
International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue I, January 2018 | ISSN 2321–2705

www.rsisinternational.org Page 120

Conventional Vs Enhanced Sorting Algorithm: A

Review

Pooja Gupta

Assistant Professor, Uttaranchal University, Dehradun, Uttarakhand, India

Abstract: Sorting problem is one of the most antique problems of

computer science. From the beginning of computation,

algorithms for sorting problem has been derived and analyzed by

many researchers. The first sorting algorithm derived was

bubble sort (1956). Many useful sorting algorithms are

continually being invented like Merge sort, Timsort (2002),

Library sort (2006). A vast number of sorting algorithms and

their enhancements exists in the literature. One would really like

to know that these enhancements of sorting algorithms are

actually better than the conventional sorting algorithms. For this

purpose authors have taken a case of classical merge sort and

enhanced merge sort algorithm proposed by paira et al [12].

authors have tested the performance of both the algorithms using

different random number distributions and found that there is

no significant difference between the algorithms.

Keywords: Algorithm, Sorting, Efficiency, Time Complexity,

Space Complexity

I. INTRODUCTION

n computer science sorting problem has been researched at

length. Several sorting algorithms and enhancement of

classical sorting algorithm have been proposed, for example,

merge sort was proposed in 1981 and its enhancement

algorithm is proposed in 2016. Several enhancements of

classical sorting algorithms have been presented in the

literature [1, 2, and 3]. Out of all available sorting algorithms

which one is most suitable for an application depends on

many parameters like input size, type of data and distribution

of data [4]. Other factors that influence the performance of

sorting algorithm are number of comparison operations,

number of swaps required, and memroy space [5]. In

literature, there are many sorting algorithms to solve a

particular problem and there is a drastic difference in their

performance and efficiency. The difference in efficiency is

much more important than differences due to changes in

hardware and software of the system [6]. [7, 8] derived quick

sort algorithm and many researchers considered QuickSort

algorithm to be the fastest sorting algorithms [9, 10, 11]. The

particular algorithm one chooses depends on the properties of

data and the operations one may perform on the data [5].

The different cases with regard to Running Time that is

popular in sorting algorithms are:

 O (n) is average case; average number of steps taken

to solve an input of size n.

 O (n log n) is best case: this most efficient case, the

minimum number of steps taken to solve an input of

size n.

 O (n
2
) is worst case: This is inefficient case;

maximum number of steps taken to solve an input of

size n.

Performance of a sorting algorithm is measured using big-Oh

notaiton, i.e Worst time complexity of the algorithm. Some

algorithms are quadratic means they fall in the category of O

(n2) like insertion sort, bubble sort and selection sort. These

algorithms are simple to implement, iterative and

spontaneous. Other algorithms like quick sort, merge sort and

heap sort falls into the category of O(n log n), they are

normally complex to implement but these are faster than

previous category [12].

Every sorting algorithm is problem centric [13]. Most of the

algorithms are popular for sorting the unordered lists. The

efficiency of the sorting algorithms is to optimize the

importance of other sorting algorithms [5]. The optimality of

these sorting algorithms is judged while calculating their time

and space complexities [14].

Figure 1.1: Classification of Sorting

The objective of this paper is to provide a more

comprehensive and systematic review of the literature

pertaining to Sorting algorithms available in computer

I

International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue I, January 2018 | ISSN 2321–2705

www.rsisinternational.org Page 121

science. According to Paira et al, the newly proposed Merge

sort algorithm is faster than the conventional Merge Sort

algorithm having a time complexity of O(n log2 n) [12]. The

main objective is to scan the performance of this proposed

Merge-sort algorithm against the conventional Merge sort

algorithm proposed by Qin et al. In order to realize this

objective a comparative analysis was conducted to check the

performance of algorithms using different sets of input.

