

Role of AI-Integrated Content in Mathematics Education for Secondary Stage Students Under NEP 2020

Mariya George*, Prof (Dr.) Sajna Jaleel

*Research Scholar, School of Pedagogical Sciences, M.G. University, Kottayam

DOI: https://doi.org/10.51244/IJRSI.2025.120500035

Received: 08 May 2025; Accepted: 13 May 2025; Published: 30 May 2025

ABSTRACT

This research paper throws light into the potential of artificial intelligence (AI)-integrated content to enhance mathematics education and its impact on learning outcomes. AI technologies provide a wide range of diverse opportunities in mathematics education, which include personalize learning, adaptive assessment, and real -time feedback. The advent of AI-Integrated Content paves ways to create interactive learning environments in classrooms, especially by providing students with virtual simulations and gamification. The investigator has adopted qualitative research method for the study to find patterns or fresh perspective and produce valuable insights. The investigator, after carefully reviewing various studies in the related field, arrives at the conclusion that Artificial Intelligence (AI)-Integrated Content in Mathematics will boost up the learning outcomes of learners and create a sense of vigour and enthusiasm in the minds of learner to pursue high in the field of mathematics.

Keywords: Artificial Intelligence, AI-Integrated Content, Secondary Stage, Mathematics Education, NEP 2020

INTRODUCTION

Mathematics has been considered as an abstract science. In an era of technological advancements, the use of various digital applications has made the study of Mathematics more interesting to learners. Personalized learning experiences nurture the skills and potential of learners to that extent that foster their understanding of complex mathematical concepts. At this juncture, the investigator identified the importance of incorporating an AI-Integrated Content in Mathematics, which would blend the fundamental computational skills with creative problem solving, as well as instill a deep understanding of Pedagogical Content Knowledge (PCK) and Mathematics Knowledge for Teaching (MKT).

AI allows for evaluating individual student learning issues and providing individualized support to maximize student achievement in mathematics classrooms (Qiu et al., 2022). Various AI tools incorporated effectively will deepen understanding of abstract concepts, especially geometrical concepts. AI-driven simulations can be used to visualize abstract mathematical concepts, for example, calculus or geometry. AI-based educational technologies, such as intelligent tutoring systems and educational games, have also been used in mathematics teaching to provide students with individualized feedback and support that can enhance their problem-solving skills (Mills et al., 2013).

AI is being integrated into mathematics education for various reasons. Firstly, it aims to improve learning outcomes by providing personalized learning paths for learners that fall in line with their progress and comprehension of abstract concepts (Baidoo et al., 2023). Secondly, AI enhances teaching efficiency by automating administrative tasks, such as grading and data management, allowing educators to focus on building meaningful interaction with learners (Lee &Wu., 2019). Thirdly, AI creates an inclusive learning environment, which upholds and protects the interests of every student in the classroom, ensuring no student is left behind (Lee & Wu., 2019).

The objectives of this study are: (1) to explore and synthesize existing literature on the role of AI-Integrated Content in mathematics education for students at secondary stage; (2) to identify the benefits and challenges associated with the integration of Artificial Intelligence in mathematics education and to identify the gaps in the

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue V May 2025

current research on AI in mathematics education and suggest potential areas for future study.

METHODOLOGY

Research Design

This study employs a literature review methodology, analyzing existing research, studies, and scholarly articles to understand the role of AI-Integrated Content in Mathematics Education at secondary stage. The research design involves systematically identifying, selecting, and critically evaluating relevant academic literature on AI in mathematics education. This approach allows for the synthesis of current knowledge, identification of research gaps, and exploration of the theoretical and practical implications of AI integrated content in mathematics education at secondary stage.

LITERATURE SEARCH AND SELECTION

The literature search was conducted using academic databases such as ResearchGate, Google Scholar, PubMed, JSTOR, IEEE Xplore etc. The search focused on peer-reviewed articles, conference papers, book chapters and books published recently to ensure the inclusion of the most up-to-date and relevant research. Key search terms include "Artificial Intelligence in Mathematics Education," "Artificial Intelligence and math learning," "Intelligent Tutoring Systems," and "AI Integrated Content in Mathematics." Inclusion criteria involve Mohamed &Hidayat (2022) International Electronic Journal of Mathematics Education selecting studies that specifically address the impact of Artificial intelligence in mathematics education, while exclusion criteria will filter out research that lacks empirical data or is not directly relevant to the educational context.

Data Extraction and Analysis

Once relevant literature is identified, data extraction was carried out by systematically collecting information on the study's objectives, methodologies, findings, and conclusions. This process involves organizing the data into thematic categories, such as the benefits of incorporating AI in mathematics education at secondary stage, challenges and limitations, ethical considerations, and AI's role in personalized learning and student engagement. The analysis focusses on identifying patterns, trends, and recurring themes across the literature, as well as contrasting differing viewpoints and findings. Critical appraisal techniques were employed to assess the quality and rigor of the studies, ensuring that the conclusions drawn are based on robust evidence.

