 

.53 

8 

.41 

2 

.11 

2 

.32 

7 

.67 

7 

.00 

0 

.00 

2 

.40 

3 

.00 

4 

.05 

6 

.41 

3 

 .65 

1 

.17 

4 

 N 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 

TWI Pearson 

Correlat

io n 

.10 

9 

- 

.17 

3 

- 

.08 

6 

- 

.02 

2 

- 

.08 

1 

.03 

1 

- 

.12 

7 

- 

.33 

5* 

.13 

3 

- 

.00 

9 

.03 

3 

- 

.05 

5 

- 

.00 

9 

.03 

1 

.01 

1 

.05 

2 

- 

.00 

6 

- 

.06 

4 

1 .16 

8 

 Sig. (2- 

tailed) 

.44 

1 

.22 

0 

.54 

6 

.87 

7 

.57 

0 

.82 

9 

.36 

8 

.01 

5 

.34 

6 

.94 

8 

.81 

7 

.70 

1 

.95 

2 

.82 

8 

.93 

8 

.71 

3 

.96 

7 

.65 

1 

 .23 

5 

 N 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 

STI Pearson 

Correlat

io n 

- 

.05 

7 

- 

.09 

2 

- 

.07 

7 

- 

.10 

4 

.00 

2 

- 

.02 

4 

- 

.23 

0 

- 

.18 

7 

.18 

2 

- 

.02 

9 

.02 

2 

.11 

1 

.04 

5 

- 

.09 

0 

.13 

6 

- 

.08 

2 

.15 

4 

.19 

1 

.16 

8 

1 

 Sig. (2- 

tailed) 

.68 

6 

.51 

4 

.58 

8 

.46 

1 

.98 

8 

.86 

6 

.10 

2 

.18 

4 

.19 

6 

.83 

8 

.87 

6 

.43 

3 

.75 

0 

.52 

7 

.33 

6 

.56 

1 

.27 

5 

.17 

4 

.23 

5 

 

 N 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 

**. Correlation is significant at 0.01 level (2-tailed) 

*. Correlation is significant at 0.05 level (2-tailed) 

Source: Authors’ calculation 
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Table 13: Covariances are among the indicators of gully erosion (Rampurhat-I) 

Covariances 

Variabl 

es 

DI Rn S As Fdir Fdis Fl Fs Dd If NDV I MND 

WI 

NDBI BI LST REI SPI TWI STI 

R - - - - 7.83 2.658 0.812 - - - - -0.15 0.219 21.521 2.115 - 0.228 -382.79 0.864 

 0.669 0.01** 0.886 73.833    0.294 0.012 0.044 0.148     0.088    

DI 0.059 - - -0.115 -1.026 -0.268 - 0.011 - - 0.011 0.006* - - - 0.004 0.001 -1.887 -0.009 

 ** 0.002 0.026    0.042* * 0.002 0.002  * 0.013 2.025** 0.117 ** *   

             *  *     

Rn - 0.008 0.036 0.119 -0.037 -0.016 0.001 - 0.002 0.002 0* 
0 0 0.357 0.005 - - 2.576 0.004 

 0.002       0.002  **      0.001 0.002   

S - 0.036 4.059 16.629 - 0.928 0.01 - 0.007 - - -0.047 0.043 14.239 0.437 0.007 - 42.894 0.082 

 0.026    11.989   0.218  0.006 0.015  *    0.014   

As - 0.119 16.62 5905.6 25.376 19.80 -4.072 -6.56 - -0.9 0.325 -1.111 0.981 100.59 -3.18 -0.59 - -1906.955 -1.033 

 0.115  9 34  9   0.343     8   0.414   

Fdir - - - 25.376 817.04 -10.21 0.524 -2.34 0.034 - - 0.147 0.642 34.279 5.704 - 0.503 1312.732 2.275 

 1.026 0.037 11.98  4     0.126 0.646     0.308    

   9                 

Fdis - - 0.928 19.809 -10.21 11.25 -0.021 - - - - -0.053 0.063 16.423 0.379 - -0.22 - -0.44* 

 0.268 0.016    4  0.186 0.036 0.058 0.007     0.023  248.291**  

  *                  

Fl - 0.001 0.01 -4.072 0.524 -0.021 0.359 0.177 0.012 0.024 - 0.006 0.004 -2.223 - 0.016 0.001 -28.055 0.04 

 0.042 *       ** ** 0.003    0.074  **   

           **         

Fs 0.011 - - -6.56 -2.34 -0.186 0.177 0.334 0.015 0.036 0.001 0.007 - -0.518 - 0.015 - -8.318 -0.004 