II. LITERATURE SURVEY

There are various types of sorting algorithms available. We

can categorize sorting algorithms using different parameters

 Internal and External

 Iterative and Recursive

 Stable and unstable

 Linear and quadratic

 Comparison and non-key comparisons

 In Place and Out of Place

Every sorting algorithm has its own advantage and

disadvantage [15]. Selection sort, Bubble sort, insertion sort,

quick sort, merges sort, etc are key-comparison sorting

algorithms, whereas counting sort, bucket sort and radix sort

is non-key comparison sorting algorithms.

 Iterative approach algorithms are simple to implement.

Recursive algorithms are complex algorithms, but more

efficient than the iterative algorithms [12].

Name

Time complexity
Space

Complexity
Stable Principle

Key-

comparison

Based

In-

place/Out-

Of-Place Best Average Worst

Bubble Sort Ω(n)
Ɵ(n2)

O(n2)

O(1) Yes Iterative Yes In Place

Insertion Sort Ω(n)
Ɵ(n2)

O(n2)

O(1) Yes Iterative Yes In Place

Selection Sort Ω(n2)
Ɵ(n2)

O(n2)

O(1) No Iterative Yes In Place

BCIS Ω(n)
Ɵ(n1.5)

O(n2) --- No

Divide and
Conquer

Yes In place

Cocktail Sort Ω(n)
Ɵ(n2)

O(n2)

O(1) Yes Exchanging No In place

Counting Sort Ω (n+k) Ɵ (n+k) O(n+k) O(n+k) Yes Integer sorting No Out-of-Place

Radix Sort Ω (wn) Ɵ (wn) O(wn)
O(n+r)

auxiliary
Yes

uniform

distribution of
elements

No ---

Bucket/Bin

Sort
Ω (n+k) Ɵ (n+k) O(n2) O(n) Yes

uniform

distribution of

elements

No Out-of-Place

Merge Sort Ω (n log n) Ɵ (n log n) O(n log n) O(n) yes

Recursive

Divide and

Conquer

yes Out-of-Place

Quick Sort Ω (n log n) Ɵ (n log n)
O(n2)

O(logn) No

Recursive

Partitioning
Yes Out-of-Place

Heap Sort Ω (n log n Ɵ (n log n) O(n log n) O(1) No Recursive Yes In Place

Tim Sort Ω(n) Ɵ (n log n) O(n log n) O(n) yes
Insertion &

Merging
Yes Out-of-Place

Library Sort Ω(n) Ɵ (n log n) O(n2) O(n) yes Insertion No

Table 1.1

*n = number of elements to be sorted

*k = number of possible values in the range.

*w = word size

*r = radix

According to Sareen et al, every sorting algorithm has its

advantage and disadvantage, but the quick sort algorithm is

most efficient algorithm among all existing sorting

algorithms. They developed a program to show the running

time comparison of different sorting algorithms. They

measured the running time in microseconds; they used

International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue I, January 2018 | ISSN 2321–2705

www.rsisinternational.org Page 122

different input size of each algorithm and then calculated the

average running time for each algorithm [15].

Jehad et al proposed two enhanced versions of selection sort

and bubble sort, namely: Enhanced Selection Sort (ESS) and

Enhanced Bubble Sort (EBS). Although their ESS has same

running time complexity (O (n
2
)) but they emphasized that

ESS is faster than selection sort.they proved it by storing input

data in secondary memory.

Their second proposed algorithm Enhanced Bubble sort

running time is O(nlgn) which is obviously faster than

traditional Bubble sort time (O (n
2
)).

Performance of both enhanced algorithms was evaluated by

applying them on a real-world case study of sorting a database

of (12500) records and experimental results proved that the

EBS is more efficienent than shell sort and enhanced shell sort

algorithms [5].

Sodhi et al [16], improvised insertion sorting algorithm and

proposed more efficient and enhanced insertion sort. This

enhanced insertion sort‟s worst case running time complexity

is less than O (n
1.585

). It also reduces the number of

comparisons by half. The authors compared proposed

algorithm with some bubble sort, selection sort etc. its

complexity varies from O (n) to O(n
1.585

).

Khairullah et al [17] worked upon bubble sort, selection sort

and insertion sort and proposed enhanced sorting algorithms.

