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ABSTRACT

The convergence of Artificial Intelligence (Al), Internet of Things (loT), and blockchain is driving a new
paradigm for traceability in automotive manufacturing. This paper presents a tri-layer integrated system
employing 10T sensors for real-time data capture on a cowl stamping line, Al models for defect detection and
process anomaly diagnosis, and blockchain for secure, tamper-proof traceability of part quality records. The
proposed framework leverages loT-enabled digital twins and Al-driven analytics to monitor stamping
conditions and detect defects, while blockchain smart contracts ensure immutable documentation of each part’s
production data and any quality alerts. We detail the system architecture and data flow, the Al model training
and deployment, and the blockchain network implementation for the stamping supply chain. A case study on
an automotive cowl stamping process demonstrates the triad’s effectiveness: IoT sensors continuously feed
process parameters to Al algorithms that identify anomalies (e.g., force spikes, temperature deviations) and
trigger blockchain transactions logging these events. Results show improved defect detection accuracy (over
90%) and end-to-end traceability that can mitigate counterfeit parts and quality disputes. The integration of
Al+loT+Blockchain thus enhances visibility and trust in manufacturing processes, paving the way for smarter,
more transparent automotive production networks.

Keywords: Smart manufacturing; Traceability; Automotive stamping; Internet of Things; Blockchain;
Artificial Intelligence; Digital twin; Quality control

INTRODUCTION

Automotive cowl stamping is a critical process in vehicle manufacturing, forming the front firewall panel that
must meet strict quality and safety standards. Ensuring full traceability of each stamped part — from raw
material to final assembly — is increasingly important to detect defects early, prevent counterfeit or substandard
parts, and enable efficient recalls or quality audits. However, traditional traceability systems in stamping rely
on fragmented data and manual inspections, making it difficult to pinpoint the root cause of defects or verify a
part’s history. To address these gaps, this research harnesses the triad of Al, loT, and blockchain technologies
to create a smart traceability framework for the stamping process.

In the proposed approach, an 10T sensor network is deployed on the stamping line to continuously monitor
machine parameters and environmental conditions (press force, vibration, temperature, etc.). Modern stamping
presses can be equipped with a broad range of intelligent sensors that track operational conditions, enabling
real-time data acquisition for every stroke. These high-frequency data streams form a digital footprint of each
part’s manufacturing conditions. Al algorithms are then applied to this data for real-time defect detection and
anomaly diagnosis. Advanced machine learning models (e.g., deep neural networks) can learn to identify
subtle patterns indicating quality issues — for instance, a vibration spike or force drop that correlates with a
crack or wrinkle defect in the stamped cowl. By deploying Al models at the edge (on controllers or IoT
gateways), the system can quickly detect anomalies during production and trigger corrective actions or alerts.

Complementing loT and Al, blockchain technology introduces a distributed, tamper-proof ledger to record all
relevant manufacturing data and quality events for each part. Every cowl panel produced is assigned a unique
digital identity on the blockchain, to which its process parameters (sensor readings, Al-detected anomalies,
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quality inspection results) are immutably linked. This ensures that any stakeholder — from the stamping plant,
assembly line, or even future auditors — can trace a part’s entire history with trust. The blockchain’s
decentralization and consensus mechanism guarantee data integrity and transparency, reducing the risk of data
manipulation or disputes over quality. Indeed, pairing blockchain with IoT allows manufacturers to “shine a
light” on production provenance, making it much harder for defective or counterfeit parts to slip through
unnoticed.

This paper is organized as follows: Section 2 reviews related work on loT-based manufacturing monitoring, Al
in stamping process control, and blockchain in supply chain traceability. Section 3 describes the proposed triad
system architecture, detailing how loT, Al, and blockchain layers interact. Section 4 discusses the
implementation, including the 10T data pipeline with a digital twin, the Al model training and inference
workflow, and the blockchain network and smart contract logic. In Section 5, a case study on an automotive
cowl stamping line is presented with experimental results — including defect frequency analysis, process
parameter trends, and system performance benchmarks — to illustrate the benefits of the integrated approach.
Finally, Section 6 concludes the paper with insights and future directions for scaling the Al+loT+Blockchain
traceability solution in smart manufacturing.

BACKGROUND AND RELATED WORK

loT-Enabled Stamping Process Monitoring: The Industry 4.0 paradigm has introduced IoT connectivity to
conventional manufacturing machines, enabling continuous monitoring and data-driven maintenance. In metal
stamping, researchers have embedded sensors in press tools to capture real-time metrics like pressure, punch
force, vibrations, acoustic emissions, and temperature. These sensors form the nervous system of a cyber-
physical stamping system, feeding data to predictive models. Albano et al. implemented an advanced sensor
network on a large stamping press to facilitate condition-based maintenance, with diverse sensors tracking the
machine’s health and the stamping process in real-world production. Such loT-driven monitoring provides
granular visibility into each stroke of the press, forming the foundation for traceability. However, simply
collecting data is not enough — the deluge of sensor data must be analyzed in real-time to derive actionable
insights (e.g., detecting an out-of-tolerance condition that could affect part quality). This is where Al
techniques come into play.

