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ABSTRACT 

The convergence of Artificial Intelligence (AI), Internet of Things (IoT), and blockchain is driving a new 

paradigm for traceability in automotive manufacturing. This paper presents a tri-layer integrated system 

employing IoT sensors for real-time data capture on a cowl stamping line, AI models for defect detection and 

process anomaly diagnosis, and blockchain for secure, tamper-proof traceability of part quality records. The 

proposed framework leverages IoT-enabled digital twins and AI-driven analytics to monitor stamping 

conditions and detect defects, while blockchain smart contracts ensure immutable documentation of each part’s 

production data and any quality alerts. We detail the system architecture and data flow, the AI model training 

and deployment, and the blockchain network implementation for the stamping supply chain. A case study on 

an automotive cowl stamping process demonstrates the triad’s effectiveness: IoT sensors continuously feed 

process parameters to AI algorithms that identify anomalies (e.g., force spikes, temperature deviations) and 

trigger blockchain transactions logging these events. Results show improved defect detection accuracy (over 

90%) and end-to-end traceability that can mitigate counterfeit parts and quality disputes. The integration of 

AI+IoT+Blockchain thus enhances visibility and trust in manufacturing processes, paving the way for smarter, 

more transparent automotive production networks. 

Keywords: Smart manufacturing; Traceability; Automotive stamping; Internet of Things; Blockchain; 

Artificial Intelligence; Digital twin; Quality control 

INTRODUCTION 

Automotive cowl stamping is a critical process in vehicle manufacturing, forming the front firewall panel that 

must meet strict quality and safety standards. Ensuring full traceability of each stamped part – from raw 

material to final assembly – is increasingly important to detect defects early, prevent counterfeit or substandard 

parts, and enable efficient recalls or quality audits. However, traditional traceability systems in stamping rely 

on fragmented data and manual inspections, making it difficult to pinpoint the root cause of defects or verify a 

part’s history. To address these gaps, this research harnesses the triad of AI, IoT, and blockchain technologies 

to create a smart traceability framework for the stamping process. 

In the proposed approach, an IoT sensor network is deployed on the stamping line to continuously monitor 

machine parameters and environmental conditions (press force, vibration, temperature, etc.). Modern stamping 

presses can be equipped with a broad range of intelligent sensors that track operational conditions, enabling 

real-time data acquisition for every stroke. These high-frequency data streams form a digital footprint of each 

part’s manufacturing conditions. AI algorithms are then applied to this data for real-time defect detection and 

anomaly diagnosis. Advanced machine learning models (e.g., deep neural networks) can learn to identify 

subtle patterns indicating quality issues – for instance, a vibration spike or force drop that correlates with a 

crack or wrinkle defect in the stamped cowl. By deploying AI models at the edge (on controllers or IoT 

gateways), the system can quickly detect anomalies during production and trigger corrective actions or alerts. 

Complementing IoT and AI, blockchain technology introduces a distributed, tamper-proof ledger to record all 

relevant manufacturing data and quality events for each part. Every cowl panel produced is assigned a unique 

digital identity on the blockchain, to which its process parameters (sensor readings, AI-detected anomalies, 
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quality inspection results) are immutably linked. This ensures that any stakeholder – from the stamping plant, 

assembly line, or even future auditors – can trace a part’s entire history with trust. The blockchain’s 

decentralization and consensus mechanism guarantee data integrity and transparency, reducing the risk of data 

manipulation or disputes over quality. Indeed, pairing blockchain with IoT allows manufacturers to “shine a 

light” on production provenance, making it much harder for defective or counterfeit parts to slip through 

unnoticed. 

This paper is organized as follows: Section 2 reviews related work on IoT-based manufacturing monitoring, AI 

in stamping process control, and blockchain in supply chain traceability. Section 3 describes the proposed triad 

system architecture, detailing how IoT, AI, and blockchain layers interact. Section 4 discusses the 

implementation, including the IoT data pipeline with a digital twin, the AI model training and inference 

workflow, and the blockchain network and smart contract logic. In Section 5, a case study on an automotive 

cowl stamping line is presented with experimental results – including defect frequency analysis, process 

parameter trends, and system performance benchmarks – to illustrate the benefits of the integrated approach. 

Finally, Section 6 concludes the paper with insights and future directions for scaling the AI+IoT+Blockchain 

traceability solution in smart manufacturing. 

BACKGROUND AND RELATED WORK 

IoT-Enabled Stamping Process Monitoring: The Industry 4.0 paradigm has introduced IoT connectivity to 

conventional manufacturing machines, enabling continuous monitoring and data-driven maintenance. In metal 

stamping, researchers have embedded sensors in press tools to capture real-time metrics like pressure, punch 

force, vibrations, acoustic emissions, and temperature. These sensors form the nervous system of a cyber- 

physical stamping system, feeding data to predictive models. Albano et al. implemented an advanced sensor 

network on a large stamping press to facilitate condition-based maintenance, with diverse sensors tracking the 

machine’s health and the stamping process in real-world production. Such IoT-driven monitoring provides 

granular visibility into each stroke of the press, forming the foundation for traceability. However, simply 

collecting data is not enough – the deluge of sensor data must be analyzed in real-time to derive actionable 

insights (e.g., detecting an out-of-tolerance condition that could affect part quality). This is where AI 

techniques come into play. 

