ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue VII July 2025

Exploring the Impact of Alcohol Type on the Yield of Biodiesel from Cottonseed Oil Using NaOH Catalyst and Response Surface Methodology Statistical Tools

Ezidinma, T. A¹, Ude, C. N², Eze, K.A³

¹Chemical Engineering Department, Institute of Management and Technology, Enugu, Enugu State, Nigeria.

²Department of Chemical Engineering, Michael Okpara University of Agriculture, Umudike, Umuahia, Abia State, Nigeria

³Chemical Engineering Department, Enugu State University of Science and Technology, Enugu, Enugu State, Nigeria

*Corresponding author

DOI: https://doi.org/10.51244/IJRSI.2025.120700073

Received: 26 June 2025; Accepted: 30 June 2025; Published: 02 August 2025

ABSTRACT

A study on the impact of alcohol type on the yield of biodiesel from cottonseed oil oil was conducted by carrying out transesterification of cottonseed oil with three different alcohols (methanol, ethanol and butanol) in presence of sodium hydroxide (NaOH) as catalyst. Response Surface Methodology based on Central Composite Design was used to optimize the process and analysis of variance (ANOVA) used for conducting the relevant statistical analysis. Quadratic models were developed to predict biodiesel yield as a function of the transesterification process variables - alcohol/oil molar ratio, catalyst concentration, reaction temperature, reaction time, and agitation rate. The statistical tool made predictions on biodiesel yield from the processes as follows, methanol, 83.25% ethanol, 84.36% and butanol, 74.59 % at the optimal condition for methanol process as methanol/oil molar ratio 6:1, temperature 55°C, time 45 mins, catalyst concentration 1%, and rate of mixing 300rpm. Ethanol/oil molar ratio18:1. temperature 45°C, time 45 mins, catalyst concentration 1%, and rate of mixing speed, 300rpm. Butanol/oil molar ratio 19:1, temperature 40°C, time 15mins, catalyst concentration 0.5%, and mixing speed 300rpm, The optimized conditions were validated with the actual biodiesel yield of 82.5% for methanol, 85% for ethanol and 75% for butanol. Experiments were conducted to validate the predicted optimal conditions presented actual biodiesel yield of 82.5% for methanol, 85% for ethanol and 75% for butanol. The error between the experimental and predicted yield was found to be is less than 0.6%, showing that the model correctly explains the influence of the process variables on the production of alkyl ester from cotton seed oi and have sufficient accurancy to predict the amount of alkyl ester yield and therefore it can be concluded that the generated models have sufficient accurancy to predict the amount of alkyl ester yield.

Key words: Butanol, Biodiesel, Transesterification, Exploring.

INTRODUCTION

Rapid increase in global energy demand besides limited fossil fuel supplies and growing environmental concerns has led to an intense search for sustainable and renewable energy sources (Yalew, et al., 2020). Biodiesel - a mono-alkyl ester of long-chain fatty acids is prominent among the other options as a strong competitor for biofuels because of its biodegradability, non-toxicity, and lower emission profiles than traditional diesel (Chang, et al., 2017, Jeswani, et al., 2020). Biodiesel is an essential part of future energy portfolios since its use greatly lowers greenhouse gas emissions and promotes energy independence.

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue VII July 2025

2020)

Triglycerides undergo a chemical reaction (transesterification) with short-chain alcohols in the presence of a catalyst to produce fatty acid alkyl esters, or biodiesel, and glycerol as a by-product (Long, et al., 2021, Sales, et al., 2022). Transesterification process's efficiency and yield is influenced by several crucial factors including the type and quantity of alcohol, catalyst concentration, reaction temperature, agitation speed, and reaction duration. For the transesterification of refined vegetable oils, sodium hydroxide (NaOH), a potent alkali, is well known as a cost-effective and efficient homogeneous catalyst that provides high reaction rates and yields under ideal circumstances (Gholami, and Pourfayaz., 2024, Jamil, et al., 2022) The choice of alcohol type is important because of its obvious effect on the kinetics of the reaction, the solubility of the reactants and products, and, eventually, the yield and characteristics of the finished biodiesel. Traditionally, methanol is a preferred alcohol due to its low cost and high reactivity even though, the use of other alcohols, such as ethanol and butanol, is gaining traction due to their renewable nature (ethanol from biomass) and superior qualities of

In many areas, cottonseed oil is a plentiful non-edible oil source that offers a practical and affordable feedstock for the manufacturing of biodiesel, allaying worries about the conflict between food and fuel (Khan, 2024, Patel, et al., 2025) Therefore, to optimize the production process and customize the features of biodiesel for particular uses, a thorough examination of the effects of several alcohol types—methanol, ethanol, and butanol—on the yield of biodiesel from cottonseed oil catalyzed by NaOH is essential.

the resulting biodiesel (e.g., higher cetane number and lubricity with butanol) (Yun., 2020, Callegari, et al.,

A crucial statistical technique for methodically assessing and optimizing the intricate interactions between various process variables is Response Surface Methodology (RSM). When a response of interest is impacted by multiple variables, RSM is a set of statistical and mathematical methods that can be used to build, enhance, and optimize processes (Myers et al., 2016). RSM makes it possible to model the link between several independent factors and the response by using experimental designs like Central Composite Design (CCD). This allows for the identification of ideal operating conditions with fewer experiments. In order to provide vital information for effective and sustainable biodiesel production, this study intends to methodically investigate the effects of methanol, ethanol, and butanol on the yield of biodiesel made from cottonseed oil using NaOH as a catalyst. Response Surface Methodology will then be used to optimize the process parameters.

MATERIALS AND METHODS

Materials

Refined cotton seed oil was obtained from Roban Stores, Enugu, reagents from Ogbete Main market Enugu, Enugu State, Nigeria.

Methods

Characterisation of Refined Cottonseed Oil

The refined cottonseed oil was characterized to determine its vital properties.

The properties and method adopted for their determination are shown in table 1

Table 1 - Methods employed for oil characterization

Property	Analytical Method (Standard
Specific gravity (S.G)	ASTM D74 (1986).
Melting point	ALCA H-16
Flash point	ASTM D93.
Moisture content	ASTM D2709.