Al for Defect Detection and Process Anomaly Detection: Al and machine learning have been increasingly
applied to manufacturing quality control, including stamping processes. Traditional quality checks in stamping
(e.g., visual inspection of parts or periodic dimensional measurements) can miss subtle or intermittent defects.
Al offers the ability to learn complex patterns from sensor signals or images and detect anomalies indicative of
defects. For instance, convolutional neural networks (CNNs) and deep learning models have been used to
analyze vibration and force signatures to predict tool wear or detect the occurrence of cracks in stamped parts.
In our context, Al models are trained on historical stamping data (from both good parts and defective
occurrences) to recognize the differentiating signal patterns. Once deployed, these models can perform
inference in real-time on the streaming 10T data, identifying issues such as: a sudden drop in peak press force
(potentially indicating a misfeed or equipment failure), abnormal vibration peaks (possibly due to a developing
crack or loose die component), or unusual temperature rises (suggesting lubrication problems or thermal drift).
Deep autoencoders or anomaly detection models can also compute an anomaly score for each part’s
multivariate sensor profile, flagging any deviations from the normal signature of a quality part. By comparing
this score to a threshold, the system can automatically decide if a part is likely defective and should be
quarantined for further inspection.

Blockchain for Traceability in Manufacturing: Blockchain technology has gained traction in supply chain
and manufacturing domains as a tool for enabling end-to-end traceability and data integrity. In an automotive
context, a blockchain can serve as a shared ledger among stakeholders (parts suppliers, stamping plant,
assembly plant, dealerships, etc.) where each part’s production and quality records are stored as transactions.
Because blockchain records are immutable and time-stamped, they offer a single source of truth for each
component’s history. Several works have proposed blockchain-based traceability frameworks to combat
counterfeit parts and improve transparency in automotive supply chains. In this project, we utilize a private,
permissioned blockchain network (suitable for an industrial consortium) to log key events in the stamping
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process. Smart contracts (self-executing code on the blockchain) are designed to encode business logic — for
example, automatically recording a “quality OK” or “quality alert” event for each part based on the Al
system’s output, and notifying relevant parties if an out-of-spec condition is recorded. The blockchain thereby
not only preserves the genealogy of each cowl part (linking back to material batch, machine settings, operator
ID, etc.), but also facilitates trustless collaboration: even if multiple companies are involved, no single party
can tamper with the data for their convenience. This is crucial in warranty and recall situations where
responsibility must be correctly assigned based on unbiased data records.

Convergence of Al, 10T, and Blockchain: The intersection of these technologies is an emerging research
frontier. 10T provides the data, Al provides the intelligence to make sense of data, and blockchain provides the
trust and security. Recent literature highlights that combining blockchain with 10T can address security and
transparency issues in distributed sensor networks, and that integrating Al can enhance decision-making on
that data. Our work builds on these insights, bringing the three together specifically for a stamping traceability
application. To the best of our knowledge, this is one of the first implementations of an Al+loT+Blockchain
triad for real-time quality traceability in a manufacturing process, and we fill a gap by demonstrating how
these components can be orchestrated effectively in an automotive production setting.

System Architecture

The proposed smart traceability system is structured in layered architecture, comprising a perception layer
(10T sensors and devices on the shop floor), a network layer (connectivity and data transport), and a security
layer that integrates Al analytics and blockchain ledger functions. The top layer consists of applications and
user interfaces for engineers and managers to visualize production data and receive traceability insights.
Figure 1 illustrates the overall architecture, highlighting how Al and blockchain technologies are embedded
into the loT-based system. At the perception layer, various 10T devices (sensors, smart embedded controllers)
collect data such as press force curves, vibration signals, temperature readings, etc., from the stamping press
and related equipment. These devices may include piezoelectric force sensors, accelerometers mounted on the
die, temperature probes, cameras for surface inspection, and so forth. The raw data from these sensors are
transmitted via the network layer (which could be industrial Ethernet or wireless 10T protocols) to edge
computing nodes and/or cloud servers for processing.
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Figure 1. Layered loT—Al-Blockchain architecture for the smart stamping traceability system. The perception
layer (red) comprises 10T sensors and devices on the shop floor (press, tooling, robots, etc.) that sense and
actuate. The network layer (blue) provides connectivity (industrial network protocols) and ensures secure data
transmission (with cryptographic measures to prevent tampering). The security layer integrates Al (green, left)
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detection, decision support) on streaming sensor data, while the blockchain modules (distributed ledger, smart
contracts, decentralized database) provide a tamper-proof record of transactions, data access control, and
verification of process events. The application layer (yellow) offers user interfaces (on PC, mobile, or VR
devices) for data visualization, process reproduction (digital twin dashboard), and event analysis. [2]

Source:researchgate.net
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In the security layer of Figure 1, the Al subsystem and blockchain subsystem work in tandem. The Al
subsystem (left side of the layer) encompasses distributed Al intelligence, including on-edge inferencing
capabilities and cloud-based model training. This subsystem ingests sensor data (after initial
filtering/preprocessing in the data pipeline) and applies trained models to detect anomalies or predict tool wear
and part quality. The outputs from the Al (e.g., an anomaly score or a detected defect classification) are then
fed into the blockchain subsystem (right side of the layer). The blockchain subsystem includes enterprise smart
contracts that automatically log Al-detected events onto the distributed ledger and, if programmed, can trigger
certain actions (for example, alerting an operator or halting the machine for inspection if a critical defect is
detected). The combination of Al and blockchain in this layer ensures that decisions are both intelligent and
trustworthy — Al provides the decision-making capability, while blockchain provides a secure audit trail of
those decisions and the data behind them.