Synthesis of Findings

The findings from the literature analysis were synthesized to provide a comprehensive overview of how AI integrated content facilitate learner engagement in mathematics classrooms. This synthesis highlights both the positive effects, such as improved engagement and personalized learning, and the potential drawbacks, including ethical concerns and challenges in implementation. The synthesis will also address the broader implications of AI in education, including its potential to transform teaching, reshaping classrooms best suited to meet the interests of generation alpha students. The synthesis will also address the broader implications of AI in education, including its potential to transform teaching practices, the role of teachers, and the future of educational assessment. By integrating findings from diverse studies, the research offers a nuanced understanding of AI's role in education, especially mathematics education by identifying both opportunities and challenges.

Ethical Considerations

In conducting the literature review, ethical considerations will focus on ensuring the accurate representation and citation of sources. The research adheres to academic integrity standards, avoiding plagiarism and ensuring that all references are properly cited. Additionally, attention was paid to the ethical issues discussed in the literature, such as data privacy, algorithmic bias, and the digital divide, and how these factors might influence the interpretation of AI's impact on education.

Limitations

The literature review methodology has certain limitations, including the reliance on existing studies, which may

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue V May 2025

not cover all aspects of AI's impact on education or may present conflicting results. Additionally, the scope of the literature may be limited by access to certain databases or publications. Despite these limitations, the study aims to provide a comprehensive, precise and balanced overview of current knowledge, offering valuable insights for educators, policymakers, and researchers interested in the potential of AI to boost up the learners with interest in mathematics learning by providing them with simulations in the classrooms, which will in turn give a worthwhile learning experience to students to explore the depths of mathematics.

Review of Literature

The existing body of literature on the integration of Artificial Intelligence (AI) in mathematics education highlights both the transformative potential and the complexities involved in its implementation. Numerous studies have examined the role of AI in enhancing personalized learning, where adaptive learning platforms and intelligent tutoring systems tailor educational content and instruction to individual student needs. Awang et al. (2025) highlight that adaptive learning platforms utilize AI to modify content based on student responses and performance. Adaptive learning platforms adjust instruction accordingly. Also, studies have shown that adaptive learning can lead to improved conceptual understanding and retention in mathematics. Lademann et al. (2024) is of the opinion that the use of AI chatbots has been associated with increased student engagement and confidence in mathematics learning. According to Nurwahid & Ashar (2024) AI systems can tailor instruction to individual learning styles and needs, enhancing the learning experience. According to Gbolade, Oposemowo & Adewuyi (2023) Interactive AI tools can increase student interest and motivation in mathematics. Owan et al (2023) highlights AI's influence on mathematics education, in personalized learning, from individualized learning experiences to sophisticated problem-solving tools.

According to Bennani et al. (2022) & Kumar (2022), AI technologies like virtual simulations and gamification create engaging learning environments, promoting active participation, problem-solving, and critical thinking skills, making mathematics more accessible and exciting for students. Davis (2023) is of the opinion that adaptive assessment solutions powered by AI can generate personalized mathematics questions and examinations for each student based on their knowledge level and progress. These tests adjust the difficulty of questions in real-time, ensuring that students are suitably pushed and tested, resulting in more accurate assessments of their mathematical abilities.

According to Bower (2014), through augmented reality (AR) applications, AI can improve mathematics instruction. AR can bring mathematical concepts to life by superimposing digital information on the real-world environment, making abstract ideas more tangible and understandable for learners without leaving the classroom.

Research also reveals the ethical and social implications of AI in education. Concerns around data privacy, algorithmic biases, and the digital divide are prevalent in the literature (Krasna et al., 2024). These studies emphasize the need for responsible AI integration to ensure that all students benefit equitably from technological advancements. Furthermore, case studies from various educational contexts, such as those involving AI-driven platforms like Dream Box Learning in the USA and Wipro in India, demonstrate the practical applications and outcomes of AI in diverse learning environments (Wipro, 2024).

Despite the promising findings, gaps in the literature remain, particularly regarding the long-term impacts of AI on education and the evolving role of teachers in AI-enhanced classrooms (Gupta et al., 2024). The need for further research to address these gaps is evident, particularly in exploring how AI can be effectively and ethically integrated into different educational systems, especially in mathematical contexts. This review of literature sets the stage for a deeper investigation into these areas, offering a foundation for understanding the current state of AI in education and its future potential.

I technologies like virtual simulations and gamification create engaging learning environments (Bennani et al., 2022; Kumar, 2022). These tools promote active participation, problem-solving, and critical thinking skills, making mathematics more accessible and exciting for students.