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue VII July 2025

Saponificaton value	ASTM D615
Iodine value	ASTM D4067-86 (1986)
Peroxide value	AOAC 965.33
Free fatty acid (FFA) value	ASTM D7638-10 (2021)
Calorific value	ASTM D3286
Cloud point	ASTM D2500
Viscosity	ASTM D445

Transesterification Reaction

The refined cottonseed oil reacts with methanol, ethanol and butanol in the presence of NaOH to produce alkyl esters of fatty acids (biodiesel) and glycerol. The refined cottonseed oil was precisely quantitatively transferred into a flat bottom flask placed on a hot magnetic stirrer. Specific amount of catalyst (by weight of refined cottonseed oil) dissolved in the required amount of methanol, ethanol and butanol was added. The reaction flask was kept on a hot magnetic stirrer under constant temperature with defined agitation throughout the reaction. At the defined time, sample was taken out, cooled, and the biodiesel (i.e. the alkyl ester in the upper layer) was separated from the by-product (i.e. the glycerol in the lower layer) by settlement overnight under ambient condition. Percentage of the biodiesel yield was determined by comparing the volume of layer biodiesel with the volume of refined cottonseed oil used. The procedure was repeated by varying the factors affecting the transesterification reaction such as; time, catalyst concentration, temperature, alcohol/oil molar ratio and agitation speed.

Design of Experiment for Transesterification Reaction

Design Expert software (version 9) was used in this study to design the experiment and to optimize the reaction conditions. The experimental design employed in this work was a two-level-five factor fractional factorial design involving 32 experiments. Catalyst concentration, A, methanol/oil molar ratio, B, Reaction temperature, C, reaction time, D, and agitation speed, E were selected as independent factors for the optimization study. The response chosen was the ester yields obtained from transesterification of cottonseed oil. Eight replications of centre points were used in order to predict a good estimation of errors and experiments were performed in a randomized order. The actual and coded levels of each factor are shown in Tables 1- 3 below. The coded values were designated by -1 (minimum), 0 (centre), +1 (maximum), $-\alpha$ and $+\alpha$. Alpha is defined as a distance from the centre point which can be either inside or outside the range, with the maximum value of 2n/4, where n is the number of factors whereby the value of alpha is set at 0.5. It is noteworthy to point out that the software uses the concept of the coded values for the investigation of the significant terms, thus equation in coded values is used to study the effect of the variables on the response. The empirical equation is represented as:

$$Y = \beta_{0} + \sum_{i=1}^{5} \beta_{i} X_{i} + \sum_{i=1}^{5} \beta_{ii} X_{i}^{2} + \sum_{i=1}^{5} \sum_{j=i+1}^{5} \beta_{ij} X_{i} X_{j}$$
(1)

Selection of levels for each factor was based on the experiments performed to study the effects of process variables on the application of solid base catalysts for transesterification reaction of cottonseed oil.

Statistical Analysis of Transesterification using Central Composite Design (CCD)

To optimize the transesterification of the cottonseed oil using methanol, ethanol and butanol, Response Surface Methodology with Central Composite Design program was used to determine the optimum values of the process variables. The fractional factorial design was used to obtain a quadratic model, consisting of factorial trials to estimate quadratic effects. To examine the combined effect of the five respective factors (independent variables): catalyst concentration, alcohol/oil molar ratio, reaction temperature, reaction time and agitation

speed, on biodiesel yield and derive a model, a two-level- five -factor ($2^{5-1} + 2*5 + 6$) Central Composite Response Design = 32 experiments were performed. The factors levels are shown in tables 1, 2, and 3. The matrix for the five variables were varied at two levels (-1 and +1). The lower level of variable was designated as "-1" and higher level as "+1". The experiments were performed in random order to avoid systematic error. Equations (1, 2,and 3) represent the mathematical model relating the transesterification reaction using methanol, ethanol and butanol respectively with the independent process variables obtained with the Design Expert 9. The design of the experimental matrix of transesterification using methanol, ethanol and butanol. The experimental and the predicted values, calculated by Equations (3), (4) and (5), is presented in table 3, 4 and 5. The response was expressed as % yield, calculated as ;

$$Y = \{(V_b)/V_o\} \times 100$$
 (2)

where V_o is the initial volume of oil and V_b is the volume of biodiesel produced.

Table 1: Studied range of each factor in actual and coded form (Methanol).

Factor	Units	Low level	High level	-α	+α	0 level
Catalyst conc. (A)	Wt%	0.6(-1)	1.2(+1)	0.6(-2)	1.4(+2)	1.0
Methanol, (B)	Mol/mol	5(-1)	8(+1)	4(-2)	9(+2)	6
Temperature, (C)	°C	50(-1)	60(+1)	45(-2)	65(+2)	55
Reaction time (D)	Hours	30(-1)	60(+1)	15(-2)	90(+2)	45
Agitation speed (E)	Rpm	250(-1)	350(+1)	200(-2)	400(+2)	300

Table 2: Studied range of each factor in actual and coded form (Ethanol).

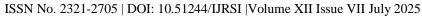
Factor	Units	Low level	High level	-α	+α	0 level
Catalyst conc. (A)	Wt%	0.8(-1)	1.2(+1)	0.6(-2)	1.4(+2)	1.0
Ethanol, (B)	Mol/mol	16(-1)	20(+1)	14(-2)	22(+2)	18
Temperature, (C)	°C	30(-1)	55(+1)	15(-2)	65(+2)	45
Reaction time (D)	Hours	30(-1)	60(+1)	15(-2)	90(+2)	45
Agitation speed (E)	Rpm	250(-1)	350(+1)	200(-2)	400(+2)	300

Table 3: Studied range of each factor in actual and coded form (Butanol).

Factor	Units	Low level	High level	-α	+α	0 level
Catalyst conc. (A)	Wt%	0.2(-1)	0.6(+1)	0.1(-2)	0.8(+2)	0.4
Butanol/oil, (B)	Mol/mol	18(-1)	20(+1)	16(-2)	24(+2)	18
Temperature, (C)	°C	35(-1)	45(+1)	30(-2)	50(+2)	40
Reaction time (D)	Hours	10(-1)	20(+1)	5(-2)	30(+2)	15
Agitation speed (E)	Rpm	250(-1)	350(+1)	200(-2)	400(+2)	300

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue VII July 2025

RESULTS AND DISCUSSIONS


Table 4: Characterization of refined cotton seed oil, biodiesel from cotton seed oil and ASTM standard.