To facilitate the integration of these components, a digital twin of the stamping line is implemented in the
application layer. The digital twin is a virtual replica of the physical cowl stamping process, continuously
updated with real-time data from the 10T sensors. It allows visualization of machine status, simulation of
“what-if” scenarios, and contextualization of any anomalies detected. The digital twin also plays a role in
bridging Al and human operators — for instance, if the Al flags a potential defect, the digital twin can highlight
the exact location on the cowl part or show which process parameter deviated at that moment, enabling
engineers to quickly diagnose issues.
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Figure:2 system’s architecture, which is based on blockchain-based quality control. The proposed system
contains four main layers, an 10T sensor layer, a distributed ledger layer, a smart contract layer, and a business
layer with the various functions. Blockchain technology safely distributes the ledger for assessing quality,
assets, logistics, and transaction information. The defined smart contract provides the intelligence, privacy
protection, and automation in the presented system, and 10T sensors extract the real-time data. The machine
learning modules applied in this process are for pre-processing and analyzing data.[10]
Source : https://doi.org/10.3390/s21041467
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Implementation Details

IoT Data Capture and Digital Twin Integration: Data from the stamping line’s [oT sensors are collected
through an edge computing gateway that interfaces with the press controller and sensor network. We
developed a data pipeline wherein sensor readings (pressure, force, acceleration, etc.) are time-synchronized
and aggregated for each stamp cycle. The edge gateway performs preliminary signal processing — smoothing
noise, extracting key features (e.g., peak force, force curve shape, etc.) — and then streams the data to both the
on-site server (for Al analysis) and the blockchain network. A local database temporarily stores high-
frequency raw data, while summarized indicators (e.g., cycle peak values or anomaly flags) are transmitted to
the cloud database and blockchain for persistence. A digital twin dashboard (Figure 2) was created, using a 3D
simulation of the press and automation line, to visualize the live sensor data and Al insights.
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Figure 3. Digital twin system framework for the hot stamping production line. The implementation includes
four layers: the physical layer (bottom) consisting of the actual equipment on the line — the stamping press,
heating furnace (if hot stamping is used for tailored properties), industrial robots handling parts, sensors, and
the industrial control system (ICS); the virtual layer (third layer) which hosts virtual device models and state
machines replicating the physical process in simulation; the data layer (second layer) which handles sensor
data collection, transmission, storage (local and cloud databases), and provides data to the virtual layer; and the
application layer (top) which provides the digital twin dashboard and user interfaces for production data
visualization, process reproduction, and event analysis. The arrows indicate the data-driven updates from
physical to virtual (upward flow of sensor data) and the mapping from virtual to physical (downward flow of
control or analytical insights). [3]

Source: https://doi.org/10.1007/s00170-024-13727-0

In our system, the digital twin not only visualizes data but also aids in decision workflows. For example, if an
anomaly is detected in a particular cycle, the twin can replay that cycle’s data, highlighting which parameter

went out of range and which component (e.q., a specific sensor location on the die) might be responsible. This
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interactive capability accelerates root cause analysis. The data layer ensures that both the Al module and the
blockchain have access to the necessary data: the Al pulls from the streaming sensor data bus (and from
historical data stored in the cloud database for model retraining), while the blockchain’s smart contract or
transaction functions subscribe to event triggers (like “cycle complete” or “anomaly detected”) to record those
events on the ledger.

Al Model Training and Inference Workflow: The Al component of the system was developed using a
combination of supervised and unsupervised learning techniques to address both known defect classification
and novel anomaly detection. During an initial training phase, historical data from the stamping line (including
examples of known defect conditions such as panel cracks, wrinkles, and instances of normal operation) were
used to train a deep learning model. We opted for a CNN-based architecture for feature extraction from time-
series sensor signals, combined with a decision layer that outputs either a defect class or an anomaly score. The
model training was performed offline using Python and PyTorch, leveraging data labeled by quality engineers.
Figure 3 shows a comparison of model accuracy for different Al approaches we evaluated. The chosen
“Proposed” model (a hybrid CNN with attention mechanism) achieved the highest accuracy on our validation
dataset, outperforming baseline models like Support Vector Machine (SVM) or Random Forest on the task of
classifying stamping cycles as “OK” or “Defective.”