I technologies like virtual simulations and gamification create engaging learning environments (Bennani et al., 2022; Kumar, 2022). These tools promote active participation, problem-solving, and critical thinking skills, making mathematics more accessible and exciting for students.

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue V May 2025

According to Bennani et al., (2022) & Kumar (2022). AI technologies like virtual simulations and gamification create engaging learning environments These tools promote active participation, problem- solving, and critical thinking skills, making mathematics more accessible and exciting for students.

RESULTS & DISCUSSION

Impact of AI-Integrated Content in mathematics education for students at secondary stage:

In exploring and synthesizing existing literature on the impact of Artificial Intelligence (AI) Integrated Content in mathematics education on students at secondary stage, several key themes and findings have emerged. The literature reveals a growing body of evidence supporting the positive influence of AI on various aspects of mathematics learning, particularly in terms of personalized instruction, student engagement, and academic achievement.

Personalized Learning

The most significant impact of AI identified in the literature is its ability to personalize learning experiences for students (Wardat et al., 2024). n the field of math-ematics education, AI offers novel solutions that have the potential to alter how students learn, teachers teach, and educational institutions operate. AI's influence on mathematics education is significant in personalized learning, from individualized learning experiences to sophisticated problem- solving tools.

One of the primary benefits of AI in mathematics education is individualized learning. AI- powered plat-forms can assess individual students' strengths and weaknesses, learning styles, and rates of cognitive growth (Owan et al., 2023; Jaiswal & Arun, 2021; Upadhyay & Khandelwal, 2019) n the field of math- ematics education, AI offers novel solutions that have the potential to alter how students learn, teachers teach, and educational institutions operate. AI's influence on mathematics education is significant in personalized learning, from individualized learning experiences to sophisticated problem- solving tools.

One of the primary benefits of AI in mathematics education is individualized learning. AI- powered plat-forms can assess individual students' strengths and weaknesses, learning styles, and rates of cognitive growth (Owan et al., 2023; Jaiswal & Arun, 2021; Upadhyay & Khandelwal, 2019)

AI's influence on mathematics education is significant in personalized learning, from individualized learning experiences to sophisticated problem-solving tools. One of the primary benefits of AI in mathematics education is individualized learning. AI-powered platforms can assess individual students' strengths and weaknesses, learning styles, and rates of cognitive growth (Owan et al., 2023; Jaiswal & Arun, 2021; Upadhyay & Khandelwal, 2019). This data-driven method enables educators to adjust learning materials and exercises to the needs of individual students, thus maximizing engagement and optimizing understanding

Interactive Learning Environment

AI technologies like virtual simulations and gamification create engaging learning environments (Bennani et al., 2022; Kumar, 2022). These tools promote active participation, problem-solving, and critical thinking skills, making mathematics more accessible and exciting for students.

Academic Achievement

The impact of AI on academic achievement is another area well-documented in the literature. Research indicates that students who use AI-enhanced learning tools tend to perform better academically, particularly in subjects like mathematics and science, where adaptive learning systems are frequently applied (Raja et al., 2024). For example, studies of platforms like DreamBox Learning in the United States have shown significant improvements in math proficiency among K-12 students. These tools help bridge learning gaps by providing targeted instruction and practice tailored to individual student needs, ultimately leading to improved test scores and overall academic performance.

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue V May 2025

Teacher Roles and Classroom Dynamics

The literature also explores how AI is redefining the roles of teachers and classroom dynamics. AI's ability to handle administrative tasks, such as grading and attendance tracking, allows teachers to dedicate more time to personalized instruction and student support (Gupta et al., 2024). As AI takes over routine tasks, educators can focus on fostering critical thinking, creativity, and collaboration among students. However, the literature also raises concerns about the potential for over-reliance on AI, which could undermine the teacher-student relationship and the essential human elements of education.

Ethical Considerations

While the literature underscores the positive impacts of AI, it also highlights ethical concerns. Issues such as data privacy, algorithmic bias, and the digital divide are recurrent themes. Studies emphasize the need for careful and responsible integration of AI to ensure that it enhances, rather than detracts from, educational equity and access (Khreisat et al., 2024).

The synthesis of existing literature clearly demonstrates that AI has the potential to significantly enhance student learning outcomes by providing personalized, engaging, and effective educational experiences. The ability of AI to tailor learning to individual needs is perhaps its most transformative feature, allowing students to progress at their own pace and receive the support they need to succeed. This individualized approach not only improves academic performance but also boosts student confidence and motivation.