AI for Defect Detection and Process Anomaly Detection: AI and machine learning have been increasingly 

applied to manufacturing quality control, including stamping processes. Traditional quality checks in stamping 

(e.g., visual inspection of parts or periodic dimensional measurements) can miss subtle or intermittent defects. 

AI offers the ability to learn complex patterns from sensor signals or images and detect anomalies indicative of 

defects. For instance, convolutional neural networks (CNNs) and deep learning models have been used to 

analyze vibration and force signatures to predict tool wear or detect the occurrence of cracks in stamped parts. 

In our context, AI models are trained on historical stamping data (from both good parts and defective 

occurrences) to recognize the differentiating signal patterns. Once deployed, these models can perform 

inference in real-time on the streaming IoT data, identifying issues such as: a sudden drop in peak press force 

(potentially indicating a misfeed or equipment failure), abnormal vibration peaks (possibly due to a developing 

crack or loose die component), or unusual temperature rises (suggesting lubrication problems or thermal drift). 

Deep autoencoders or anomaly detection models can also compute an anomaly score for each part’s 

multivariate sensor profile, flagging any deviations from the normal signature of a quality part. By comparing 

this score to a threshold, the system can automatically decide if a part is likely defective and should be 

quarantined for further inspection. 

Blockchain for Traceability in Manufacturing: Blockchain technology has gained traction in supply chain 

and manufacturing domains as a tool for enabling end-to-end traceability and data integrity. In an automotive 

context, a blockchain can serve as a shared ledger among stakeholders (parts suppliers, stamping plant, 

assembly plant, dealerships, etc.) where each part’s production and quality records are stored as transactions. 

Because blockchain records are immutable and time-stamped, they offer a single source of truth for each 

component’s history. Several works have proposed blockchain-based traceability frameworks to combat 

counterfeit parts and improve transparency in automotive supply chains. In this project, we utilize a private, 

permissioned blockchain network (suitable for an industrial consortium) to log key events in the stamping 
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process. Smart contracts (self-executing code on the blockchain) are designed to encode business logic – for 

example, automatically recording a “quality OK” or “quality alert” event for each part based on the AI 

system’s output, and notifying relevant parties if an out-of-spec condition is recorded. The blockchain thereby 

not only preserves the genealogy of each cowl part (linking back to material batch, machine settings, operator 

ID, etc.), but also facilitates trustless collaboration: even if multiple companies are involved, no single party 

can tamper with the data for their convenience. This is crucial in warranty and recall situations where 

responsibility must be correctly assigned based on unbiased data records. 

Convergence of AI, IoT, and Blockchain: The intersection of these technologies is an emerging research 

frontier. IoT provides the data, AI provides the intelligence to make sense of data, and blockchain provides the 

trust and security. Recent literature highlights that combining blockchain with IoT can address security and 

transparency issues in distributed sensor networks, and that integrating AI can enhance decision-making on 

that data. Our work builds on these insights, bringing the three together specifically for a stamping traceability 

application. To the best of our knowledge, this is one of the first implementations of an AI+IoT+Blockchain 

triad for real-time quality traceability in a manufacturing process, and we fill a gap by demonstrating how 

these components can be orchestrated effectively in an automotive production setting. 

System Architecture 

The proposed smart traceability system is structured in layered architecture, comprising a perception layer 

(IoT sensors and devices on the shop floor), a network layer (connectivity and data transport), and a security 

layer that integrates AI analytics and blockchain ledger functions. The top layer consists of applications and 

user interfaces for engineers and managers to visualize production data and receive traceability insights. 

Figure 1 illustrates the overall architecture, highlighting how AI and blockchain technologies are embedded 

into the IoT-based system. At the perception layer, various IoT devices (sensors, smart embedded controllers) 

collect data such as press force curves, vibration signals, temperature readings, etc., from the stamping press 

and related equipment. These devices may include piezoelectric force sensors, accelerometers mounted on the 

die, temperature probes, cameras for surface inspection, and so forth. The raw data from these sensors are 

transmitted via the network layer (which could be industrial Ethernet or wireless IoT protocols) to edge 

computing nodes and/or cloud servers for processing. 

 

 

Figure 1. Layered IoT–AI–Blockchain architecture for the smart stamping traceability system. The perception 

layer (red) comprises IoT sensors and devices on the shop floor (press, tooling, robots, etc.) that sense and 

actuate. The network layer (blue) provides connectivity (industrial network protocols) and ensures secure data 

transmission (with cryptographic measures to prevent tampering). The security layer integrates AI (green, left) 

and Blockchain (green, right) components: AI modules perform data analysis (pattern recognition, anomaly 
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detection, decision support) on streaming sensor data, while the blockchain modules (distributed ledger, smart 

contracts, decentralized database) provide a tamper-proof record of transactions, data access control, and 

verification of process events. The application layer (yellow) offers user interfaces (on PC, mobile, or VR 

devices) for data visualization, process reproduction (digital twin dashboard), and event analysis. [2] 

Source:researchgate.net 

Abdul Haq NALBAND | Professor (Assistant) | Assistant Professor, ECE REVA University | Research 

Interest: 5G RAN, 6G, Cyber Security, IoT and CPS | REVA University, Bengaluru | School of 