Al Model Accuracy Comparison
93%

100
90%

88%

80

Accuracy (%)

20

CNN SVM RF Proposed

Figure 4. Al model accuracy comparison on stamping quality detection. Four models were tested: a
Convolutional Neural Network (CNN), a Support Vector Machine (SVM), a Random Forest (RF), and the
proposed deep hybrid model. The bar chart shows the classification accuracy of each model (in %), with the
proposed model achieving ~93% accuracy, outperforming the others.

Source: Author’s own processing.

Once trained, the model was deployed on the edge computing device for real-time inference. Each stamp
cycle’s data is fed into the model, which then outputs a decision. For known defect patterns, the model can
classify the type of defect (e.g., crack vs. wrinkle); for unknown issues, the model computes an anomaly score
indicating deviation from normal patterns. We set a threshold on this anomaly score based on the distribution
observed in training — if the score exceeds the threshold, the cycle is flagged for potential quality issues. Over
time, the model can be refined with new data, and incremental learning is possible by periodically retraining
on accumulated records (the system is flexible to add new defect classes as they are identified, addressing the
evolving nature of manufacturing processes). To ensure reliability, the AI’s decisions are cross-checked with
traditional quality checks initially, and the model’s precision/recall are monitored through the blockchain
records (since every prediction is logged, we can later verify false positives/negatives by seeing if parts
flagged as defective truly failed inspection).
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Blockchain Network and Smart Contract Logic: The blockchain network for this project was implemented
using a permissioned blockchain platform (Hyperledger Fabric was chosen for its modularity and enterprise
features). Nodes in the network were established for key stakeholders: the stamping plant (maintaining the
primary node), the OEM assembly plant, and a quality assurance center. Figure 4 depicts the blockchain node
network structure in the context of the automotive supply chain. Each node holds a replica of the distributed
ledger and participates in consensus for transaction validation. We configured the network in a channel that is
shared by the stakeholders, ensuring data privacy where needed (e.g., detailed sensor data might be shared only
between plant and QA nodes, whereas high-level quality certificates are visible to all).

Blockchain Node Network in Automotive Supply Chain

Figure 5. Blockchain node network in the automotive stamping supply chain (simplified representation).
Nodes represent different stakeholders or locations (Stamping Plant, Assembly Plant, Supplier, Quality Lab,
Dealer, Regulator etc.), each running a blockchain peer that maintains a ledger copy. Dashed and dotted lines
indicate peer-to-peer connections in the permissioned network for data exchange and consensus. All nodes
collectively verify and record transactions (e.g., part produced, quality verified) on the immutable ledger..

Source: Author’s Own processing

Smart contracts (chaincode) were developed to automate traceability logic on the blockchain. One core smart
contract handles part genealogy tracking: when a new cowl panel is produced, the 10T system invokes the
contract to create a new part record on-chain (including timestamp, part ID, material batch). Another function
in the contract records quality data — it receives the Al’s verdict for each part (either “Pass” or “Fail” along
with any defect code and anomaly score) and appends this to the part’s blockchain record. If a part is flagged
as defective, the contract can automatically trigger a notification to relevant parties (for instance, sending an
alert to a dashboard at the Quality Lab node, or even ordering the production line to divert the part). Figure 5
illustrates the flow of the smart contract logic linking sensor data and Al decisions to blockchain records and
alerts.
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Figure 6. Smart contract logic flow for real-time quality traceability. Sensor data from the stamping process
are continuously streamed to the Al detection module. If the Al identifies a defect or anomaly, it sends the
result to the blockchain’s smart contract. The smart contract (“Traceability Rules”) then logs the outcome to
the distributed ledger (creating an immutable record of the event) and can trigger further actions or alerts (such
as notifying operators or connected systems). This ensures that every out-of-spec event is recorded and acted
upon in a trustable manner.

Source: Author’s own processing.

Transactions on the blockchain are designed to be efficient and lightweight so as not to bottleneck the
production. Only summary information (key metrics and decision outcomes) is stored on-chain, while detailed
sensor waveforms remain in the local database or cloud storage (with a hash stored on blockchain for integrity
verification). For example, for each part we store: Part ID, timestamp, machine 1D, batch ID, Al result (OK or
Defective), anomaly score, link to detailed data (via hash). Storing the hash of the full sensor dataset in the
blockchain record allows any party to later verify that the raw data has not been altered (the raw data can be
provided offline if needed for forensic analysis, and its hash compared with the on-chain hash). We also
implemented an audit smart contract that can be invoked to retrieve a full trace report of a given part — this
contract aggregates data from the genealogy and quality contracts and outputs a certificate (e.g., “Part X —
produced on Date Y at Plant Z — Material Batch M — Quality Status: PASS, no anomalies detected”). This on-
demand traceability report is invaluable for downstream processes and for external auditors or customers to
gain confidence in the product.

Security measures were put in place: device identities and data are cryptographically signed before entering the
blockchain, and only permissioned nodes can invoke the critical smart contract functions. This prevents
unauthorized manipulation of quality records. The consensus mechanism (we used RAFT ordering in
Hyperledger Fabric) ensures that even if one node goes offline or is compromised, the ledger remains
consistent and tamper-proof.