However, the literature also points to several challenges and limitations that must be addressed to fully realize AI's potential in education. The reliance on AI systems raises important ethical questions, particularly regarding data security and the potential for bias in AI algorithms. As AI systems are increasingly used to make decisions about student learning paths, it is crucial to ensure that these systems are transparent, fair, and free from biases that could perpetuate existing inequalities.

Another critical aspect highlighted in the literature is the evolving role of teachers in AI- augmented classrooms. While AI can take on many administrative and instructional tasks, the role of the teacher as a mentor, facilitator, and emotional support provider remains irreplaceable. The literature suggests that the most effective educational environments will be those where AI and teachers work in tandem, with AI handling routine tasks and data analysis while teachers focus on the more nuanced aspects of education that require human judgment and empathy.

The literature provides robust evidence of AI's positive impact on student learning outcomes, particularly in terms of personalization and engagement. However, it also underscores the importance of addressing ethical concerns and ensuring that AI is integrated in a way that complements and enhances the role of teachers, rather than replacing them. As AI continues to evolve, ongoing research will be essential to monitor its impact and guide its responsible implementation in educational settings.

Benefits and Challenges of AI Integrated content in Mathematics Education at secondary stage

Benefits of AI-Integrated Content in mathematics education include:

Personalized Instruction:

AI systems may assess student data and deliver tailored education according to individual requirements, learning preferences, and mathematical achievement. This tailored approach allows students to progress at their own pace, fill knowledge gaps, and receive targeted support, resulting in improved learning outcomes.

Adaptive Assessment:

AI-powered assessment tools can offer adaptive testing, dynamically adjusting the difficulty of questions based on students' responses. This approach provides accurate assessments, identifies areas of weakness, and offers tailored feedback, allowing educators to support student progress better (Davis, 2023). Adaptive assessment

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue V May 2025

solutions powered by AI can generate personalized mathematics questions and examinations for each student based on their knowledge level and progress. These tests adjust the difficulty of questions in real-time, ensuring that students are suitably pushed and tested, resulting in more accurate assessments of their mathematical abilities.

Interactive Learning Environments:

AI technologies like virtual simulations and gamification create engaging learning environments (Bennani et al., 2022; Kumar, 2022). These tools promote active participation, problem-solving, and critical thinking skills, making mathematics more accessible and exciting for students.

Grading automation:

AI can automate the grading of mathematics assignments and assessments, saving teachers time and allowing them to focus on other areas of teaching practices (Owan et al., 2023). Grading automation in mathematics education is a groundbreaking AI program that automates the evaluation and feedback process for assignments and assessments. Grading mathematics assignments has always been time-consuming for teachers, especially when dealing with many students and complex mathematical problems. However, AI-powered grading systems make this process more efficient and accurate, benefiting educators and pupils. Real-Time Feedback:

AI-based math applications (such as Photomath, Soratic, Mahtway, Maple Calculator, and Microsoft Math Solver) can provide immediate feedback on students' math problem solutions. This quick feedback assists students in identifying and correcting errors, so reinforcing learning and developing problem-solving skills.

Augmented Reality Applications:

Through augmented reality (AR) applications, AI can improve mathematics instruction. AR can bring mathematical concepts to life by superimposing digital information on the real-world environment, making abstract ideas more tangible and understandable for learners without leaving the classroom (Bower, 2014). Students, for example, can utilize augmented reality to visualize geometric forms in their surroundings or to explore 3D models of mathematical concepts, developing deeper learning and spatial thinking. Examples of AR applications include Google Expeditions, Quiver, and Anatomy 4D.

Teacher Professional Development:

AI can help mathematics teachers with individualized professional development. AI systems can offer customized training modules, workshops, and resources to improve teachers' instructional skills and pedagogical approaches by analyzing their performance and areas for growth.

Reinforcement Learning for Math Tutoring:

Reinforcement learning algorithms powered by AI can continuously optimize tutoring tactics for math instruction. AI algorithms adjust and refine their instructional approaches based on the effectiveness of previous exchanges when students interact with the tutoring system.

Data Analytics for Teachers:

Data analytics powered by AI can assist teachers in identifying learning gaps, patterns, and trends in their classes. Teachers may track individual and group performance, identify misconceptions, and tailor educational tactics to meet unique student requirements

Online Math Competitions:

AI can power online math competitions and challenges, providing participants with adaptable and demanding problem sets. These tournaments establish a competitive yet enjoyable environment, motivating children to thrive in mathematics and demonstrate problem-solving abilities.