S/N	Properties	Units	Refined cottonseed oil	Biodiesel from cottonseed oil	ASTM D6751 standard
1	Moisture content	% wt	0.020	0.020	0.050 max
2	Acid value	Mg/KOHg	0.24	0.22	_
3	FFA	%	0.15	0.11	_
4	Saponification value	Mg/g	187.95	165.47	_
5	Ester value	Mg/g	187.72	165.19	_
6	Iodine value	mgI ₂ /100 g	68.90	125.20	_
7	Peroxide value	Meq/kg	80.00	26.01	_
8	Specific gravity		0.906	0.87	0.88
9	Kinematic viscosity	mm ² /s	29.22	6.81	1.9–6.0
10	Odour		Agreeable	Agreeable	_
11	Colour		Brown	Light brown	_
12	Refractive index	(28 °C)	1.4233	1.344	_
13	Flash point	(°C)	255	173	100–170
14	Cloud point	(°C)	-3.0	7.0	-3-12
15	Pour point	(°C)	-2.3	5.0	-15-10
16	Fire point	(°C)	_	193	_
17	Cetane number			56.06	48–65
18	High heating value	MJ/kJ	41.25	39.54	_

Phsico-chemical Characteristics of Cottonseed Oil

Characteristics of the refined cotton seed oil, biodiesel and ASTMD6751 standards are summarized in table 4. The results show that the free fatty acid (FFA) value of 0.15% for the refined cottonseed oil is less than 1% while the moisture content of 0.02% is very close to zero. These are acceptable levels for transesterification reaction, since higher amount of free fatty acids (FFA) (>1% w/w) in the feedstock can directly react with the alkaline catalyst to form soaps. The soaps are subject to form stable emulsions and thus prevent separation of the biodiesel from the glycerol fraction and decrease the yield of biodiesel (Demirbas, 2003). Base-catalyzed transesterification reaction requires water free and low acid value (< 1) raw materials for biodiesel production (Amit, 2012). The presence of water and FFA greater than 1% in raw materials resulted in soap formation and decrease in yield of alkyl ester, consume much catalyst and reduce the effectiveness of the catalyst (Demirbas, 2006). The results of the physiochemical characteristics of the cottonseed oil and biodiesel, along with the standard (ASTM D6751-02), as presented, show that the major characteristics (kinematic viscosity, acid value, free fatty acid) are in good agreement with the standard.

It was observed that the specific gravity of refined cottonseed oil was reduced from 0.906 to 0.87 after transesterification and it is within the acceptable limit. Saponification value of cottonseed oil is 187.95 mg/g while that of biodiesel is 165.47 mg/g. This implies that the triglycerides of cottonseed oil have higher molecular weight fatty acids (saturated and unsaturated). This result obtained compares favorably with the

saponification value of palm oil (187–205), olive oil (185–187), and soy oil (187–193) (Mohammed et al. 2012). Saponification value is most important in that it is a good indicator of the extent of transesterification. The iodine value for cottonseed oil, 68.90 mgI₂ justifies the fact that the oil is edible. Iodine value for edible oil is less than 100 mgI₂. In general, the greater the iodine value, the higher the degree of unsaturation and the higher the tendency of the oil to undergo oxidative rancidity. It also indicates that cottonseed oil is a non-drying oil and would produce a non-drying alkyd (Panda, 2010). Even though the biodiesel has the iodine value of 125.20 mgI₂/g, which is relatively high according to Europe's EN 14214 specifications of iodine value, it indicates that cottonseed oil is a good source of raw material for biodiesel production because the higher the iodine value the more the number of unsaturated double bonds present in molecular structure and less the viscosity of the oil (Mohammed et al, 2012).

Peroxide value useful in monitoring oxidation is not specified in the biodiesel standards (Mohammed et al, 2012) but it influences cetane number, a parameter that is specified in the fuel standard. An increase in peroxide value indicates an increase in cetane number and therefore may reduce ignition delay time (Mohammed et al, 2012).

Evaluation of regression model for transesterification efficiency

The correlation between the experimental process variables and the transesterification efficiency was evaluated using the CCD modelling technique. Second order polynomial regression equation was fitted between the response (Transesterification efficiency, (*Y*)) and the process variables for the respective alcohols; (methanol, ethanol, butanol): alcohol – oil molar ratio, A, catalyst weight %, B reaction temperature, C and reaction time, D. and agitation speed, E. From Tables 6, 8 and 10, the ANOVA results showed that the quadratic model is suitable to analyse the experimental data. The model in terms of the coded values of the process parameters is given by eqns 3, 4, and 5 for methanol, ethanol and butanol respectively.

Y=83.25+0.32A-1.01B-1.56C+1.92D+2.09E-4.23AB-2.58AC+4.13AD-2.52AE+0.92BC+4.51BD+0.73BE+1.51CD-2.42CE-2.43DE-1.02 A^2 -6.39 B^2 -6.52 C^2 -5.13 D^2 -3.20 E^2 (3)

 $Y = 84.36+2.58A+0.75B+0058C-1.58D-0.17E+0.38AB+0.13AC-1.37AD-1.25AE-3.50BC+4BD-0.88BE-1.75CD-0.13CE-2.13DE-4.86A^2-2.49B^2-2.74C^2-4.74D^2-7.24E^2$ (4)

$$Y = 74.59 + 0.58A + 0.33B + 0.83C - 0.83D + 1.42E - 1.37AB + 0.50AC + 0.25AD - 0.23AE + 1.50BC - 0.50BD + 1.75BE + 0.88CD + 0.63CE - 1.38DE - 2.47A^2 - 3.09B^2 - 2.22C^2 - 2.47D^2 - 4.84E^2$$
 (5)

To develop a statistically significant regression model, the significance of the regression coefficients was evaluated based on the p-values. The coefficient terms with p-values more than 0.05 were insignificant and were removed from the regression model. The analysis in Tables (6, 8, 10) show that the linear terms A, B, and C; the quadratic terms, A^2 , B^2 , and C^2 and the interaction terms of AB, AC and CD; are significant model terms but D was included in the model because of its importance. The models were reduced to Eqns. (6, 7, 8) respectively, after eliminating the insignificant coefficients.

$$Y = 83.25 + 1.92D + 2.09E - 4.23AB - 2.58AC + 4.13AD - 2.52AE + 4.51BD - 2.42CE - 2.43DE - 6.39B^2 - 6.52C^2 - 5.13D^2 - 3.2$$
 (6)

$$Y=84.36+2.58A-3.50BC+4BD-4.86A^{2}-2.49B^{2}-2.74C^{2}-4.74D^{2}-7.24E^{2}$$
(7)

$$Y = 74.59 + 1.42E - 1.37AB + 1.50BC + 1.75BE - 1.38DE - 2.47$$
 $A^2 - 3.09$ $B^2 - 2.22$ $C^2 - 2.47$ $D^2 - 4.84$ E^2 (8)

Where Y is the response variable (percentage yield of biodiesel) and A-E are the coded values of the independent variables. The above equations represent the quantitative effect of the factors (A, B, C, D, and E) upon the response (Y). Coefficients with one factor represent the effect of that particular factor while the

coefficients with more than one factor represent the interaction between those factors. Positive sign in front of the terms indicates synergistic effect while negative sign indicates antagonistic effect of the factor. The adequacy of the above proposed model was tested using the Design Expert sequential model sum of squares and the model test statistics.