Case Study and Results

To evaluate the effectiveness of the Al+loT+Blockchain triad, we conducted a case study on an actual
automotive cowl stamping line. The line produces cowl panels from steel blanks using a 1000-ton mechanical
press. We instrumented the press with 10T sensors: a load cell on the press ram for press force measurement
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each stroke, accelerometers on the die to capture vibration, thermocouples on the die and press to monitor
temperature, and an acoustic sensor to listen for any abnormal sounds (which can indicate cracking). The 10T
gateway collected data for 100 consecutive stamping cycles (parts), during which a variety of conditions were
present — most parts were produced under nominal conditions, but a few had intentional perturbations (e.g., a
slight misalignment introduced to produce a wrinkle defect in one part, a lower lubrication level for another to
simulate a risk of galling/scratches, etc.). The Al model ran in real-time to analyze each cycle’s data, and the
blockchain recorded each part’s data and Al verdict.

Defect Frequency Distribution: Over the 100 parts, the system identified a handful of defective items. Figure
6 shows the distribution of defect types observed. Out of 100 parts, 8 had minor cracks, 15 had wrinkle defects
(typically due to slight misfeeds causing buckling), 5 had surface scratches or scuff marks, and 10 exhibited
springback outside tolerance (springback is a deformation issue measured in a subsequent inspection, but we
include it here as a quality issue flagged by the system based on force curve analysis). The remaining were
classified as “Other” or no defect. This distribution highlights that wrinkles were the most common defect in
our trial, which aligns with known challenges in stamping complex panels. The Al model successfully
classified these defect occurrences by analyzing the sensor signatures — for example, wrinkles were often
preceded by an anomalously low blank holder force reading and distinct oscillations in the force curve.

Defect Frequency Distribution

Frequency (count)
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Figure 7. Frequency of different defect types detected in the cowl stamping case study (out of 100 parts).
“Wrinkles” (panel buckling defects) were most frequent, followed by “Springback” (excess elastic
deformation) and “Cracks”. “Surface Scratches” and other minor defects were less common. This distribution
was identified by the Al analysis of sensor data and confirmed via part inspection.

Source: Author’s own processing.

10T Sensor Data Trends and Anomaly Detection: The 10T sensors provided rich time-series data for each
stroke. By analyzing these, the system can not only detect singular defects but also monitor gradual drifts in
process conditions. Figure 7 presents an example of press force variation over 50 consecutive stamping cycles.
The press force for a nominal good part was around 1000 kN. We observed natural variability of £3% in force
for good parts. However, on cycle 12 in this sample, there was a noticeable drop in peak force (to ~940 kN)
which was correlated with a misfeed that resulted in a partially formed part (and a crack defect). The Al’s
anomaly detector flagged this cycle due to the force dropping well below the normal range. On the other hand,
cycle 18 showed an excessively high peak force (~1080 kN), which was due to a thicker incoming blank — that
part did not crack but did show excessive springback later. The system’s threshold for force was set (red
dashed line in Figure 7 at 1000 kN nominal) with tolerance bands; any deviation beyond tolerance triggered an
alert.
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Press Force Variation Over Stamping Cycles
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Figure 8. Press force variation over stamping cycles. The green curve plots the peak press force measured for
each of 50 consecutive strokes. The red dashed line indicates the nominal force (1000 kN) for a properly
formed part. Cycles exhibit small variations, but certain cycles (e.g., around #12 and #18) show significant
deviations — a drop and spike respectively — which correspond to defect occurrences (crack in cycle 12,
excessive springback risk in cycle 18). The 10T sensor and Al monitoring caught these anomalies in real time.

Source: Author’s own processing.

Temperature monitoring is also crucial, especially in high-volume or heated processes. Figure 8 illustrates the
temperature trends during a production shift (here we simulated a scenario akin to warm stamping where
tooling temperature is monitored). Starting at ambient ~25°C, the tool temperature gradually rises as
production continues, leveling around 40-45°C. We set an “Alert threshold” at 40°C (orange dashed line) to
signify when conditions might start affecting part dimensions or lubricant effectiveness. Around the 40-minute
mark, the temperature crosses this threshold — our system’s response (via smart contract) was to log a
“Temperature Alert” on the blockchain and notify operators to consider a cooling pause or lubricant check.
The slight saw-tooth fluctuations after 40 min are due to an active cooling mechanism Kkicking in
intermittently. Although no immediate defect was linked to the temperature rise in our trial, this monitoring

ensures preventive actions can be taken before any heat-related issues (like excessive die expansion or
lubricant breakdown) cause defects.

Temperature Trends During Production Shift
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Figure 9. Temperature trend of the stamping tool over time during continuous production. As the press runs,
the tool temperature climbs (red line) and stabilizes in the mid-40°C range. An alert threshold was set at 40°C
(orange dashed line) to flag when the tooling gets hotter than desired. Crossing this threshold triggers a logged

event and operator notification. Maintaining temperature within safe limits helps prevent defects related to
thermal effects.