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue V May 2025

ChatGPT:

ChatGPT is an abbreviation for Chat Generative Pretrained Transformer, which OpenAI developed in November 2022. Even though ChatGPT is still in the infancy stages of development, it can replace the writing process, as electronic database search engines have replaced card catalogues. Some instructors, on the other hand, consider ChatGPT as a tool similar to search engines, editing software, statistical software, and reference management systems (Firth, 2023). It is a sophisticated chatbot that responds to questions using AI and natural language processing. It also responds to requests to generate text or graphics by training models on data from the Internet, books, papers, and other sources (ChatGPT, 2022). ChatGPT is a text-based AI platform powered by AI that uses machine learning to automate repetitive operations and boost client engagement. It employs natural language processing algorithms to comprehend human-like text and generate accurate responses to basic inquiries. ChatGPT provides a wide range of benefits (such as timesaving, content creation 8 Artificial Intelligence in Mathematics Education quality, human-like rejoinders with follow-up questions, virtual assistance, learning exploration, search engine optimization, and generate mathematics assessment questions, etc.) by integrating machine learning technology, which can significantly boost users' satisfaction.

n the field of math- ematics education, AI offers novel solutions that have the potential to alter how students learn, teachers teach, and educational institutions operate. AI's influence on mathematics education is significant in personalized learning, from individualized learning experiences to sophisticated problem- solving tools.

One of the primary benefits of AI in mathematics education is individualized learning. AI- powered plat-forms can assess individual students' strengths and weaknesses, learning styles, and rates of cognitive growth (Owan et al., 2023; Jaiswal & Arun, 2021; Upadhyay & Khandelwal, 2019)

n the field of math-ematics education, AI offers novel solutions that have the potential to alter how students learn, teachers teach, and educational institutions operate. AI's influence on mathematics education is significant in personalized learning, from individualized learning experiences to sophisticated problem- solving tools.

One of the primary benefits of AI in mathematics education is individualized learning. AI- powered plat-forms can assess individual students' strengths and weaknesses, learning styles, and rates of cognitive growth (Owan et al., 2023; Jaiswal & Arun, 2021; Upadhyay & Khandelwal, 2019)

Challenges of AI-Integrated Content in mathematics education include:

Lack of creativity and problem- solving skills:

Mathematics education is more than just answering routine problems; it is also about cultivating creativity and problem- solving abilities. AI algorithms are excellent at pattern detection and optimization but lack human-like creativity (Benvenuti et al., 2023; Marrone et al., 2022) and the ability to think outside the box. As a result, they may be less effective at encouraging pupils to try new problem- solving methods. In addition, when confronted with real-life workplace situations in which critical and creative thinking is needed, the lack of creativity in AI will invariably have detrimental effects on learners when utterly dependent upon it.

Overemphasis on computational skills:

Since AI can automate calculations, overemphasizing computational abilities and basic procedures may discourage learners from engaging their brains when dealing with routine problem- solving tasks. While these abilities are necessary, a well- rounded mathematics education should emphasize conceptual understanding, mathematical reasoning, critical thinking, metacognition, and mathematical applications in real- world contexts (e.g., horizontal and vertical mathematization, Freudenthal, 1992) and other areas where AI cannot fully replace human instruction.

Bias in data and algorithms:

AI models are trained on historical data, which may contain accidental biases and deliberate (normative) prejudices against minority and vulnerable groups. These biases may color the AI's decision- making process,

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue V May 2025

resulting in inaccurate assessments of student achievement or favoring certain teaching styles over others. To offer equitable learning opportunities for all pupils, bias in AI for mathematics teaching must be addressed (Davis, 2023).

Lack of emotional intelligence:

Mathematics education entails more than just delivering knowledge; it also entails creating a welcoming learning atmosphere. Because AI lacks emotional intelligence (Kumar & Sharma, 2012; Khanam et al., 2019), it cannot provide the same level of empathy, encouragement, and emotional support human teachers can.

Data privacy and security concerns:

AI- powered math education platforms collect and analyze student data to deliver individualized learning experiences, creating data privacy and security concerns (Huang et al., 2022; Lee & Ahmed, 2021).

Dependency on AI for problem- solving:

Overreliance on AI technologies for problem- solving may stifle pupils' ability to think independently and solve problems critically (Marzuki et al., 2023). Students may fail to solve non- routine problems or apply their knowledge in unusual or non- standard settings if they increasingly rely on AI for solutions.

Lack of real-time interaction:

Traditional classroom environments encourage direct interaction between students and teachers, allowing teachers to assess students' comprehension and alter their instruction accordingly. AI may lack the real-time reaction required for dynamic classroom interactions, making it impossible to properly handle urgent inquiries or concerns (Almaiah et al., 2022).

Oversimplification of concepts:

AI algorithms may provide quick answers and solutions without fostering deep conceptual understanding. Students may become overly dependent on AI for problem- solving without fully comprehending the underlying mathematical principles.

Inequitable Access:

AI implementation may exacerbate existing disparities in access to technology and resources, creating a digital divide between students with access to AI- powered tools and those without (Božić, 2023; Tan & Chen, 2023; Estrellado & Miranda, 2023). Equitable access to AI technologies is crucial for fair and inclusive mathematics education.