Multidisciplinary Studies | Research profile 

In the security layer of Figure 1, the AI subsystem and blockchain subsystem work in tandem. The AI 

subsystem (left side of the layer) encompasses distributed AI intelligence, including on-edge inferencing 

capabilities and cloud-based model training. This subsystem ingests sensor data (after initial 

filtering/preprocessing in the data pipeline) and applies trained models to detect anomalies or predict tool wear 

and part quality. The outputs from the AI (e.g., an anomaly score or a detected defect classification) are then 

fed into the blockchain subsystem (right side of the layer). The blockchain subsystem includes enterprise smart 

contracts that automatically log AI-detected events onto the distributed ledger and, if programmed, can trigger 

certain actions (for example, alerting an operator or halting the machine for inspection if a critical defect is 

detected). The combination of AI and blockchain in this layer ensures that decisions are both intelligent and 

trustworthy – AI provides the decision-making capability, while blockchain provides a secure audit trail of 

those decisions and the data behind them. 

To facilitate the integration of these components, a digital twin of the stamping line is implemented in the 

application layer. The digital twin is a virtual replica of the physical cowl stamping process, continuously 

updated with real-time data from the IoT sensors. It allows visualization of machine status, simulation of 

“what-if” scenarios, and contextualization of any anomalies detected. The digital twin also plays a role in 

bridging AI and human operators – for instance, if the AI flags a potential defect, the digital twin can highlight 

the exact location on the cowl part or show which process parameter deviated at that moment, enabling 

engineers to quickly diagnose issues. 
 

Figure:2 system’s architecture, which is based on blockchain-based quality control. The proposed system 

contains four main layers, an IoT sensor layer, a distributed ledger layer, a smart contract layer, and a business 

layer with the various functions. Blockchain technology safely distributes the ledger for assessing quality, 

assets, logistics, and transaction information. The defined smart contract provides the intelligence, privacy 

protection, and automation in the presented system, and IoT sensors extract the real-time data. The machine 

learning  modules  applied  in  this  process  are  for  pre-processing  and  analyzing  data.[10] 

Source : https://doi.org/10.3390/s21041467 
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Implementation Details 

IoT Data Capture and Digital Twin Integration: Data from the stamping line’s IoT sensors are collected 

through an edge computing gateway that interfaces with the press controller and sensor network. We 

developed a data pipeline wherein sensor readings (pressure, force, acceleration, etc.) are time-synchronized 

and aggregated for each stamp cycle. The edge gateway performs preliminary signal processing – smoothing 

noise, extracting key features (e.g., peak force, force curve shape, etc.) – and then streams the data to both the 

on-site server (for AI analysis) and the blockchain network. A local database temporarily stores high- 

frequency raw data, while summarized indicators (e.g., cycle peak values or anomaly flags) are transmitted to 

the cloud database and blockchain for persistence. A digital twin dashboard (Figure 2) was created, using a 3D 

simulation of the press and automation line, to visualize the live sensor data and AI insights. 
 

Figure 3. Digital twin system framework for the hot stamping production line. The implementation includes 

four layers: the physical layer (bottom) consisting of the actual equipment on the line – the stamping press, 

heating furnace (if hot stamping is used for tailored properties), industrial robots handling parts, sensors, and 

the industrial control system (ICS); the virtual layer (third layer) which hosts virtual device models and state 

machines replicating the physical process in simulation; the data layer (second layer) which handles sensor 

data collection, transmission, storage (local and cloud databases), and provides data to the virtual layer; and the 

application layer (top) which provides the digital twin dashboard and user interfaces for production data 

visualization, process reproduction, and event analysis. The arrows indicate the data-driven updates from 

physical to virtual (upward flow of sensor data) and the mapping from virtual to physical (downward flow of 

control or analytical insights). [3] 

Source: https://doi.org/10.1007/s00170-024-13727-0 

In our system, the digital twin not only visualizes data but also aids in decision workflows. For example, if an 

anomaly is detected in a particular cycle, the twin can replay that cycle’s data, highlighting which parameter 

went out of range and which component (e.g., a specific sensor location on the die) might be responsible. This 
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interactive capability accelerates root cause analysis. The data layer ensures that both the AI module and the 

blockchain have access to the necessary data: the AI pulls from the streaming sensor data bus (and from 

historical data stored in the cloud database for model retraining), while the blockchain’s smart contract or 

transaction functions subscribe to event triggers (like “cycle complete” or “anomaly detected”) to record those 

events on the ledger. 

AI Model Training and Inference Workflow: The AI component of the system was developed using a 

combination of supervised and unsupervised learning techniques to address both known defect classification 

and novel anomaly detection. During an initial training phase, historical data from the stamping line (including 

examples of known defect conditions such as panel cracks, wrinkles, and instances of normal operation) were 

used to train a deep learning model. We opted for a CNN-based architecture for feature extraction from time- 

series sensor signals, combined with a decision layer that outputs either a defect class or an anomaly score. The 

model training was performed offline using Python and PyTorch, leveraging data labeled by quality engineers. 

Figure 3 shows a comparison of model accuracy for different AI approaches we evaluated. The chosen 

“Proposed” model (a hybrid CNN with attention mechanism) achieved the highest accuracy on our validation 

dataset, outperforming baseline models like Support Vector Machine (SVM) or Random Forest on the task of 

classifying stamping cycles as “OK” or “Defective.” 