  0.002 0.218     **  ** **  0.005  0.094  0.007   

                 **   

Dd - 0.002 0.002 0.007 

** 

-0.343 0.034 -0.036 0.012 0.015 

** 

0.003 

** 

0.004 - 0.001 

** 

0 0 -0.065 - 0.004 0 - 0.001 0.133 0.004 

If - 0.002 0.002 - 0.006 

* 

-0.9 -0.126 -0.058 0.024 0.036 

** 

0.004 

** 

0.008 

** 

- 0.002 0.001 0 -0.105 - 0.008 0.001 - 0.001 

* 

0.652 0.006 

NDVI 0.011 0** - 0.015 0.325 -0.646 -0.007 -0.003 0.001 - 0.001 - 0.002 0.014 0.003 - 0.011 

* 

- 

2.016** 
- 0.102 

** 

0.001 

** 

- 0.001 -2.827 -0.006 

MND 

WI 
0.006 0* - 0.047 -1.111* 0.147 -0.053 0.006 0.007 0 0.001 0.003 0.006* - 0.006 - 

1.472** 
- 0.051 

** 

0.001 

** 

- 0.001 -0.282 -0.005 

NDBI - 0.013 0** 0.043 0.981 0.642 0.063 0.004 - 0.005 0 0 - 0.011 - 0.006* 

* 

0.013 

** 

2.559 0.106 

** 

- 0.001 

** 

0.001 0.422 0.007 

BI - 2.025 0.357 

* 

14.23 

9 

100.59 

8 

34.279 16.42 

3 

-2.223 - 0.518 - 0.065 - 0.105 - 2.016 - 1.472* 

* 

2.559 

** 

771.71 

4** 

25.12 

5 

- 0.226 

** 

- 0.004 827 -0.378 

LST - 0.117 0.005 

** 

0.437 -3.18 5.704 0.379 -0.074 - 0.094 - 0.004 - 0.008 - 0.102 - 0.051* 

* 

0.106 

** 

25.125* 

* 

1.248 

** 

- 0.012 0.014 43.097 0.04 

REI 0.004 - 0.001 

* 

0.007 -0.59 -0.308 -0.023 0.016 0.015 

** 

0** 0.001 0.001 

* 

0.001 - 0.001 -0.226 - 0.012 0.003 0.001 -1.437 0.001 

SPI 0.001 - 0.002 - 0.014 -0.414 0.503 -0.22 0.001* 

* 

- 0.007 - 0.001 - 0.001 - 0.001 -0.001 0.001 -0.004 0.014 0.001 0.018 11.968 0.024** 

TWI - 1.887 2.576 42.89 

4 

- 1906.9 

55 

1312.7 

32 

- 248.2 

91 

- 28.05 

5* 

- 8.318 0.133 0.652 - 2.827 -0.282 0.422 827 43.09 

7 

- 1.437 11.96 

8 

59021.39 

9** 

17.117 

STI - 0.009 

* 

0.004 0.082 -1.033 2.275 -0.44 0.04** - 0.004 0.004 0.006 - 0.006 -0.005 0.007 -0.378 0.04 0.001 0.024 17.117** 0.135 

**. Significant at 0.01 level (2-tailed) 

 

*. Significant at 0.05 level (2-tailed) 

Source: Authors’ calculation 
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Table 14: Covariances are among the indicators of gully erosion (Bolpur-Sriniketan) 

Covariances 

Variabl 

es 

R DI Rn S As Fdir Fdis Fl Fs Dd If NDV I MND WI NDB I BI LST REI SPI TWI STI 

1 - 

.781* 

* 

0.07 

5 

0.192 -0.036 -0.147 0.166 0.02 

2 

-.343* - 0.149 - 0.217 0.08 -0.052 0.042 0.071 - 0.015 - 0.045 0.015 0.109 - 0.057 

R 69.76 - 0.05 2.047 -24.506 -33.16 5.189 0.01 - - -0.81 0.098 -0.064 0.054 0.06 - - 0.013 461.351 - 

 6 6.97*       0.381 1.226      0.153 0.134   0.206 

  *       *            

DI -6.97** 1.142 0 - 4.246 3.527 0.255 0.01 0.012 - - 0.015 0.001 - 0.012 - - 0.01 -93.481 - 

    0.278    2  0.109 0.043   0.009  0.085 0.025   0.042 

Rn 0.05 0 0.00 - 0.637 -0.295 0.026 0.00 - -0.01 - 0.001 -0.001 - 0.001 - - 0.002 -3.476 - 

   6 0.005    1 0.002  0.007   0.001  0.013 0.003   0.003 

S 2.047 - - 1.631 -8.12 -4.768 - -0.01 - - - - 0.089** - -0.04* 0.111 0.013 - -14.166 - 

  0.278 0.00    0.316  0.029 0.208 0.145 0.064  0.051    0.079  0.057 

   5         *      **   

As - 4.246 0.63 -8.12 6800.3 146.3 - -0.75 0.161 1.961 1.954 2.789 -1.328 - 0.716 -11.5 5.912 1.285 - 0.073 