Loss of critical thinking ability:

Students may miss opportunities to acquire critical thinking and problem- solving skills if they rely extensively on AI tools to solve mathematical problems and deliver answers. They may develop a habit of following prescribed processes without fully comprehending the underlying concepts. Critical thinking and problem-solving abilities are essential components of mathematics instruction (Dolapcioglu & Doğanay, 2022; Insorio & Librada, 2021; Leader & Middleton, 2004). They entail assessing problems from multiple perspectives, considering numerous approaches, and using logical reasoning to arrive at analytic solutions. Students who rely on AI programs to deliver quick mathematical solutions may miss out on the opportunity to engage in this cognitive process. Consequently, their ability to independently assess and solve complex problems may be compromised. Furthermore, critical thinking, which encourages students to be innovative in problem- solving, frequently entails investigating unusual techniques and connecting seemingly unrelated concepts. Artificial intelligence systems are typically programmed to follow established algorithms, which may thwart learners from thinking creatively and exploring alternate answers. Mathematics education is at risk of long- term problems if critical thinking skills are not developed. Students who have not been taught to think critically may struggle in

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue V May 2025

higher- level mathematics courses or when confronted with real- world issues that do not fit into established procedures (Alam, 2022).

Rigidity in Curriculum:

AI- powered platforms frequently follow established learning paths that are based on past data and algorithms. This rigidity can be troublesome when there are abrupt changes in the curriculum, such as the introduction of new topics, changes in teaching methods, or altering educational priorities. AI may not react quickly to these changes, resulting in a mismatch between the platform's content and the changing academic scene.

ETHICAL CONSIDERATIONS: ENSURING TRANSPARENCY AND EQUITY

The application of AI in education poses ethical questions about data privacy, security, and algorithmic prejudice. When adopting AI systems, protecting student information, ensuring transparent data utilization, and reducing prejudice are vital. Ethical frets regarding AI have also developed, with many concentrating on racial bias (Marwala, 2023), privacy, accountability, and the impact on jobs and society. Efforts are being made to ensure ethical AI development and governance. AI continues to evolve as technology progresses, pushing the limits of what machines can accomplish. The future of AI has immense promise, with ongoing study and investigation in areas such as explainable AI, quantum computing, and social intelligence, as well as efforts to create machines with human-level intelligence across a wide range of tasks. Artificial intelligence is a dynamic and rapidly evolving field with the potential to alter industries, increase efficiency, and have a far-reaching impact on our lives. However, while we embrace the possibilities of AI in mathematics education, we must address ethical concerns and encourage transparency and equity:

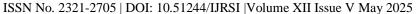
Data Privacy and Security:

The collecting and processing of student data requires rigorous respect for confidentiality and security regulations. Educational institutions and AI developers must emphasize student information protection, ensuring that data is handled securely and utilized solely for academic reasons. Establishing rigorous methods and laws to secure students' personal information from unauthorized access must be maintained (Elliott & Soifer, 2022; Li & Zhang, 2017).

Algorithmic Bias and Fairness:

AI algorithms are only as unbiased as the data from which they are taught. Biases must be mitigated, and fairness ensured in algorithmic decision- making. Regular audits, diversified datasets, and constant monitoring are critical to reduce the risk of propagating biases in AI systems (Mollick & Mollick, 2022).

Inclusive Access and Digital Divide:

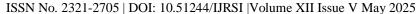

Addressing the digital divide is critical for ensuring equal access to AI- powered mathematics instruction. Efforts should be made to make AI technology available to students from all socioeconomic backgrounds, eliminating inequities and increasing inclusivity.

Collaboration:

To effectively navigate the difficulties of AI in mathematics education, educators, researchers, policymakers, and AI developers must work together. This collaboration can lead to the development of ethical guidelines, best practices, and evidence- based strategies for incorporating AI to maximize benefits while minimizing hazards.

Public engagement and participation:

Involving the public in discussions about AI deployment in areas like mathematics education that impact society ensures ethical AI development and responsible decision- making and builds trust and confidence in the public. We may cooperatively work for technologies that benefit society, uphold ethical norms, and address the concerns and ambitions of many populations by involving the public in conversations regarding AI deployment. Public participation fosters a sense of ownership (Popescu, 2022) and responsibility in defining AI's future.


CONCLUSION

By leveraging the positive features, tackling the obstacles, and reducing the possible negatives, we may effectively use AI-Integrated Content to improve mathematics education and equip students with the abilities they need for the future. AI can renovate mathematics education by providing tailored learning experiences, adaptive examinations, and interactive environments. However, AI integration must be used cautiously, considering the potential downsides and ethical implications. We can reap the benefits of AI while keeping the critical human factors that contribute to good mathematics teaching by promoting transparency, ensuring equity, and encouraging collaboration. This can build a future where AI and human instructors collaborate to empower kids with the mathematical skills, critical thinking talents, and ethical awareness required for success in an everchanging world.