 

 

Figure 4. AI model accuracy comparison on stamping quality detection. Four models were tested: a 

Convolutional Neural Network (CNN), a Support Vector Machine (SVM), a Random Forest (RF), and the 

proposed deep hybrid model. The bar chart shows the classification accuracy of each model (in %), with the 

proposed model achieving ~93% accuracy, outperforming the others. 

Source: Author’s own processing. 

Once trained, the model was deployed on the edge computing device for real-time inference. Each stamp 

cycle’s data is fed into the model, which then outputs a decision. For known defect patterns, the model can 

classify the type of defect (e.g., crack vs. wrinkle); for unknown issues, the model computes an anomaly score 

indicating deviation from normal patterns. We set a threshold on this anomaly score based on the distribution 

observed in training – if the score exceeds the threshold, the cycle is flagged for potential quality issues. Over 

time, the model can be refined with new data, and incremental learning is possible by periodically retraining 

on accumulated records (the system is flexible to add new defect classes as they are identified, addressing the 

evolving nature of manufacturing processes). To ensure reliability, the AI’s decisions are cross-checked with 

traditional quality checks initially, and the model’s precision/recall are monitored through the blockchain 

records (since every prediction is logged, we can later verify false positives/negatives by seeing if parts 

flagged as defective truly failed inspection). 
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Blockchain Network and Smart Contract Logic: The blockchain network for this project was implemented 

using a permissioned blockchain platform (Hyperledger Fabric was chosen for its modularity and enterprise 

features). Nodes in the network were established for key stakeholders: the stamping plant (maintaining the 

primary node), the OEM assembly plant, and a quality assurance center. Figure 4 depicts the blockchain node 

network structure in the context of the automotive supply chain. Each node holds a replica of the distributed 

ledger and participates in consensus for transaction validation. We configured the network in a channel that is 

shared by the stakeholders, ensuring data privacy where needed (e.g., detailed sensor data might be shared only 

between plant and QA nodes, whereas high-level quality certificates are visible to all). 

 

Figure 5. Blockchain node network in the automotive stamping supply chain (simplified representation). 

Nodes represent different stakeholders or locations (Stamping Plant, Assembly Plant, Supplier, Quality Lab, 

Dealer, Regulator etc.), each running a blockchain peer that maintains a ledger copy. Dashed and dotted lines 

indicate peer-to-peer connections in the permissioned network for data exchange and consensus. All nodes 

collectively verify and record transactions (e.g., part produced, quality verified) on the immutable ledger.. 

Source: Author’s Own processing 

Smart contracts (chaincode) were developed to automate traceability logic on the blockchain. One core smart 

contract handles part genealogy tracking: when a new cowl panel is produced, the IoT system invokes the 

contract to create a new part record on-chain (including timestamp, part ID, material batch). Another function 

in the contract records quality data – it receives the AI’s verdict for each part (either “Pass” or “Fail” along 

with any defect code and anomaly score) and appends this to the part’s blockchain record. If a part is flagged 

as defective, the contract can automatically trigger a notification to relevant parties (for instance, sending an 

alert to a dashboard at the Quality Lab node, or even ordering the production line to divert the part). Figure 5 

illustrates the flow of the smart contract logic linking sensor data and AI decisions to blockchain records and 

alerts. 
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Figure 6. Smart contract logic flow for real-time quality traceability. Sensor data from the stamping process 

are continuously streamed to the AI detection module. If the AI identifies a defect or anomaly, it sends the 

result to the blockchain’s smart contract. The smart contract (“Traceability Rules”) then logs the outcome to 

the distributed ledger (creating an immutable record of the event) and can trigger further actions or alerts (such 

as notifying operators or connected systems). This ensures that every out-of-spec event is recorded and acted 

upon in a trustable manner. 

Source: Author’s own processing. 

Transactions on the blockchain are designed to be efficient and lightweight so as not to bottleneck the 

production. Only summary information (key metrics and decision outcomes) is stored on-chain, while detailed 

sensor waveforms remain in the local database or cloud storage (with a hash stored on blockchain for integrity 

verification). For example, for each part we store: Part ID, timestamp, machine ID, batch ID, AI result (OK or 

Defective), anomaly score, link to detailed data (via hash). Storing the hash of the full sensor dataset in the 

blockchain record allows any party to later verify that the raw data has not been altered (the raw data can be 

provided offline if needed for forensic analysis, and its hash compared with the on-chain hash). We also 

implemented an audit smart contract that can be invoked to retrieve a full trace report of a given part – this 

contract aggregates data from the genealogy and quality contracts and outputs a certificate (e.g., “Part X – 

produced on Date Y at Plant Z – Material Batch M – Quality Status: PASS, no anomalies detected”). This on- 

demand traceability report is invaluable for downstream processes and for external auditors or customers to 

gain confidence in the product. 

Security measures were put in place: device identities and data are cryptographically signed before entering the 

blockchain, and only permissioned nodes can invoke the critical smart contract functions. This prevents 

unauthorized manipulation of quality records. The consensus mechanism (we used RAFT ordering in 

Hyperledger Fabric) ensures that even if one node goes offline or is compromised, the ledger remains 

consistent and tamper-proof. 