They proved the efficiency of their proposed algorithms over

classical algorithms. To reduce the number of comparisons,

they suggested that by skipping or minimizing operations

(comparisons or swap operations) performance of typical

inefficient algorithms can be enhanced. Selection sort is

enhanced by the reduction of swap operations in [14].

Cocktail sort, also known as shaker sort of dual selection sort,

is a bidirectional version of selection sort. Cocktails sort

algorithm finds both the lowest and largest elements in the

array in each iteration [19-21]. The inner loop inside the

nested loop of insertion sort can be simplified by using a

sentinel value.

Merge sort algorithm uses divide-and-conquer principle and

recursively sorts the array. It was introduced by Qin et al [19].

They showed that merge sort has a time complexity of O

(nlogn) and its time complexity is lesser as compared to an

iterative sorting algorithm like Bubble, Insertion and Selection

which have a quadratic time complexity. Merge sort works

well with large input size where as above iterative algorithm

limits their use of small input.

Khalid et al [22] suggested that quick sort perform fastest for

large input, whereas selection sort is the slowest. They

performed an assessment and analyzed the performance of

Selection sort, Insertion sort, merge sort, quick sort and

bubble sort. For smaller input size all all above sorting

algorithm behaved similarly.

For large input Merge Sort performs better than other sorting

algorithms [22]. The only problem with Merge sort is this it

requires an additional auxiliary array for storing the elements

and that is why is is called out of place sorting algorithm as it

needs extra space for sorting. Its space complexity is O(n)

[18]. If we compare the space complexity of Merge sort with

quick sort then Quick Sort is more efficient than the Merge

Sort as it is an in place sorting algorithm. But, Quick sort has

its own disadvantage, its worst case time complexity is O(n
2
)

due to the unbalanced partition of the array [19]. Heap sort

performs better than the Quick Sort as it has a time

complexity of O(n log2 n). But it is extremely unstable [20].

Sorting algorithms can be categorized as iterative sorting

algorithms (bubble sort, selection sort, and insertion sort) and

recursive sorting algorithms (Merge sort and Quick sort).

Implementation of iterative algorithms is simpler than

recursive ones. According to Paira et al [18], the iterative

sorting algorithms, in the worst case, examine almost the

entire list of arrays resulting into time complexity of

O(n
2
). Insertion sort is the most efficient iterative sorting

algorithm for small input. Its efficiency increased if the input

is partially sorted decreases with the input size.

Apart form Enhanced Insertion sort there is one more

modified version of Insertion sort i.e. Doubly Inserted sort.

This doubly insertion sort works in two-way. It scans two data

elements simultaneously. It scans the first and the last element

of the array and compares them and then apply conventional

insertion sort on both. This doubly Inserted sort is better than

all iterative sorting algorithms as its worst case running time

is O(n).

In fact Doubly Inserted Sort performs better than Merge sort

and Quick Sort as its worst case time complexity and space

complexity is O(n) and O(1) respectively [18].

[4] Proposed a better insertion sort algorithm, they named it

Bidirectional Conditional Insertion Sort (BCIS). BCIS reduce

the shifting operation of classical Insertion sorts. BCIS

assume that there are two already sorted lists on the left and

the right side of the array, whereas the unsorted list located

between these two sorted lists. For ascendling sorting all the

small elements should be located in the left sub-list and all the

large elements should be located in the right sub-list.

One sorted part in the classical insertion sort is now

distributed into two sorted parts in BCIS. These two sorted

lists made BCIS economical in terms of memory usage. There

is one more benefit of BCIS; it can insert more than one

element in their correct positions in one loop iteration as

compared to classical insertion sort.

III. METHODOLODY AND IMPLEMENTATION

In order to measure the actual time improvement achieved by

the proposed algorithm, profiling of the enhanced merge sort

algorithm and existing merge sort algorithm will be done. A

C++ Program will be used to measure the performance of the

International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue I, January 2018 | ISSN 2321–2705

www.rsisinternational.org Page 123

both the algorithms. Profiling experiments will be carried out

on random data sets.