Table 3: Experimental design matrix for the factorial design of iodiesel production from cotton seed oil using methanol.

Run	Catalyst concentratio n (A)	Alcool/oil molar ratio (B)	Reaction temperature (C)	Reaction temperature (D)	Agitatio n speed (E)	Experiment al Yield (Y)	Pred. Yield (Y)
	wt%	Minutes	Degree Celsius	mol/mol	rpm	(%)	(%)
1	0.8	30	50	5	350	72	74.3
2	1.2	30	50	5	250	69	67.9
3	0.8	60	50	5	250	52	50.98
4	1.2	60	50	5	350	53	55.4
5	0.8	30	60	5	250	60	58.88
6	1.2	30	60	5	350	55	57.3
7	0.8	60	60	5	350	65	67.38
8	1.2	60	60	5	250	41.5	40.48
9	0.8	30	50	8	250	46.3	45.27
10	1.2	30	50	8	350	68.1	70.49
11	0.8	60	50	8	350	65.6	68.07
12	1.2	60	50	8	250	69	68.07
13	0.8	30	60	8	350	49	51.37
14	1.2	30	60	8	250	71.6	70.57
15	0.8	60	60	8	250	70.1	69.15
16	1.2	60	60	8	350	57.89	60.36
17	0.6	45	55	6.5	300	79.88	78.54
18	1.4	45	55	6.5	300	81.21	79.83
19	1	15	55	6.5	300	60.88	59.7
20	1	75	55	6.5	300	57.2	55.66
21	1	45	45	6.5	300	61.7	60.32
22	1	45	65	6.5	300	55.4	54.07
23	1	45	55	3.5	300	60.1	58.9
24	1	45	55	9.5	300	68.1	66.58
25	1	45	55	6.5	200	60.8	66.27
26	1	45	55	6.5	400	82.8	74.62
27	1	45	55	6.5	300	82.8	83.25

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VII July 2025

28	1	45	55	6.5	300	82.8	83.25
29	1	45	55	6.5	300	82.8	83.25
30	1	45	55	6.5	300	82.8	83.25
31	1	45	55	6.5	300	82.8	83.25
32	1	45	55	6.5	300	82.8	83.25

Table 4: Experimental Design Matrix For the Factorial Design of Biodiesel Production from Cotton Seed Oil using ethanol.

Run	Catalyst	Alcool/oil	Reaction	Reaction	Agitation	Experimental	Pred.
	concentration (A)	molar ratio (B)	temperature (C)	temperature (D)	speed (F)	Yield	Yield
	(A)	1atio (b)		(D)	(E)	(Y)	(Y)
	wt%	Minutes	Degree celcius	mol/mol	rpm	(%)	(%)
1	0.8	30	30	16	350	60	62.05
2	1.2	30	30	16	250	65	63.05
3	0.8	60	30	16	250	56	55.13
4	1.2	60	30	16	350	67	65.96
5	0.8	30	55	16	250	65	65.3
6	1.2	30	55	16	350	78	78.13
7	0.8	60	55	16	350	56	57.21
8	1.2	60	55	16	250	67	64.21
9	0.8	30	30	20	250	54	52.96
10	1.2	30	30	20	350	53	51.8
11	0.8	60	30	20	350	67	66.88
12	1.2	60	30	20	250	80	75.88
13	0.8	30	55	20	350	56	57.05
14	1.2	30	55	20	250	65	62.05
15	0.8	60	55	20	250	63	61.13
16	1.2	60	55	20	350	60	57.96
17	0.6	45	42.5	18	300	62	59.74
18	1.4	45	42.5	18	300	64	70.08
19	1	15	42.5	18	300	73	72.91
20	1	75	42.5	18	300	72	75.91
21	1	45	17.5	18	300	70	72.24
22	1	45	67.5	18	300	73	74.58
23	1	45	42.5	14	300	69	68.58
24	1	45	42.5	22	300	58	62.24

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VII July 2025

25	1	45	42.5	18	200	50	55.74
26	1	45	42.5	18	400	57	55.08
27	1	45	42.5	18	300	85	84.36
28	1	45	42.5	18	300	85	84.36
29	1	45	42.5	18	300	85	84.36
30	1	45	42.5	18	300	85	84.36
31	1	45	42.5	18	300	85	84.36
32	1	45	42.5	18	300	85	84.36

Table 5: Experimental Design Matrix For the Factorial Design of Biodiesel Production from Cotton Seed Oil using butanol.

Run	Catalyst concentration (A)	Alcool/oil molar ratio (B)	Reaction temperature (C)	Reaction temperature (D)	Agitation speed, (E)	Experimental Yield (Y)	Pred. Yield (Y)
	wt%	Minutes	Degree celcius	mol/mol	rpm	(%)	(%)
1	0.3	10	35	18	350	60	60.51
2	0.6	10	35	18	250	63	62.09
3	0.3	20	35	18	250	57	57.09
4	0.6	20	35	18	350	62	61.84
5	0.3	10	45	18	250	54	53.84
6	0.6	10	45	18	350	62	61.59
7	0.3	20	45	18	350	68	68.59
8	0.6	20	45	18	250	58	57.18
9	0.3	10	35	20	250	60	59.01
10	0.6	10	35	20	350	59	57.76
11	0.3	20	35	20	350	58	57.76
12	0.6	20	35	20	250	55	53.34
13	0.3	10	45	20	350	56	55.51
14	0.6	10	45	20	250	65	63.09
15	0.3	20	45	20	250	60	59.09
16	0.6	20	45	20	350	65	63.84
17	0.15	15	40	19	300	64	63.56
18	0.75	15	40	19	300	63	65.89
19	0.45	5	40	19	300	60	61.56
20	0.45	25	40	19	300	62	62.89
21	0.45	15	30	19	300	63	64.06
22	0.45	15	50	19	300	66	67.39