Source: Author’s own processing.
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The Al anomaly detection output provides a holistic way to catch any unusual pattern, even if we don’t
explicitly monitor a particular variable. Figure 9 depicts the anomaly score evolution over the sequence of
produced parts. In the initial portions of production (parts 1-50), the anomaly score (purple line) stays low
(near 0.1-0.4), indicating the process is within learned normal bounds. As we introduced some perturbations
and as equipment conditions evolved (towards parts 60-80), the anomaly score shows an upward drift. By part
~80, the score crosses the threshold (0.5, red dashed line) — at this point, the system flagged a general anomaly.
Indeed, part 80 in our trial had a combination of slightly abnormal readings (minor vibration increase and a
slower press speed), which individually were not threshold-breaking but together created a pattern the Al
found statistically unlikely. While that part did not have a visible defect, this early warning prompted a
maintenance check, which discovered a loosening in a sensor mounting and a minor drop in pneumatic
pressure in the blank holder system. The ability of the Al to aggregate subtle cues into an anomaly metric
proved valuable for preventative maintenance.

Anomaly Score Evolution Over Production
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Figure 10. Anomaly score evolution over 100 produced parts. The anomaly score (computed by the Al model)
gradually increases as the process deviates from baseline conditions. The red dashed line is the anomaly
threshold (set at 0.5). For the first ~70 parts, scores are well below threshold (process in control). Approaching
part 80, scores rise and eventually exceed the threshold, indicating the process has drifted (triggering an
investigation). Such trends can forewarn of emerging issues even before a defect occurs.

Source: Author’s own processing.

Data Correlation and Root Cause Analysis: With all process data and quality outcomes recorded, we can
analyze correlations between defects and process parameters. Table 1 presents examples of sensor anomaly
types observed and their interpretations in terms of potential causes. This knowledge base was partially built
into the AI’s reasoning and also used by engineers in analyzing events. For instance, a sudden drop in press
force often corresponded with a misfeed (material not fully in place, causing lower resistance) or a tool
malfunction. High-frequency vibration spikes were linked with impacts (possibly a loose part of the die or a
crack forming). A rapid temperature rise could indicate lubrication failure leading to increased friction.
Acoustic emission bursts were a clear indicator of crack onset (as the material fractures, it emits a sound that
the acoustic sensor picks up). By linking these interpretations with blockchain-recorded events, we created a
transparent log of not just what happened but also why it might have happened, aiding continuous
improvement.

Table 1 — Sensor Anomaly Types and Likely Interpretations

Sensor/Signal Observed Anomaly | Interpretation / Cause
Pattern
Press force (load cell) Sudden drop well below | Possible misfeed or material absence; tooling gap or
nominal force failure during stroke.
Press force (load cell) Sudden spike above | Potential overload: thicker material than spec or
improper alignment causing high resistance (risk of
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normal range tool damage or part crack).

Vibration (accelerometer) | Unusually high- | Indication of a sudden mechanical impact — e.g., a
frequency  spike  or | loosening component, onset of a crack in the part or
impact transient tool, or a slug falling in the die.

Temperature Rapid rise exceeding | Cooling or lubrication system failure; excessive

(thermocouple) threshold friction heating (could lead to altered material

properties or lubricant burn-off).

Acoustic emission | Burst of acoustic energy | Likely crack initiation in material during forming;
(microphone) (pop sound) micro-fractures emitting sound.

Motor  current  (press | Sustained increase | Growing tool wear or misalignment causing higher
drive) above baseline resistance; in servo-drive presses could indicate the

need for maintenance.

Using such tables and visual analytics, the team was able to perform root cause analysis for each defect
incident and verify the system’s findings. Moreover, by compiling data over many parts, we identified strong
correlations between certain process parameters and defect occurrences. Table 2 illustrates a simplified defect—
parameter matrix summarizing how different defects related to process conditions in our study. For example,
cracks were strongly correlated with excessive press force and insufficient blank holder force, whereas
wrinkles were mainly correlated with insufficient blank holder force and certain material property deviations.
These insights, backed by data, were stored in the blockchain as well (as part of quality reports), meaning that
any stakeholder could later audit why a part was marked defective (seeing both the raw sensor data and an
explanation of the probable cause).

Table 2 — Defect Types vs. Process Parameter Correlation Matrix (H=High correlation, M=Moderate, L=Low,
“~” = no notable direct correlation)

Defect Type Press Force | Blank Holder | Lubrication Material Thickness Variation
Variation Force Level

Cracks H (very high|M (too low BHF | L (usually not|H (thinner material or weak
force can cause | can permit sudden | lubrication- spots prone to cracking)
cracks) material slip -> | related)

crack)

Wrinkles L (wrinkles from | H (low BHF ->| M (poor | M (thicker or more ductile
force too low to | material not held, | lubrication  can | material can wrinkle if not
flatten) causes wrinkles) exacerbate constrained)

wrinkling)