Characteristics of Merge Sort Algorithm:

 Divide and Conquer

 Recursive

 Stable

 Out of place

 Space Complexity: O(n)

 Time Complexity: O (n log n)

Steps for classical Merge sort:

 Input the unsorted array

 Divide array into two halves.

 Sort each half recursively.

 Perform merging of two halves.

 Output the sorted array

Pros:

 Merge Sort is better than Quick Sort in terms of time

complexity.

 It is used for both internal and external sorting

Cons:

 An extra memory requirement as it is recursive.

 High space complexity.

Proposed Merge sort algorithm

The authors applied Max-Min algorithm principle with

classical Merge sort to modify and propose new Merge sort

algorithm. According to them its time complexity is same as

of the classical merge sort, but its performance is better for all

input sizes.

Steps for Proposed Merge sort:

 Input the unsorted array

 Pair-wise sorting of every element of the array

 Divide the given array into two halves taking into

consideration odd-even positions of the original array

 Repeat the above steps until the complete array is

divided into sub-lists containing two elements each

 Perform merging of two halves

 Output the sorted array

Pros:

 Executes faster than classical Merge sort algorithm

for all input sizes.

Cons:

 It requires a stack space of O (n).

Implementation:

In order to test the speed of the different sorting algorithm

authors made a C++ program which runs each algorithm

several times for randomly-generated arrays. The test was run

in an Intel(R) Pentium ® Dual CPU E2180 @2.00GHz, and

the program was compiled using the Online C++ compiler for

generating larger size of Input numbers (upto 40000). Cpp.sh

is a simple front-end for a GCC compiler [20]. The system

uses GCC 4.9.2.

Ten different array sizes were used: 4000, 8000, 12000,

16000, 20000, 24000, 28000, 32000, 36000 and 40000.

Random numbers between 0 and 999.

Three cases with different random number distributions were

used:

Case 1: Completely random.

Case 2: All sorted.

Case 3: All reversed

Each case is explained with the help of a Bar chart and a table

of numbers. This table presents Input size, CPU time elapsed,

the number of comparison and assignment operations

performed by the both sorting algorithms on average during

the sorting of one input array. In case of integers, the number

of comparisons and assignment operations and their relative

ratio is not particularly significant as comparison is fast. But,

when a comparison of the elements is a complex process then

it may be important to compare different sorting algorithms

with respect to the number of total operations during sorting.

Each table has the following format:

CPU Time

No. of Comparisons

No. of Assignments

Input Size MergeSort
Proposed

Algo.
MergeSort

Proposed
Algo.

MergeSort
Proposed

Algo.

(value) (value) (value) (value) (value) (value) (value)

Table 3.1: Sample table format

Comparative execution analysis Each bar in the charts represents the time spent (in

milliseconds) by the sorting algorithm, in average, to sort the

array once. Lower bars are better.

International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue I, January 2018 | ISSN 2321–2705

www.rsisinternational.org Page 124

Case 1:

 Figure 3.1: Comparative execution times of both Sorting algorithms for sorting random numbers

CPU Time

No. of Comparisons

No. of Assignments

Input Size MergeSort Proposed Algo. MergeSort Proposed Algo. MergeSort Proposed Algo.

4000 0.001034 0.000785 63127 42803 179250 95808

8000 0.001676 0.002127 93576 138509 207616 388380

12000 0.002646 0.00333 147733 218706 327232 609289

16000 0.003515 0.00466 203234 301148 447232 836444

20000 0.004383 0.005704 260984 388732 574464 1069387

24000 0.006875 0.003941 319407 474031 702464 1308048

28000 0.006435 0.008075 378776 564095 830464 1547520

32000 0.007101 0.005232 438603 8126301 958464 21876040

36000 0.008321 0.010709 499913 747212 1092928 2038310

40000 0.009229 0.006852 561947 836304 1228928 2287834

Table 3.2: Comparative Analysis in terms of CPU Time, Comparison and Assignment operations for random numbers

Case 2:

International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue I, January 2018 | ISSN 2321–2705

www.rsisinternational.org Page 125

Figure 3.2: Comparative execution times of both Sorting algorithms for sorting sorted numbers

CPU Time

No. of Comparisons

No. of Assignments

Input Size MergeSort Proposed Algo. MergeSort Proposed Algo. MergeSort Proposed Algo.