Case Study and Results 

To evaluate the effectiveness of the AI+IoT+Blockchain triad, we conducted a case study on an actual 

automotive cowl stamping line. The line produces cowl panels from steel blanks using a 1000-ton mechanical 

press. We instrumented the press with IoT sensors: a load cell on the press ram for press force measurement 
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each stroke, accelerometers on the die to capture vibration, thermocouples on the die and press to monitor 

temperature, and an acoustic sensor to listen for any abnormal sounds (which can indicate cracking). The IoT 

gateway collected data for 100 consecutive stamping cycles (parts), during which a variety of conditions were 

present – most parts were produced under nominal conditions, but a few had intentional perturbations (e.g., a 

slight misalignment introduced to produce a wrinkle defect in one part, a lower lubrication level for another to 

simulate a risk of galling/scratches, etc.). The AI model ran in real-time to analyze each cycle’s data, and the 

blockchain recorded each part’s data and AI verdict. 

Defect Frequency Distribution: Over the 100 parts, the system identified a handful of defective items. Figure 

6 shows the distribution of defect types observed. Out of 100 parts, 8 had minor cracks, 15 had wrinkle defects 

(typically due to slight misfeeds causing buckling), 5 had surface scratches or scuff marks, and 10 exhibited 

springback outside tolerance (springback is a deformation issue measured in a subsequent inspection, but we 

include it here as a quality issue flagged by the system based on force curve analysis). The remaining were 

classified as “Other” or no defect. This distribution highlights that wrinkles were the most common defect in 

our trial, which aligns with known challenges in stamping complex panels. The AI model successfully 

classified these defect occurrences by analyzing the sensor signatures – for example, wrinkles were often 

preceded by an anomalously low blank holder force reading and distinct oscillations in the force curve. 

 

Figure 7. Frequency of different defect types detected in the cowl stamping case study (out of 100 parts). 

“Wrinkles” (panel buckling defects) were most frequent, followed by “Springback” (excess elastic 

deformation) and “Cracks”. “Surface Scratches” and other minor defects were less common. This distribution 

was identified by the AI analysis of sensor data and confirmed via part inspection. 

Source: Author’s own processing. 

IoT Sensor Data Trends and Anomaly Detection: The IoT sensors provided rich time-series data for each 

stroke. By analyzing these, the system can not only detect singular defects but also monitor gradual drifts in 

process conditions. Figure 7 presents an example of press force variation over 50 consecutive stamping cycles. 

The press force for a nominal good part was around 1000 kN. We observed natural variability of ±3% in force 

for good parts. However, on cycle 12 in this sample, there was a noticeable drop in peak force (to ~940 kN) 

which was correlated with a misfeed that resulted in a partially formed part (and a crack defect). The AI’s 

anomaly detector flagged this cycle due to the force dropping well below the normal range. On the other hand, 

cycle 18 showed an excessively high peak force (~1080 kN), which was due to a thicker incoming blank – that 

part did not crack but did show excessive springback later. The system’s threshold for force was set (red 

dashed line in Figure 7 at 1000 kN nominal) with tolerance bands; any deviation beyond tolerance triggered an 

alert. 
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Figure 8. Press force variation over stamping cycles. The green curve plots the peak press force measured for 

each of 50 consecutive strokes. The red dashed line indicates the nominal force (1000 kN) for a properly 

formed part. Cycles exhibit small variations, but certain cycles (e.g., around #12 and #18) show significant 

deviations – a drop and spike respectively – which correspond to defect occurrences (crack in cycle 12, 

excessive springback risk in cycle 18). The IoT sensor and AI monitoring caught these anomalies in real time. 

Source: Author’s own processing. 

Temperature monitoring is also crucial, especially in high-volume or heated processes. Figure 8 illustrates the 

temperature trends during a production shift (here we simulated a scenario akin to warm stamping where 

tooling temperature is monitored). Starting at ambient ~25°C, the tool temperature gradually rises as 

production continues, leveling around 40–45°C. We set an “Alert threshold” at 40°C (orange dashed line) to 

signify when conditions might start affecting part dimensions or lubricant effectiveness. Around the 40-minute 

mark, the temperature crosses this threshold – our system’s response (via smart contract) was to log a 

“Temperature Alert” on the blockchain and notify operators to consider a cooling pause or lubricant check. 

The slight saw-tooth fluctuations after 40 min are due to an active cooling mechanism kicking in 

intermittently. Although no immediate defect was linked to the temperature rise in our trial, this monitoring 

ensures preventive actions can be taken before any heat-related issues (like excessive die expansion or 

lubricant breakdown) cause defects. 
 

 

Figure 9. Temperature trend of the stamping tool over time during continuous production. As the press runs, 

the tool temperature climbs (red line) and stabilizes in the mid-40°C range. An alert threshold was set at 40°C 

(orange dashed line) to flag when the tooling gets hotter than desired. Crossing this threshold triggers a logged 

event and operator notification. Maintaining temperature within safe limits helps prevent defects related to 

thermal effects. 