23 0.45 15 40 17 300 67 24 0.45 15 40 21 300 60 25 0.45 15 40 19 200 50 26 0.45 15 40 19 400 58 27 0.45 15 40 19 300 75 28 0.45 15 40 19 300 75								
25 0.45 15 40 19 200 50 26 0.45 15 40 19 400 58 27 0.45 15 40 19 300 75	23	0.45	15	40	17	300	67	66.39
26 0.45 15 40 19 400 58 27 0.45 15 40 19 300 75	24	0.45	15	40	21	300	60	63.06
27 0.45 15 40 19 300 75	25	0.45	15	40	19	200	50	52.39
	26	0.45	15	40	19	400	58	58.06
28 0.45 15 40 19 300 75	27	0.45	15	40	19	300	75	74.59
	28	0.45	15	40	19	300	75	74.59
29 0.45 15 40 19 300 75	29	0.45	15	40	19	300	75	74.59
30 0.45 15 40 19 300 75	30	0.45	15	40	19	300	75	74.59
31 0.45 15 40 19 300 75	31	0.45	15	40	19	300	75	74.59
32 0.45 15 40 19 300 75	32	0.45	15	40	19	300	75	74.59

Table 3 Characterization of refined cotton seed oil, biodiesel from cotton seed oil and ASTM standard.

Analysis of Variance (ANOVA)

The analysis of variance (ANOVA) indicated that the quadratic polynomial model was significant and adequate to represent the actual relationship between transesterification efficiency and the significant model variables as depicted by very small p- values (<0.0001). The significance and adequacy of the established models were further elaborated by a high value of coefficient of determination (R^2) value of 0.9642 for methanolysis, 0.9516 ethanolysis, 0.9691butanolysis and adj. R^2 value of 0.8982 for methanolysis, 0.8562 ethanolysis, 0.9130 butanolysis. This means that the model explains 96.42%, 95.16%, 96.91% of the variation in the experimental data for methanolysi, ethanolysis and butanolysis respectively. The adequate correlation between the experimental values of the independent variable and predicted values further showed the adequacy of the models.

From the statistics test for methanolysis as shown in Table 6, the regression coefficient ($R^2 = 0.9642$) is high, and the adjusted $R^2(0.8991)$ is in close agreement with the predicted R^2 (0.8982) value. Also, the sequential test for ethanolysis shown in table.8 show that the model F-value (10.81) of the quadratic model is large compared to the values for the other models for the equation. And from the statistics test, the regression coefficient ($R^2 = 0.9516$) is high, and the adjusted R^2 (0.8635) is in close agreement with the predicted R^2 (0.8562) value.

Table 6:Analysis of variance (ANOVA) for the fitted quadratic polynomial model for Methanol (Methanolysis)

Source	Coefficient estimate	Degree of freedom	Sum of square	F-value	P-value (Prob >F)
Model	83.25	20	4496.19	14.81	< 0.0001
A	0.32	1	2.50	0.16	0.6925
В	-1.01	1	24.54	1.62	0.2298
С	-1.56	1	58.63	3.86	< 0.0752
D	1.92	1	88.51	5.83	0.0343
Е	2.09	1	104.54	6.89	<0.0237
AB	-4.23	1	286.54	18.87	0.0012
AC	-2.58	1	106.66	7.02	0.0226
AD	4.13	1	272.99	17.98	0.0014

RSIS

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VII July 2025

AE	-2.52	1	101.56	6.69	0.0253
BC	0.92	1	13.49	0.89	0.3662
BD	4.51	1	324.81	21.39	0.0007
BE	0.73	1	8.54	0.56	0.4690
CD	1.51	1	36.27	2.39	0.1505
CE	-2.42	1	93.65	6.17	0.0304
DE	-2.43	1	94.62	6.23	0.0297
A^2	-1.02	1	30.31	2.00	0.1853
B^2	-6.39	1	1198.81	78.95	< 0.0001
C^2	-6.52	1	1245.19	82.01	< 0.0001
D^2	-5.13	1	771.31	50.80	< 0.0001
E^2	-3.20	1	300.91	19.82	0.0010
Residual			15.18		
Cor. Total			4663.21		

Std. Dev. = 3.90; Mean = 66.56; C.V.% = 5.85; PRESS = 4372.66; R² = 0.9642; Adj. R² = 0.8991; Pred. R² = 0.8982; Adeq. Precision = 13.551

Table 8: Analysis of variance (ANOVA) for the fitted quadratic polynomial model for Methanol (Ethanolysis)

Source	Coefficient estimate	Degree of freedom	Sum of square	F-value	P-value (Prob >F)
Model	84.36	20	3502.59	10.81	< 0.0001
A	2.58	1	160.17	9.88	0.0093
В	0.75	1	13.50	0.83	0.3810
С	0.58	1	8.17	0.50	0.4926
D	-1.58	1	60.17	3.71	0.0802
Е	-0.17	1	0.67	0.041	0.8430
AB	0.38	1	2.25	0.14	0.7165
AC	0.13	1	0.25	0.015	0.9034
AD	-1.37	1	30.25	1.87	0.1992
AE	-1.25	1	25.00	1.54	0.2401
BC	-3.50	1	196.00	12.09	0.0052
BD	4.00	1	256.00	15.79	0.0022
BE	-0.88	1	12.25	076	0.4032
CD	-1.75	1	49.00	3.02	0.1100
CE	-0.13	1	0.25	0.015	0.9034
DE	-2.13	1	72.25	4.46	0.0584

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VII July 2025

A^2	-4.86	1	693.88	42.81	<0.0001
B^2	-2.49	1	181.67	11.21	0.0065
C^2	-2.74	1	220.00	13.57	0.0036
Residual			178.29		
Cor. Total			3680.88		

Std. Dev. = 4.03; Mean = 67.81; C.V.% = 5.94; PRESS = 4570.14; R² = 0.9516; Adj. R² = 0.8635; Pred. R² = 0.8562; Adeq. Precision = 9.986

Similarly, the sequential test as in table 10 show that the model F-value (17.27) of the quadratic model is large compared to the values for the other models for the equation. And from the statistics test, the regression coefficient ($R^2 = 0.9691$) is high, and the adjusted R^2 (0.9130) is in close agreement with the predicted R^2 (0.9011) value.

The experimental in tables 3-5 were also analyzed to check the correlation between the experimental and predicted biodiesel yield using methanol, and the normal probability and residual plot, and actual and predicted plot are shown in Figures 1 and 2 respectively.