4000 0.000125 0.000498 26242 67632 95808 167440

8000 0.000542 0.001684 57668 147264 207616 362880

12000 0.000798 0.001984 89603 230924 327232 570160

16000 0.001237 0.002893 124852 318519 447232 781760

20000 0.00138 0.002618 157808 406432 574464 1000912

24000 0.002894 0.005413 192810 497836 702464 1224320

28000 0.003501 0.006752 228373 589713 830464 1448208

32000 0.002577 0.007261 267004 685028 958464 1675520

36000 0.004466 0.008812 300830 777706 1092928 1906672

40000 0.002734 0.005503 336684 872847 1228928 2141824

Table 3.3: Comparative Analysis in terms of CPU Time, Comparison and Assignment operations for sorted numbers

International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue I, January 2018 | ISSN 2321–2705

www.rsisinternational.org Page 126

Case 3:

Figure 3.3: Comparative execution times of both Sorting algorithms for sorting reversed sorted numbers

CPU Time

No. of Comparisons

No. of Assignments

Input Size MergeSort Proposed Algo. Merge Sort Proposed Algo. MergeSort Proposed Algo.

4000 0.000318 0.000739 26242 67632 95808 167440

8000 0.000563 0.001591 57668 147264 207616 362880

12000 0.000821 0.002562 89603 230924 327232 570160

16000 0.001126 0.003361 124852 318519 447232 781760

20000 0.001382 0.004162 157808 406432 574464 1000912

24000 0.001646 0.004129 192810 497836 702464 1224320

28000 0.003568 0.004909 228373 589713 830464 1448208

32000 0.003845 0.006581 267004 685028 958464 1675520

36000 0.004478 0.008277 300830 777706 1092928 1906672

40000 0.004840 0.005006 336684 872847 1228928 2141824

Table 3.4: Comparative Analysis in terms of CPU Time, Comparison and Assignment operations for reversed numbers

International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue I, January 2018 | ISSN 2321–2705

www.rsisinternational.org Page 127

IV. CONCLUSION

The efficiency of the sorting algorithms is to optimize the

importance of other sorting algorithms [13]. The optimality of

these sorting algorithms is judged while calculating their time

and space complexities [21].

The main objective of this paper was to compare the

conventional Merge Sort Algorithm with enhanced Merge sort

algorithm.

According to Paira et al, it is observed that when n=4000,

both Merge Sort and the proposed algorithm takes the same

time to execute. But as „n‟ is increasing execution time of

Merge Sort > Execution time of the proposed algorithm [21].

We have performed the comparison of both the algorithms for

different input sizes (4000, 8000, 12000, 16000,

20000…………………..40000).

We have also used three different random number

distributions:

1. Completely random.

2. All sorted.

3. All reversed:

But after executing both of the algorithms on the Turbo C++

compiler as well as on GCC compiler online, we found out

that there is no significant difference between the algorithms,

however, as the input size increases (when n>4000) we found

that conventional merge sort algorithm‟s execution time is

slightly better than the proposed algorithm in all the cases and

Conventional merge sort algorithm uses the lesser number of

comparison and assignment operations as compared to

proposed algorithm.

REFERENCES

[1]. Min, Wang. "Analysis on bubble sort algorithm optimization." In

Information Technology and Applications (IFITA), 2010
International Forum on, vol. 1, pp. 208-211. IEEE, 2010.

[2]. Coding Unit Programming Tutorials. Cocktail sort algorithm or

shaker sort algorithm. http://www.codingunit.com/cocktail-sort-
algorithm-or-shaker-sort-algorithm, (accessed on January 1, 2017).