 24.50  7  27 82 58.28       0.832     3364.62  

 6      9            4  

Fdir -33.16 3.527 - 0.29 

5 

- 4.768 146.38 

2 

730.1 

02 

10.03 

4 

0.12 

9 

0.771 2.993 1.737 0.277 -0.746 0.185 0.015 0.849 0.446 -0.01 420.095 - 0.278 

Fdis 5.189 0.255 0.02 

6 

- 0.316 -58.289 10.03 

4 

14.02 

2 

0.02 

8 

- 0.181 

** 

- 0.801 - 0.432 0.088 -0.092 0.055 -0.01 0.659 - 0.093 0.035 -241.48 -0.37 

Fl 0.01 0.012 0.00 

1 

-0.01 -0.75 0.129 0.028 0.00 

3 

- 0.001 0.004 0.002 0.001 0 0 0.001 -0.01 - 0.005 0.001 -9.094* - 0.004 

Fs - 0.381* 0.012 - 0.00 

2 

- 0.029 0.161 0.771 - 0.181 

** 

- 0.00 

1 

0.018 0.006 0.021 

* 

- 0.006 

* 

0.001 0.002 - 0.003 0.02 0.009 - 0.003 8.968 0.01 

Dd -1.226 - 0.109 - 0.01 - 0.208 1.961 2.993 - 0.801 0.00 

4 

0.006 0.975 0.407 

** 

0.008 -0.018 0.018 0.003 - 0.121 0.008 0.015 -4.616 - 0.012 

If -0.81 - 0.043 - 0.00 

7 

- 0.145 1.954 1.737 - 0.432 0.00 

2 

0.021 

* 

0.407 

** 

0.199 - 0.003 -0.01 0.012 - 0.002 - 0.017 0.012 0.003 7.421 0.004 

NDVI 0.098 0.015 0.00 

1 

- 0.064 

* 

2.789 0.277 0.088 0.00 

1 

- 0.006 

* 

0.008 - 0.003 0.022 -0.003 - 0.007 

* 

0.012 - 0.118 

** 

- 0.016 

* 

0.008 

** 

-4.069 0.007 

MNDW I -0.064 0.001 - 0.00 

1 

0.089 

** 

-1.328 -0.746 - 0.092 0 0.001 - 0.018 -0.01 - 0.003 0.022 - 0.018 

** 

0.003 - 0.082 

** 

- 0.007 - 0.007 

** 

-0.641 0.003 

NDBI 0.054 - 0.009 - 0.00 

1 

- 0.051 -0.832 0.185 0.055 0 0.002 0.018 0.012 - 0.007 

* 

- 

0.018** 

0.023 - 0.009 

** 

0.144 

** 

0.014 0.002 2.392 - 0.006 

BI 0.06 0.012 0.00 

1 

-0.04* 0.716 0.015 -0.01 0.00 

1 

- 0.003 0.003 - 0.002 0.012 

** 

0.003 - 0.009 

** 

0.01 - 0.105 

** 

- 0.014 

** 

0.004 

** 

0.568 0.006 

LST -0.153 - 0.085 - 0.01 

3 

0.111 -11.5 0.849 0.659 -0.01 0.02 - 0.121 - 0.017 - 0.118 

** 

- 

0.082** 

0.144 

** 

- 0.105 

** 

1.561 0.198 

** 

- 0.036 33.015 - 0.044 

REI -0.134 - 0.025 - 0.00 

3 

0.013 5.912 0.446 - 0.093 - 0.00 

5 

0.009 0.008 0.012 - 0.016 

* 

-0.007 0.014 - 0.014 

** 

0.198 

** 

0.124 - 0.004 -1.045 0.023 

SPI 0.013 0.01 0.00 

2 

- 0.079 

** 

1.285 -0.01 0.035 0.00 

1 

- 0.003 0.015 0.003 0.008 

** 

- 

0.007** 

0.002 0.004 

** 

- 0.036 - 0.004 0.011 -3.467 0.009 

TWI 461.3 

51 

- 93.48 

1 

- 3.47 

6 

- 14.16 

6 

- 3364.6 

24 

420.0 

95 

- 241.4 

8 

- 9.09 

4* 

8.968 - 4.616 7.421 - 4.069 -0.641 2.392 0.568 33.01 

5 

- 1.045 - 3.467 255915. 

13 

36.48 

6 

STI -0.206 - 0.042 - 0.00 

3 

- 0.057 0.073 -0.278 -0.37 - 0.00 

4 

0.01 - 0.012 0.004 0.007 0.003 - 0.006 0.006 - 0.044 0.023 0.009 36.486 0.185 

**. Significant at 0.01 level (2-tailed) 

 

*. Significant at 0.05 level (2-tailed) 

Source: Authors’ calculation 
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