Table 10: Analysis of variance (ANOVA) for the fitted quadratic polynomial model for Methanol (Butanolysis)

Source	Coefficient estimate	Degree of freedom	Sum of square	F-value	P-value (Prob >F)
Model	74.59	20	1413.46	17.27	< 0.0001
A	0.58	1	8.17	2.00	0.1854
В	0.33	1	2.67	0.65	0.4366
С	0.83	1	16.67	4.07	0.0686
D	-0.83	1	16.67	4.07	0.0686
Е	1.42	1	48.17	11.77	0.0056
AB	-1.37	1	30.25	7.39	0.0200
AC	0.50	1	4.00	0.98	0.3440
AD	0.25	1	1.00	0.24	0.6308
AE	-0.23	1	1.00	0.24	0.6308
BC	1.50	1	36.00	8.80	0.0128
BD	-0.50	1	4.00	0.98	0.3440
BE	1.75	1	49.00	11.98	0.0053
CD	0.88	1	12.25	2.99	0.1115
CE	0.63	1	6.25	1.53	0.2422
DE	-1.38	1	30.25	7.39	0.0200
A^2	-2.47	1	178.37	43.59	<0.0001
B^2	-3.09	1	280.24	68.49	<0.0001
C^2	-2.22	1	144.03	35.20	<0.0001

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue VII July 2025

D^2	-2.47	1	178.37	43.59	< 0.0001
E^2	-4.84	1	687.41	168.01	<0.0001
Residu al			45.01		
Cor. Total			1458.47		

Std. Dev. = 2.02; Mean = 63.28; C.V.% = 3.20; PRESS = 1119.60; $R^2 = 0.9691$; Adj. $R^2 = 0.9130$; Pred. $R^2 = 0.9011$; Adeq. Precision = 13.546

It can be seen from the Figures that the data points on the plot were reasonably distributed near to the straight line, indicating a good relationship between the experimental and predicted values of the response, and that the underlying assumptions of the above analysis were appropriate. The result also suggests that the selected quadratic model was adequate in predicting the response variables for the experimental data.

The experimental data in Table 4 were also analyzed to check the correlation between the experimental and predicted biodiesel yield using ethanol, and the normal probability and residual plot, and actual and predicted plot are shown in Figures 3 and 4. respectively.

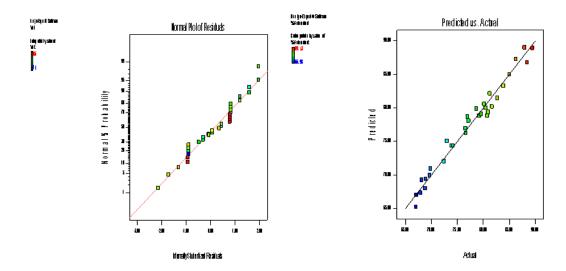


Figure 1: Plot of predicted versus the actual experimental values for biodiesel yield using methanol.

Figure 2: Plot of normal probability versus residuals values for biodiesel yield using methanol.

It can be seen from the Figures that the data points on the plot were reasonably distributed near to the straight line, indicating a good relationship between the experimental and predicted values of the response, and that the underlying assumptions of the above analysis were appropriate. The result also suggests that the selected quadratic model was adequate in predicting the response variables for the experimental data.

Analysis of experimental data in Table 5 was also performed to check the correlation between the experimental and predicted biodiesel yield using butaanol, and the normal probability versus residual plot, and actual versus predicted plot are shown in Figures 5 and 6 respectively. It can be seen from the figures that the data points on the plot were reasonably distributed near to the straight line, indicating a good relationship between the experimental and predicted values of the response, and that the underlying assumptions of the above analysis were appropriate. The result also suggests that the selected quadratic model was adequate in predicting the response variables for the experimental data.

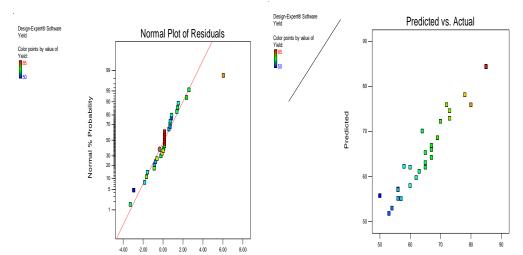


Figure 3: Plot of normal probability versus residuals for biodiesel yield using ethanol.

Figure 4.: Plot of predicted values versus the actual experimental values for biodiesel yield using ethanol.

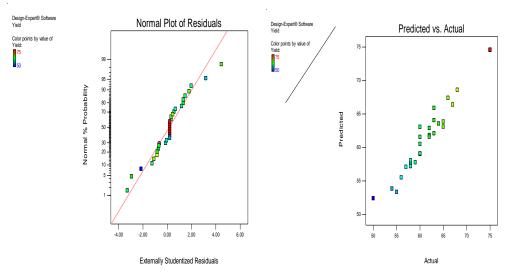


Figure 5: Plot of normal probability versus residuals values for biodiesel yield using butanol.

Figure 6: Plot of predicted versus the actual values for biodiesel yield using butanol.

Response surface estimation

Interactive effects of the process variables on the transesterification efficiency of the respective models were studied by plotting three dimensional surface curves against any two independent variables, while the other variables were kept at their central (0) level. The plots aid the understanding of the interaction of the variables and to determine the optimum level of each variable for maximum response. Figures (7-10) show the 3D curves of the response (transesterification efficiency) from the interactions between the variables in the methanol process while figures (11-12) show for ethanol and figures 13-16 are for butanol. On the curves, the elliptical shape of the curves indicates a good interaction of the two variables and circular shape indicates no interaction between the variables. The curves obtained in this study showed that there is a relative significant interaction between all the variables and for all the alcohols. Optimum conditions were also obtained from the response surface plots. For all the alcohols, the stationary point or central point is the point at which the slope of the contour is zero in all directions.

The coordinates of the central point within the highest contour levels in each of the plots will correspond to the optimum values of the respective variables. The maximum

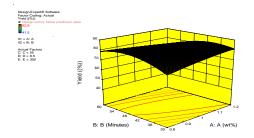


Figure 7: 3D Plot showing the interaction effect of time and catalyst concentration on the biodiesel yield

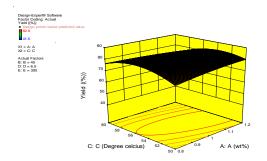


Figure 9: 3D Plot showing the effect of temperature and catalyst concentration on the biodiesel yield

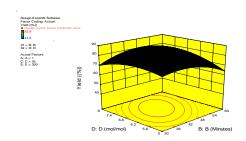


Figure 8; 3D Plot showing the interaction effect of time and methanol/oil ratio on the biodiesel vield

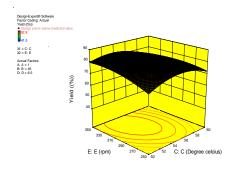


Figure 10:3D Plot showing the interaction effect of Agitation speed and temperatureon the biodiesel yield

predicted yield is indicated by the surface confined in the smallest curve of the contour diagram.