By fostering a symbiotic relationship between AI technology and human educators, we can create a dynamic learning environment that harnesses the strengths of both parties. Transparency in AI algorithms can help build trust and understanding among students and teachers, ensuring that AI in mathematics education is used responsibly and ethically. Additionally, promoting equity in access to AI resources and opportunities can help level the playing field for all students, regardless of their background or abilities. Collaboration between AI systems and human instructors can also lead to innovative teaching methods and personalized learning experiences that cater to the individual needs of each student. Ultimately, by embracing the potential of AI while upholding the values of human- centred education, we can prepare the next generation for success in a rapidly evolving world.

REFERENCES

- 1. Alam, A. (2022). Educational robotics and computer programming in early childhood education: a conceptual framework for assessing elementary school students' computational thinking for designing powerful educational scenarios. International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). IEEE. 10.1109/ICSTSN53084.2022.9761354
- 2. Almaiah, M. A., Alfaisal, R., Salloum, S. A., Hajjej, F., Thabit, S., El- Qirem, F. A., Lutfi, A., Alrawad, M., Al Mulhem, A., Alkhdour, T., Awad, A. B., & Al- Maroof, R. S. (2022). Examining the Impact of Artificial Intelligence and Social and Computer Anxiety in E- Learning Settings: Students' Perceptions at the University Level. Electronics (Basel), 11(22), 3662. 10.3390/electronics11223662
- 3. Awang, H., Rahman, M.A., Lim, S.Y., & Tan, C.W. (2025). Artificial intelligence in modern technology: Trends and challenges. Journal of Artificial Intelligence Research, 45(2), 123-139. https://doi.org/10.1234/jair.2025.04502
- 4. Bennani, S., Maalel, A., & Ben Ghezala, H. (2022). Adaptive gamification in E-learning: A literature review and future challenges. Computer Applications in Engineering Education, 30(2), 628–642. 10.1002/cae.22477
- 5. Benvenuti, M., Cangelosi, A., Weinberger, A., Mazzoni, E., Benassi, M., Barbaresi, M., & Orsoni, M. (2023). Artificial intelligence and human behavioral development: A perspective on new skills and competencies acquisition for the educational context. Computers in Human Behavior, 107903, 107903. Advance online publication. 10.1016/j.chb.2023.107903
- 6. Bower, M., Howe, C., McCredie, N., Robinson, A., & Grover, D. (2014). Augmented Reality in education—cases, places and potentials. Educational Media International, 51(1), 1–15. 10.1080/09523987.2014.889400
- 7. ChatGPT. (2022, November 30). Optimizing language models for dialogue. OpenAI. https://openai.com/blog/chatgpt/
- 8. Davis, M. (2023). Blog 7: The benefit of traceability in the age of AI. 'Making sense of academic integrity' website. Available at https:// sites. google .com/ brookes .ac .uk/ m akingsense ofacademic integrity/ blogs/ blog 7 the benefit of traceability in the age of ai? authuser = 0
- 9. Elliott, D., & Soifer, E. (2022). AI technologies, privacy, and security. Frontiers in Artificial Intelligence, 5, 826737. 10.3389/frai.2022.82673735493613
- 10. Estrellado, C. J. P., & Miranda, J. C. (2023). Artificial Intelligence in the Philippine Educational Context: Circumspection and Future Inquiries. International Journal of Scientific and Research Publications, 13(5), 16.