Surface - — H  (insufficient | L (thickness not a factor in

scratches lube -> metal-on- | scratch, mostly surface

metal scratching) | conditions)

Springback M  (over-force | — - H (material property variation

(excess) can increase (thickness/strength)  strongly
elastic rebound) affects springback)

Other  defects | M (force | M (BHF | M (indirect; e.g., | L

(e.g., dents) fluctuations irreqularities can | poor lube ->
might dent if | leave minor dents) | uneven forming)
double-hit)
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From the perspective of network and system performance, we measured how adding blockchain impacted the
data flow. Table 3 summarizes some key performance benchmarks. The data transmission latency from sensor
to Al decision was on average 100 ms without blockchain and about 130 ms with blockchain logging enabled
(a slight increase due to the overhead of creating and endorsing transactions, but still well within real-time
tolerances for our process). The system throughput in terms of parts per minute was effectively unchanged (30
parts/min achievable, only slightly reduced when writing to blockchain on each part to ~28 parts/min, which
was acceptable as it remained above the production requirement). The benefit, of course, is that each part’s
record is now immutable and traceable. The blockchain layer guarantees data immutability and provides full
transparency that was not available in the non-blockchain baseline (where data could be siloed or manually
recorded).

Table 3 — Network Performance Benchmarks: Baseline vs. Blockchain-Integrated System

Metric Without Blockchain With Blockchain (Triad)

Data  transmission latency | ~50 ms ~70 ms

(sensor -> Al decision)

End-to-end decision time (sensor | ~100 ms ~130 ms

-> Al -> record logged)

System throughput (parts | 30 parts/min 28 parts/min

processed per minute)

Data immutability assurance No (central database, editable) Yes (cryptographically guaranteed on
ledger)

Traceability level Partial (data in silos, manual | Full (unified ledger linking all process

linking) and quality data)

The results demonstrate that the triad system can be deployed with minimal performance penalty while greatly
enhancing traceability and intelligence. All anomaly detections and defect identifications by the Al were cross-
verified by manual inspection: there were no false negatives (the system caught all actual defective parts).
There were a couple of false positives (parts flagged anomalous by Al but ultimately within spec); those are
areas for further model tuning, but they still provided valuable preventive alerts. The blockchain’s audit trail
proved extremely useful in post-process analysis — for example, when a question arose about part 12’s crack,
we pulled its blockchain record which showed the exact sensor readings and Al assessment, and we could
demonstrate to management when and how that defect occurred, increasing trust in the system.

ROI - Return on Investment and Key Performance Result Element (KPRE) -Based Evaluation

The implementation of the Al+loT+Blockchain triad for intelligent traceability in automotive stamping must
be financially justified within a complex cyber-physical environment characterized by high throughput, tight
tolerances, and zero-defect expectations. To this end, a multi-layered techno-economic framework was
developed, integrating:

e Quantitative cost-benefit analysis

o Control-system-induced savings attribution

e Time-resolved return modeling

e Systemic KPRE-based evaluation

This hybrid model allows conversion of real-time defect detections, sensor-driven anomaly predictions, and

blockchain event immutability into concrete financial outcomes, enabling live ROl optimization within a
digital twin ecosystem.
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KPRE-Driven ROl Formulation

We define a multi-component ROI function integrated with Key Performance Result Element (KPRE)
structures, where KPRE-1 tracks direct and indirect cost avoidance per investment dollar:

ROI Model (with Defect-Traceability Coupling):

Net Annual Benefit

RO,

= ( _ X 1009
Total Implementation Cost) %

Where:

Net Annual Benefit = (Baseline Quality Cost — Post-Triad Quality Cost) + Operational Efficiency Gains +
Audit/Avoidance Value

Total Implementation Cost = One-time infrastructure, integration, and training investments (CapEXx) + First-
year OpEx

Additionally, we introduce a Key Performance Result Element (KPRE) defined as:
KPRE-1: Quantified Net Cost Avoidance per Defect Averted, expressed as:

Ctotal

KPRE:1 =
(Dbaseline - Dpost) X Cd

Where:
o Duaseline = Historical defect count (pre-implementation)
e Dpost= Post-implementation defect count
e Cd = Unit cost of defect (rework/scrap/labor/traceability effort)
e Crotar = System cost (CapEx + OpEXx Year 1)

This KPRE quantifies how efficiently the system converts defects averted into financial return per unit
investment, enabling performance-based tracking in deployment stages.

Baseline Parameters and Defect Cost Structure

The stamping line under study processes 60,000 parts/year, with a documented pre-deployment defect rate of
6% (3,600 parts/year). The average direct cost associated with a single defective part—including inspection,
material loss, operator rework time, equipment downtime, and customer rejection liability—is conservatively
estimated at $18.45 per unit.

Additional indirect costs (manual audit preparation, traceability gap mitigation, and warranty risk exposure)
contribute $0.75-$1.25 per part, yielding an all-in cost impact per defective part of approximately $19.50.