In the methanolysis process (Fig. 4-7), the optimum values of the variables were: reaction temperature, 55 °C; reaction time, 45min; catalyst weight 1.0%, methanol oil molar ratio 6:1 and agitation speed 300rpm. The predicted response value at these optimum values was 83.25%.

To confirm this optimum values, experiments were performed at these values and the experimental response value was 82 80%. This showed that the model correctly explains the influence of the process variables on the production of FAME from cotton seed oil.

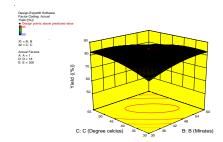


Figure 11: 3D Plot showing the interaction effect of temperature and time on the biodiesel yield

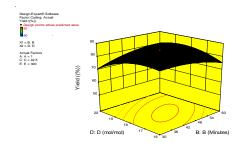


Figure 12: 3D Plot showing the interaction effect of ethanol oil molar ratio and time on the biodiesel yield.

In the ethanolysis process (Fig. 11-12), the optimum optimum values of the variables were: reaction temperature, 40 °C; reaction time, 45 min; catalyst weight 1.0 % agitation speed, and ethanol oil molar ratio 18:1. The predicted response value at these optimum values was 84.36%.

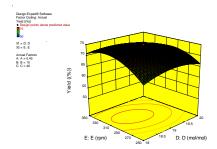


Figure 13: 3D Plot showing the interaction effect of butanol/oil molar ratio and agitation speed on the biodiesel yield

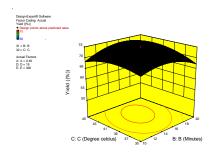


Figure 14: 3D Plot showing the interaction effect of temperature and time on the biodiesel yield

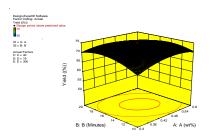
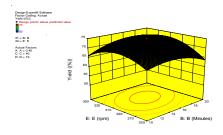
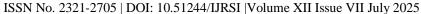


Figure 15: 3D Plot showing the interaction effect time and catalyst concentration on the biodiesel yield




Figure 16: 3D Plot showing the interaction effect of agitation speed and time on the biodiesel yield.

To confirm this optimum values, experiments were performed at these values and the experimental response value was 85%. This showed that the model correctly explains the influence of the process variables on the production of FAEE from cotton seed oil.

In the butanolysis process (Fig. 13–16), the optimum values of the variables were: reaction temperature, 40 °C; reaction time, 15 min; catalyst weight 0.5%, agitation speed,300rpm and methanol oil molar ratio 19:1. The predicted response value at these optimum values was 74.9%. To confirm this optimum values, experiments were performed at these values and the experimental response value was 75%. This showed that the model correctly explains the influence of the process variables on the production of fatty acid butyl ester (FABE) from cotton seed oil.

Model Validation

Transesterification reaction under the obtained optimum operating conditions methanolysis, ethanolysis and butanolysis were carried out in order to evaluate the precision of the quadratic model; the experimental value and predicted values are shown in table 3, 4. 5. Comparing the experimental and predicted results, it can be seen that for each of the alcohols, the error between the experimental and predicted is less than 0.6%, therefore it can be concluded that the generated models have sufficient accurancy to predict the amount of alkyl ester yield.

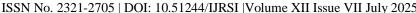
Table 7: Results of the model validation (experiment 1 indicates the optimum reaction conditions and yield)

Experi-	Catalyst	Methanol/oil	Temp	Time	Agitation	Experimenta	Predicted
ment	conc.	molar ratio	.C	(Mins)	speed	l Yield (%)	yield (%)
ment	(%wt oil) A	В		D	(rpm)		
					Е		
1	1	6	55	45	300	82.80	83.25

Table 9: Results of the model validation (experiment 1 indicates the optimum reaction conditions and yield)

Experiment	Catalyst	Ethanol/oil	Temperature	Time	Agitation	Experimental	Predicted
	conc.(%wt	molar ratio	(°C)	(Minutes)	speed	Yield (%)	yield (%)
	oil) A	B	C		(rpm)		
		B		D	Е		
					L		
1	1	18	40	45	300	85	84.36

Table 10: Results of the model validation (experiment 1 indicates the optimum reaction conditions and yield) for but an olysis.


Experiment	Catalyst	Butanol/oil	Temperature	Time	Agitation	Experimental	Predicted
	conc.(%wt	molar ratio	(°C)	(Minutes)	speed	Yield (%)	yield (%)
	oil) A	В	С	D.	(rpm)		
				D	E		
1	0.5	19	40	15	300	75	74.59

Effect of alcohol types on biodiesel yield.

The result obtained in this study revealed that the amount of biodiesel fuel produced by using different types of alcohol decreased in the following order: ethanol > methanol > butanol. This result obtained was different from the findings of Hossain et al, (2010). They reported that methanol yields higher than ethanol and that both alcohols yield greater quantity of biodiesel than butanol. The result also contradicts the findings of Nye et al. (1983), which reported that methanol was the alcohol that can give the highest biodesel yield followed by butanol and then ethanol. Meher et al (2006) also reported that the production of biodiesel using ethanol in alkali-catalyzed transesterification is more difficult than that by using methanol. This is due to the formation of stable emulsion during ethanolysis. In methanolysis the less stable emulsion formed would breakdown easily to form lower glycerol rich layer and upper methyly ester rich layer while in ethanolysis, the emulsions formed are more stable due to the presence of larger non polar group in ethanol, thus making the separation and purification of biodiesel more difficulty (Zhou et al 2003). On the other hand, Mittelbach et al (2001) reported that the ethanol and butanol catalyzed transesterification gave much higher yields than methanol catalysed transesterification. The same result was also reported by Abigor et al (2000). Obviously from this review, the yield of biodiesel using different alcohols does not depend only on the type of alcohol but also on the catalyst as well as the triglyceride oil used.