Source: Author’s own processing. 
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The AI anomaly detection output provides a holistic way to catch any unusual pattern, even if we don’t 

explicitly monitor a particular variable. Figure 9 depicts the anomaly score evolution over the sequence of 

produced parts. In the initial portions of production (parts 1–50), the anomaly score (purple line) stays low 

(near 0.1–0.4), indicating the process is within learned normal bounds. As we introduced some perturbations 

and as equipment conditions evolved (towards parts 60–80), the anomaly score shows an upward drift. By part 

~80, the score crosses the threshold (0.5, red dashed line) – at this point, the system flagged a general anomaly. 

Indeed, part 80 in our trial had a combination of slightly abnormal readings (minor vibration increase and a 

slower press speed), which individually were not threshold-breaking but together created a pattern the AI 

found statistically unlikely. While that part did not have a visible defect, this early warning prompted a 

maintenance check, which discovered a loosening in a sensor mounting and a minor drop in pneumatic 

pressure in the blank holder system. The ability of the AI to aggregate subtle cues into an anomaly metric 

proved valuable for preventative maintenance. 
 

 

Figure 10. Anomaly score evolution over 100 produced parts. The anomaly score (computed by the AI model) 

gradually increases as the process deviates from baseline conditions. The red dashed line is the anomaly 

threshold (set at 0.5). For the first ~70 parts, scores are well below threshold (process in control). Approaching 

part 80, scores rise and eventually exceed the threshold, indicating the process has drifted (triggering an 

investigation). Such trends can forewarn of emerging issues even before a defect occurs. 

Source: Author’s own processing. 

Data Correlation and Root Cause Analysis: With all process data and quality outcomes recorded, we can 

analyze correlations between defects and process parameters. Table 1 presents examples of sensor anomaly 

types observed and their interpretations in terms of potential causes. This knowledge base was partially built 

into the AI’s reasoning and also used by engineers in analyzing events. For instance, a sudden drop in press 

force often corresponded with a misfeed (material not fully in place, causing lower resistance) or a tool 

malfunction. High-frequency vibration spikes were linked with impacts (possibly a loose part of the die or a 

crack forming). A rapid temperature rise could indicate lubrication failure leading to increased friction. 

Acoustic emission bursts were a clear indicator of crack onset (as the material fractures, it emits a sound that 

the acoustic sensor picks up). By linking these interpretations with blockchain-recorded events, we created a 

transparent log of not just what happened but also why it might have happened, aiding continuous 

improvement. 

Table 1 – Sensor Anomaly Types and Likely Interpretations 
 

Sensor/Signal Observed Anomaly 

Pattern 
Interpretation / Cause 

Press force (load cell) Sudden drop well below 

nominal force 

Possible misfeed or material absence; tooling gap or 

failure during stroke. 

Press force (load cell) Sudden spike above Potential overload: thicker material than spec or 

improper alignment causing high resistance (risk of 
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 normal range tool damage or part crack). 

Vibration (accelerometer) Unusually high- 

frequency spike or 

impact transient 

Indication of a sudden mechanical impact – e.g., a 

loosening component, onset of a crack in the part or 

tool, or a slug falling in the die. 

Temperature 

(thermocouple) 

Rapid rise exceeding 

threshold 

Cooling or lubrication system failure; excessive 

friction heating (could lead to altered material 

properties or lubricant burn-off). 

Acoustic emission 

(microphone) 

Burst of acoustic energy 

(pop sound) 

Likely crack initiation in material during forming; 

micro-fractures emitting sound. 

Motor current (press 

drive) 

Sustained increase 

above baseline 

Growing tool wear or misalignment causing higher 

resistance; in servo-drive presses could indicate the 

need for maintenance. 

Using such tables and visual analytics, the team was able to perform root cause analysis for each defect 

incident and verify the system’s findings. Moreover, by compiling data over many parts, we identified strong 

correlations between certain process parameters and defect occurrences. Table 2 illustrates a simplified defect– 

parameter matrix summarizing how different defects related to process conditions in our study. For example, 

cracks were strongly correlated with excessive press force and insufficient blank holder force, whereas 

wrinkles were mainly correlated with insufficient blank holder force and certain material property deviations. 

These insights, backed by data, were stored in the blockchain as well (as part of quality reports), meaning that 

any stakeholder could later audit why a part was marked defective (seeing both the raw sensor data and an 

explanation of the probable cause). 

Table 2 – Defect Types vs. Process Parameter Correlation Matrix (H=High correlation, M=Moderate, L=Low, 

“–” = no notable direct correlation) 
 

Defect Type Press Force 

Variation 

Blank Holder 

Force 

Lubrication 

Level 
Material Thickness Variation 

Cracks H (very high 

force can cause 

cracks) 

M (too low BHF 

can permit sudden 

material slip -> 

crack) 

L (usually not 

lubrication- 

related) 

H (thinner material or weak 

spots prone to cracking) 

Wrinkles L (wrinkles from 

force too low to 

flatten) 

H (low BHF -> 

material not held, 

causes wrinkles) 

M (poor 
lubrication can 

exacerbate 

wrinkling) 

M (thicker or more ductile 

material can wrinkle if not 

constrained) 

Surface 

scratches 
– – H (insufficient 

lube -> metal-on- 

metal scratching) 

L (thickness not a factor in 

scratch, mostly surface 

conditions) 

Springback 

(excess) 

M (over-force 
can increase 

elastic rebound) 

– – H (material property variation 

(thickness/strength) strongly 

affects springback) 