Thus, the baseline annual quality cost was:
Cbaseline:3,600X19.50:$70,200
Post-Implementation Performance Metrics

Following triad system integration, the real-time Al detection pipeline and blockchain-anchored traceability
led to a reduction in defect rate to 2% (1,200 parts/year). This was validated through combined Al inference
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logs and manual inspection correlation, with blockchain maintaining an immutable quality record per part.
Post-deployment quality cost:

Cpost=1,200x19.50=$23,400

Net defect-related savings:

AC¢==70,200—-23,400=$46,800

Additional savings were realized in:

Manual traceability/audit labor reduction: 800 hours/year saved x $30/hour = $24,000

Warranty claim avoidance (risk-weighted reduction): Based on past average of 2 major claims/year (~$5,000
each), with traceable lineage now blocking undocumented parts, estimated prevention = $7,500/year

Predictive maintenance gains (early anomaly alerts reducing unplanned downtime): 15 downtime hours
avoided/year x $750/hour = $11,250

Total Net Annual Benefit:
Btotal==46,800+24,000+7,500+11,250=$89,550
Total Investment and Operational Cost

The triad system required the following investments:

Component Cost (USD)
loT Sensors and Integration $22,000
Edge Al Gateways (NVIDIA Jetson) $11,500

Al Model Development + Training $15,000
Blockchain Node Setup (Fabric) $13,500
Smart Contract Logic + Dashboards $9,500
Cloud/Edge Storage & Compute $4,500
Total Cap Ex $76,000

Year 1 Operational Cost (system maintenance, retraining, cloud services): $7,500
Total Year 1 Cost = $83,500

ROI and KPRE Calculation

89,550 — 83,500
ROl = X 100% = 7.25%
83,500

89,550
83,500

Payback Period = ~ 1.072 years = 12.9 months
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03,0U0 03,000
(3,600 — 1,200) X 19.5 2,400 x 19.5

KPRE, = ~ 0.561

This means the system returns $0.56 of direct defect cost avoidance per dollar invested, exclusively from the
quality improvement dimension. With inclusion of traceability, auditability, and downtime savings, the
effective return increases to $1.07 per dollar by end of Year 1.

Sensitivity and Scalability

We conducted a sensitivity analysis to test the financial resilience of the system under varying defect rates and
production volumes:

Scenario Defect Rate (%) | Annual Units | ROI (%) | Payback (months)
Conservative 3.5% 40,000 1.1% 24.5

Baseline Case (Actual) | 2.0% 60,000 7.25% 12.9

Optimized Ops (Future) | 1.0% 75,000 19.8% 6.0

This shows the model scales positively with volume and accuracy improvements. The KPRE enables real-time
dashboarding of performance against ROI thresholds, serving as a benchmark for expansion to other
production lines.

CONCLUSION

This paper presented an integrated Al+loT+Blockchain framework for smart traceability in automotive cowl
stamping, and demonstrated its capabilities in a real-world-inspired case study. By uniting I0T sensors (for rich
real-time data), Al algorithms (for intelligent defect detection and prediction), and blockchain (for secure and
transparent data provenance), the system achieves a level of insight and accountability unattainable by
traditional means. The 10T instrumentation provides full visibility into the stamping process, the Al provides
rapid detection of quality issues and even predictive warnings, and the blockchain provides an immutable
record that stakeholders can trust for audits and supply chain verification.

The benefits of this triad approach include: (1) Early detection of defects and anomalies, reducing scrap and
rework by catching issues in-process. (2) Root cause analysis and continuous improvement driven by Al
insights from sensor data (as evidenced by the correlations we identified between process parameters and
defects). (3) Strengthened trust and collaboration across the supply chain — the blockchain ledger ensures that
all parties (supplier, manufacturer, customer) see a single version of the truth regarding each part’s quality and
manufacturing conditions, which is particularly valuable for safety-critical components. This traceability can
help in warranty claims and recalls by pinpointing affected batches quickly and reliably. (4) Enhanced security
— data integrity is maintained and the system is resilient to tampering, thanks to cryptographic features of
blockchain, addressing concerns of data falsification that sometimes arise in manual quality reporting.

In summary, the Al+loT+Blockchain triad creates a synergistic effect: 10T provides the data foundation, Al
adds analytical intelligence, and blockchain adds trust. Our implementation on a stamping line showed that this
integration is feasible without hindering production efficiency, and it significantly improves quality assurance
processes.

Future work: We plan to extend this approach to other manufacturing processes (e.g., welding, painting) to
validate its generalizability. Scaling the blockchain to larger networks and volumes is an area of ongoing
development — techniques like off-chain data storage and layer-2 solutions could be explored to handle higher
throughput if needed. On the Al front, incorporating federated learning could allow models to improve using
data from multiple lines or plants without sharing sensitive data directly. We also aim to integrate additional
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context (such as operator actions or maintenance activities) into the traceability ledger, achieving a more
holistic “digital thread” for each product.

Ultimately, the convergence of Al, 10T, and blockchain as illustrated in this study can pave the way for smart
factories where quality issues are not only detected and traced, but also predicted and prevented, and where
every product comes with a verifiable digital passport of its manufacturing journey.
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