[3]. Debasis Samanta. Classic Data Structures. PHI Learning Pvt. Ltd.,

2nd edition, 2009.
[4]. Mohammed, Adnan Saher, Şahin Emrah Amrahov, and Fatih V.

Çelebi. "Bidirectional Conditional Insertion Sort algorithm; An

efficient progress on the classical insertion sort." Future

Generation Computer Systems 71 (2017): 102-112

[5]. Alnihoud, Jehad, and Rami Mansi. "An Enhancement of Major
Sorting Algorithms." Int. Arab J. Inf. Technol. 7, no. 1 (2010): 55-

62.

[6]. Thomas H cormen “Introduction to Algorithms”, Third Edition,
ISBN 978-0-262-03384-8, Chapter 1, Page 5-7.

[7]. Hoare, C. A. R. (1961). Partition: Algorithm 63, Quicksort:

Algorithm 64, and Find: Algorithm 65. Comm. ACM. 4(7), 321-
322

[8]. Hoare R.(1962). Quicksort. the Computer Journal, 4(1), 10-15

[9]. Sedgewick R. (1977). QuickSort with Equal Keys. Siam J
Comput.,6: 240-287

[10]. Van Emden M. H. (1970). Algorithms 402: Increasing the

efficiency of Quicksort. Communications of the ACM, 563-567
[11]. Knuth D.E. (2005). The Art of Computer Programming. Vol. 3:

Sorting and Searching, Addison-Wesley, Reading, Mass

[12]. Paira, Smita, Sourabh Chandra, and SK Safikul Alam. "Enhanced
Merge Sort-a new approach to the merging process." Procedia

Computer Science 93 (2016): 982-987.

[13]. Paira, Smita, Sourabh Chandra, Sk Safikul Alam, and Partha

Sarthi Dey. "A Review Report on Divide and Conquer Sorting

Algorithm." In National Conference on Electrical, Electronics, and

Computer Engineering, ISBN, pp. 978-93.
[14]. Horowitz, Ellis, and Alessandro Zorat. "Divide-and-conquer for

parallel processing." IEEE Transactions on Computers 32, no. 6

(1983): 582-585.
[15]. Sareen, Pankaj. "Comparison of sorting algorithms (on the basis of

average case)." International Journal of Advanced Research in

Computer Science and Software Engineering 3, no. 3 (2013): 522-
532.

[16]. Sodhi, Tarundeep Singh, Surmeet Kaur, and Snehdeep Kaur.

"Enhanced insertion sort algorithm." International journal of
Computer applications 64, no. 21 (2013).

[17]. Khairullah, Md. "Enhancing worst sorting algorithms." (2013).

[18]. Paira, Smita, Anisha Agarwal, Sk Safikul Alam, and Sourabh
Chandra. "Doubly Inserted Sort: A Partially Insertion Based Dual

Scanned Sorting Algorithm." In Emerging Research in
Computing, Information, Communication and Applications, pp.

11-19. Springer, New Delhi, 2015.

[19]. Song Qin Merge Sort Agorithm CS.fit.edu Available:
cs.fit.edu/~pkc/ classes/writing/hw13/song.pdf.

[20]. Yadav, Rohit, Kratika Varshney, and Nitin Kr Verma. "Analysis

of Recursive and Non-recursive Merge Sort Algorithm."
International Journal of Advanced Research in Computer Science

and Software Engineering 3, no. 11 (2013).

[21]. Paira, S., S. Chandra, S. S. Alam, and S. S. Patra. "Max min
sorting algorithm—a new approach of sorting." Int. J. Technol.

Explor. Learn.(IJTEL) 3, no. 2 (2014): 405-408.

[22]. Al-Kharabsheh, Khalid Suleiman, Ibrahim Mahmoud AlTurani,
Abdallah Mahmoud Ibrahim AlTurani, and Nabeel Imhammed

Zanoon. "Review on sorting algorithms a comparative study."

International Journal of Computer Science and Security (IJCSS) 7,
no. 3 (2013): 120-126.