Other defects 

(e.g., dents) 
M (force 
fluctuations 

might dent if 

double-hit) 

M (BHF 
irregularities can 

leave minor dents) 

M (indirect; e.g., 

poor lube -> 

uneven forming) 

L 
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From the perspective of network and system performance, we measured how adding blockchain impacted the 

data flow. Table 3 summarizes some key performance benchmarks. The data transmission latency from sensor 

to AI decision was on average 100 ms without blockchain and about 130 ms with blockchain logging enabled 

(a slight increase due to the overhead of creating and endorsing transactions, but still well within real-time 

tolerances for our process). The system throughput in terms of parts per minute was effectively unchanged (30 

parts/min achievable, only slightly reduced when writing to blockchain on each part to ~28 parts/min, which 

was acceptable as it remained above the production requirement). The benefit, of course, is that each part’s 

record is now immutable and traceable. The blockchain layer guarantees data immutability and provides full 

transparency that was not available in the non-blockchain baseline (where data could be siloed or manually 

recorded). 

Table 3 – Network Performance Benchmarks: Baseline vs. Blockchain-Integrated System 
 

Metric Without Blockchain With Blockchain (Triad) 

Data transmission latency 

(sensor -> AI decision) 

~50 ms ~70 ms 

End-to-end decision time (sensor 

-> AI -> record logged) 

~100 ms ~130 ms 

System throughput (parts 

processed per minute) 

30 parts/min 28 parts/min 

Data immutability assurance No (central database, editable) Yes (cryptographically guaranteed on 

ledger) 

Traceability level Partial (data in silos, manual 

linking) 

Full (unified ledger linking all process 

and quality data) 

 

The results demonstrate that the triad system can be deployed with minimal performance penalty while greatly 

enhancing traceability and intelligence. All anomaly detections and defect identifications by the AI were cross- 

verified by manual inspection: there were no false negatives (the system caught all actual defective parts). 

There were a couple of false positives (parts flagged anomalous by AI but ultimately within spec); those are 

areas for further model tuning, but they still provided valuable preventive alerts. The blockchain’s audit trail 

proved extremely useful in post-process analysis – for example, when a question arose about part 12’s crack, 

we pulled its blockchain record which showed the exact sensor readings and AI assessment, and we could 

demonstrate to management when and how that defect occurred, increasing trust in the system. 

ROI – Return on Investment and Key Performance Result Element (KPRE) -Based Evaluation 

The implementation of the AI+IoT+Blockchain triad for intelligent traceability in automotive stamping must 

be financially justified within a complex cyber-physical environment characterized by high throughput, tight 

tolerances, and zero-defect expectations. To this end, a multi-layered techno-economic framework was 

developed, integrating: 

 Quantitative cost-benefit analysis 

 Control-system-induced savings attribution 

 Time-resolved return modeling 

 Systemic KPRE-based evaluation 

This hybrid model allows conversion of real-time defect detections, sensor-driven anomaly predictions, and 

blockchain event immutability into concrete financial outcomes, enabling live ROI optimization within a 

digital twin ecosystem. 
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KPRE-Driven ROI Formulation 

We define a multi-component ROI function integrated with Key Performance Result Element (KPRE) 

structures, where KPRE-1 tracks direct and indirect cost avoidance per investment dollar: 

ROI Model (with Defect-Traceability Coupling): 

Net Annual Benefit 
 

 

Where: 

ROI = ( 
Total Implementation Cost 

) × 100% 

Net Annual Benefit = (Baseline Quality Cost – Post-Triad Quality Cost) + Operational Efficiency Gains + 

Audit/Avoidance Value 

Total Implementation Cost = One-time infrastructure, integration, and training investments (CapEx) + First- 

year OpEx 

Additionally, we introduce a Key Performance Result Element (KPRE) defined as: 

KPRE-1: Quantified Net Cost Avoidance per Defect Averted, expressed as: 

 

 

 

Where: 

KPRE1 
 𝐶total  

= 
(𝐷baseline − 𝐷post) × 𝐶𝑑 

 Dbaseline = Historical defect count (pre-implementation)

 Dpost= Post-implementation defect count

 Cd = Unit cost of defect (rework/scrap/labor/traceability effort)

 Ctotal = System cost (CapEx + OpEx Year 1)

This KPRE quantifies how efficiently the system converts defects averted into financial return per unit 

investment, enabling performance-based tracking in deployment stages. 

Baseline Parameters and Defect Cost Structure 

The stamping line under study processes 60,000 parts/year, with a documented pre-deployment defect rate of 

6% (3,600 parts/year). The average direct cost associated with a single defective part—including inspection, 

material loss, operator rework time, equipment downtime, and customer rejection liability—is conservatively 

estimated at $18.45 per unit. 

Additional indirect costs (manual audit preparation, traceability gap mitigation, and warranty risk exposure) 

contribute $0.75–$1.25 per part, yielding an all-in cost impact per defective part of approximately $19.50. 

Thus, the baseline annual quality cost was: 

Cbaseline=3,600×19.50=$70,200 

Post-Implementation Performance Metrics 

Following triad system integration, the real-time AI detection pipeline and blockchain-anchored traceability 

led to a reduction in defect rate to 2% (1,200 parts/year). This was validated through combined AI inference 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VII July 2025 

Page 235 
www.rsisinternational.org 

 

 

 
 

logs and manual inspection correlation, with blockchain maintaining an immutable quality record per part. 