CONCLUSION

The production of biodiesel from cottonseed oil using methanol, ethanol and butanol and were carried out. The low acid value, iodine value and saponification value of the oil enable it to undergo direct transesterification without treatment. The methyl ester was produced by transesterification of cottonseed oil. Increase in process

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue VII July 2025

parameters such as reaction time, catalyst concentration, methanol/oil ratio, reaction temperature and agitation speed increase the yield of methyl ester to a reasonable point before it decreased. Optimization of the reaction parameters for biodiesel production from cottonseed oil was carried out using response surface methodology and central composite design. The effects of the reaction time, reaction temperature, catalyst concentration, methanol/oil molar ratio and agitation speed on the amount of methyl ester yields were significant parameters to predict the response values. The optimum values of the parameters were reaction time of 45minutes for both methanol and ethanol and 15minutes for butanol, reaction temperature of 55°C (methanol), 40°C (ethanol and butanol), catalyst concentration of 1% (methanol and ethanol) and 0.5% (butanol), methanol/oil molar ratio 7:1 (methanol), 18:1 (ethanol) and 19:1 (butanol) and agitation speed of 300rpm; under these conditions the amount of methyl ester yields achieved were 82.8% (methanol), 85% (ethanol) and 75% (butanol). density, viscosity, cetane index and higher heating values of biodiesel produced under optimized protocol in the present work meet the ASTM standard and were within the acceptable limits.

REFERENCES

- 1. Abigor, R.D, Uadia, P.O, Foglia, T.A, Haas, M.J, Jones, K.C, Okpeta, E. (2000): Lipase catalysed production of biodiesel fuel from some Nigerian lauric oils. Biochem Soc. Trans., 28:979-981
- 2. Amit Sarin., (2012): Biodiesel production and properties. Henry Ling Ltd Dorchester DTI IHD, UK ISBN, 971-1-84973-470-7.
- 3. ASTM D6751-02 (2002): American Society of Testing and Materials Standard Methods Annual Book of ASTM for Biodiesel Specification. Philadephia.
- 4. Callegari, A., Bolognesi, S., Cecconet, D., & Capodaglio, A. G. (2020). Production technologies, current role, and future prospects of biofuels feedstocks: A state-of-the-art review. Critical Reviews in Environmental Science and Technology, 50(4), 384-436.
- 5. Chang, W. R., Hwang, J. J., & Wu, W. (2017). Environmental impact and sustainability study on biofuels for transportation applications. Renewable and Sustainable Energy Reviews, 67, 277-288.
- 6. Demirbas, A. (2003): Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey Energy Convers. Manag. 44, 2093–3662109, 367.
- 7. Demirbas, A.(2006).: Global biofuel strategies. Energy Edu. Sci. Technol. 17, 27–63.
- 8. Gholami, A., & Pourfayaz, F. (2024). A Review on Biodiesel Production: Recent Advances in Feedstocks, Catalysts, and Conversion Technologies. Biofuels, 171-206.
- 9. Hossain, A.B.M.S, Boyce, A. N., Salleh, A., (2010). Effect of stirring time on the biodiesel production from waste Canada oil. African Journ. of Agric Research 5 (14) 1851-1859.
- 10. Jamil, F., Saleem, M., Qamar, O. A., Khurram, M. S., Al-Muhtaseb, A. A. H., Inayat, A., ... & Park, Y. K. (2022). State-of-the-art catalysts for clean fuel (methyl esters) production—A comprehensive review. Journal of Physics: Energy, 5(1), 014005.
- 11. Jeswani, H. K., Chilvers, A., & Azapagic, A. (2020). Environmental sustainability of biofuels: a review. Proceedings of the Royal Society a, 476(2243), 20200351.
- 12. Khan, I. U. (2024). Biodiesel production and selected fuel qualities from prospective non-edible oils: Hevea brasiliensis, Madhuca longifolia, Azadirachta indica, and Gossypium hirsutum. International Journal of Green Energy, 21(13), 3054-3071.
- 13. Long, F., Liu, W., Jiang, X., Zhai, Q., Cao, X., Jiang, J., & Xu, J. (2021). State-of-the-art technologies for biofuel production from triglycerides: A review. Renewable and Sustainable Energy Reviews, 148, 111269.
- 14. Meher et al (2006) eher L.C., Dharmagadda V.S.S, Naik S.N., (2006). Optimization of Alkali-Catalyzed Transesterification of Pongamia pinnata oil for production of Biodiesel. Bioresource Technology, 97,1392-7.
- 15. Mittelbach et al (2001) Mittelbach, M., Gangl, S.(2001), Long storage stability of biodiesel made from rapeseed and frying oil. JAOCS,78(6):573-557.
- 16. Mohammed, S.J. Atuman, E. Ugwu, A.A. Aboje (2012). Synthesis and characterization of biodiesel from edible oils. Int. J. Emerging Trends Eng. Dev. 2 (2) 313–320.
- 17. Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons.

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue VII July 2025

- 18. Nye, M.J., Williamson, T.W., Deshpande, S., Schrader, J.H., Snively, W.H., (1983), Conversion of used frying oils to diesel fuel by transesterification: Preliminary tests . JAOCS, 60(8) 1598-1608
- 19. Panda, H.(2010). Alkyd resins technology handbook. Asia Pacific Business Press Inc.
- 20. Patel GC, M., BS, A., Jagadish, Shettigar, A. K., & Samuel, O. D. (2025). Introduction to Renewable Energy Resources and Sustainable Feedstocks for Biodiesel. In Biofuel Production, Performance, and Emission Optimization: A Comprehensive Approach to Modelling and Optimization (pp. 1-21). Cham: Springer Nature Switzerland.
- 21. Sales, M. B., Borges, P. T., Ribeiro Filho, M. N., Miranda da Silva, L. R., Castro, A. P., Sanders Lopes, A. A., ... & Santos, J. C. D. (2022). Sustainable feedstocks and challenges in biodiesel production: an advanced bibliometric analysis. Bioengineering, 9(10), 539.
- 22. Yalew, S. G., van Vliet, M. T., Gernaat, D. E., Ludwig, F., Miara, A., Park, C., ... & Van Vuuren, D. P. (2020). Impacts of climate change on energy systems in global and regional scenarios. Nature Energy, 5(10), 794-802.
- 23. Yun, Y. (2020). Alcohol Fuels: Current Status and Alcohol Fuels: Current Technologies and Future Prospect, 3.
- 24. Zhou W, Konar SK, Boocock DGV (2003) Ethyl esters from the single-phase base-catalysed ethanolysis of vegetable oils. J Am Oil Chem Soc 80(4):367–371.