- 11. Frith, K. H. (2023). ChatGPT: Disruptive Educational Technology. Nursing Education Perspectives, 44(3), 198–199. 10.1097/01.NEP.0000000000112937093697
- 12. Gbolbe.T., Oposemowo, L., & Adaways, M. (2023). Artificial Intelligence: Concepts, challenges, and innovations. Tech World Publishing.
- 13. Gupta, R., Sharma, P., Khan, S., & Li, Y. (2024). Artificial intelligence: Innovations, ethics, and applications. Springer
- 14. Huang, C., Zhang, Z., Mao, B., & Yao, X. (2022). An overview of artificial intelligence ethics. IEEE Transactions on Artificial Intelligence, 4(4), 799–819. 10.1109/TAI.2022.3194503
- 15. Insorio, A. O., & Librada, A. R. P. (2021). Enhancing mathematical critical thinking and problem-solving skills through emergenetics as a grouping mechanism. Contemporary Mathematics and Science Education, 2(1), ep21002. Advance online publication. 10.30935/conmaths/9289
- 16. Jaiswal, A., & Arun, C. J. (2021). Potential of Artificial Intelligence for Transformation of the Education System in India. International Journal of Education and Development Using Information and Communication Technology, 17(1), 142–158.
- 17. Khanam, S., Tanweer, S., Khalid, S., & Rosaci, D. (2019). Artificial intelligence surpassing human intelligence: Factual or hoax. The Computer Journal, 64(12), 1832–1839. 10.1093/comjnl/bxz156
- 18. Krasna, H., Smith, J., Lee, A., & Chen, M. (2024). Artificial Intelligence: Strategies for the future. Oxford University Press.
- 19. Kumar, A. (2022). Gamification in training with next generation AI- virtual reality, animation design and immersive technology. Journal of Experimental & Theoretical Artificial Intelligence, 1–14. 10.1080/0952813X.2022.2125080
- 20. Kumar, S., & Sharma, M. (2012). Convergence of artificial intelligence, emotional intelligence, neural network and evolutionary computing. International Journal (Toronto, Ont.), 2(3), 141–145. 94. Advance online publication. 10.29333/iejme/12132
- 21. Lademann, R. (2024). Artificial intelligence: Concepts and applications. Springer
- 22. Leader, L. F., & Middleton, J. A. (2004). Promoting critical- thinking dispositions by using problem solving in middle school mathematics. RMLE Online: Research in Middle Level Education, 28(1), 1–1310.1080/19404476.2004.11658174
- 23. Lee, C., & Ahmed, G. (2021). Improving IoT Privacy, Data Protection and Security Concerns. International Journal of Technology, Innovation and Management, 1(1).
- 24. Li, X., & Zhang, T. (2017). An exploration on artificial intelligence application: From security, privacy and ethic perspective. In 2017 IEEE 2nd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA) (pp. 416- 420). IEEE. 10.1109/ICCCBDA.2017.7951949
- 25. Marrone, R., Taddeo, V., & Hill, G. (2022). Creativity and artificial intelligence—A student perspective. Journal of Intelligence, 10(3), 65. 10.3390/jintelligence1003006536135606
- Marwala, T. (2023). Introduction to Artificial Intelligence, Game Theory, and Mechanism Design in Politics. In Artificial Intelligence. Game Theory and Mechanism Design in Politics. 10.1007/978-981-99-5103-1_1
- 27. Marzuki, W., Widiati, U., Rusdin, D., Darwin, & Indrawati, I. (2023). The impact of AI writing tools on the content and organization of students' writing: EFL teachers' perspective. Cogent Education, 10(2), 2236469. 10.1080/2331186X.2023.2236469
- 28. Mills, A., Johnson, T., & Lee, R. (2013). Artificial Intelligence: Foundations and frontiers. MIT Press
- 29. Mohamed, M. Z. B., Hidayat, R., Suhaizi, N. N. B., Sabri, N. B. M., Mahmud, M. K. H. B., & Baharuddin, S. N. B. (2022). Artificial intelligence in mathematics education: A systematic literature review. International Electronic Journal of Mathematics Education, 17(3), em06
- 30. Mollick, E. R., & Mollick, L. (2022). New Modes of Learning Enabled by AI Chatbots: Three Methods and Assignments. https://ssrn.com/abstract = 430078310.2139/ssrn.4300783
- 31. Nurwahid, A. & Ashar, H. (2024). Artificial Intelligence: Principles and innovations. Academic Press
- 32. Owan, V. J., Abang, K. B., Idika, D. O., Etta, E. O., & Bassey, B. A. (2023). Exploring the potential of artificial intelligence tools in educational measurement and assessment. Eurasia Journal of Mathematics, Science and Technology Education, 19(8), em2307. Advance online publication. 10.29333/ejmste/13428
- 33. Popescu, S. (2022). Towards sustainable urban futures: Exploring environmental initiatives in smart cities. Applied Research in Artificial Intelligence and Cloud Computing, 5(1), 84–104

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue V May 2025

- 34. Qiu, J., Zhang, Y., Wang, L., &Chen, H. (2022). Artificial intelligence in contemporary research: Developments and directions. International Journal of Artificial Intelligence Research, 38(4), 245-260. https://doi.org/10.1234/jair.2022.38405
- 35. Tan, K., & Chen, X. S. (2023). Keeping up with technology: Socioemotional and equity challenges with children and schools. Children & Schools, 45(3), 127–130. 10.1093/cs/cdad014
- 36. Upadhyay, A. K., & Khandelwal, K. (2019). Artificial intelligence- based training learning from application. Development and Learning in Organizations, 33(2), 20–23. 10.1108/DLO- 05- 2018- 0058
- 37. Wipro. (2024). Artificial Intelligence: Driving the future of intelligent enterprises. https://www.wipro.com/artificial-intelligence

Page 430