Post-deployment quality cost: 

Cpost=1,200×19.50=$23,400 

Net defect-related savings: 

ΔCd==70,200−23,400=$46,800 

Additional savings were realized in: 

Manual traceability/audit labor reduction: 800 hours/year saved × $30/hour = $24,000 

Warranty claim avoidance (risk-weighted reduction): Based on past average of 2 major claims/year (~$5,000 

each), with traceable lineage now blocking undocumented parts, estimated prevention = $7,500/year 

Predictive maintenance gains (early anomaly alerts reducing unplanned downtime): 15 downtime hours 

avoided/year × $750/hour = $11,250 

Total Net Annual Benefit: 

Btotal==46,800+24,000+7,500+11,250=$89,550 

Total Investment and Operational Cost 

The triad system required the following investments: 
 

Component Cost (USD) 

IoT Sensors and Integration $22,000 

Edge AI Gateways (NVIDIA Jetson) $11,500 

AI Model Development + Training $15,000 

Blockchain Node Setup (Fabric) $13,500 

Smart Contract Logic + Dashboards $9,500 

Cloud/Edge Storage & Compute $4,500 

Total Cap Ex $76,000 

Year 1 Operational Cost (system maintenance, retraining, cloud services): $7,500 

Total Year 1 Cost = $83,500 

ROI and KPRE Calculation 
 

ROI1yr = 
89,550 − 83,500 

× 100% = 𝟕. 𝟐𝟓% 
83,500 

89,550 
Payback Period =  

 

83,500 
≈ 𝟏. 𝟎𝟕𝟐 years ≈ 𝟏𝟐. 𝟗 months 
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83,500 83,500 
KPRE1 = 

(3,600 − 1,200) × 19.5 
= 

2,400 × 19.5 
≈ 𝟎. 𝟓𝟔𝟏 

This means the system returns $0.56 of direct defect cost avoidance per dollar invested, exclusively from the 

quality improvement dimension. With inclusion of traceability, auditability, and downtime savings, the 

effective return increases to $1.07 per dollar by end of Year 1. 

Sensitivity and Scalability 

We conducted a sensitivity analysis to test the financial resilience of the system under varying defect rates and 

production volumes: 
 

Scenario Defect Rate (%) Annual Units ROI (%) Payback (months) 

Conservative 3.5% 40,000 1.1% 24.5 

Baseline Case (Actual) 2.0% 60,000 7.25% 12.9 

Optimized Ops (Future) 1.0% 75,000 19.8% 6.0 

This shows the model scales positively with volume and accuracy improvements. The KPRE enables real-time 

dashboarding of performance against ROI thresholds, serving as a benchmark for expansion to other 

production lines. 

CONCLUSION 

This paper presented an integrated AI+IoT+Blockchain framework for smart traceability in automotive cowl 

stamping, and demonstrated its capabilities in a real-world-inspired case study. By uniting IoT sensors (for rich 

real-time data), AI algorithms (for intelligent defect detection and prediction), and blockchain (for secure and 

transparent data provenance), the system achieves a level of insight and accountability unattainable by 

traditional means. The IoT instrumentation provides full visibility into the stamping process, the AI provides 

rapid detection of quality issues and even predictive warnings, and the blockchain provides an immutable 

record that stakeholders can trust for audits and supply chain verification. 

The benefits of this triad approach include: (1) Early detection of defects and anomalies, reducing scrap and 

rework by catching issues in-process. (2) Root cause analysis and continuous improvement driven by AI 

insights from sensor data (as evidenced by the correlations we identified between process parameters and 

defects). (3) Strengthened trust and collaboration across the supply chain – the blockchain ledger ensures that 

all parties (supplier, manufacturer, customer) see a single version of the truth regarding each part’s quality and 

manufacturing conditions, which is particularly valuable for safety-critical components. This traceability can 

help in warranty claims and recalls by pinpointing affected batches quickly and reliably. (4) Enhanced security 

– data integrity is maintained and the system is resilient to tampering, thanks to cryptographic features of 

blockchain, addressing concerns of data falsification that sometimes arise in manual quality reporting. 

In summary, the AI+IoT+Blockchain triad creates a synergistic effect: IoT provides the data foundation, AI 

adds analytical intelligence, and blockchain adds trust. Our implementation on a stamping line showed that this 

integration is feasible without hindering production efficiency, and it significantly improves quality assurance 

processes. 

Future work: We plan to extend this approach to other manufacturing processes (e.g., welding, painting) to 

validate its generalizability. Scaling the blockchain to larger networks and volumes is an area of ongoing 

development – techniques like off-chain data storage and layer-2 solutions could be explored to handle higher 

throughput if needed. On the AI front, incorporating federated learning could allow models to improve using 

data from multiple lines or plants without sharing sensitive data directly. We also aim to integrate additional 
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context (such as operator actions or maintenance activities) into the traceability ledger, achieving a more 

holistic “digital thread” for each product. 

Ultimately, the convergence of AI, IoT, and blockchain as illustrated in this study can pave the way for smart 

factories where quality issues are not only detected and traced, but also predicted and prevented, and where 

every product comes with a verifiable digital passport of its manufacturing journey. 
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