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Abstract—A general method is presented for reconstructing  

nonminimum phase from amplitude only data. The nonminimum 

phase is generated utilizing the nonparametric method.The 

advantage of this method is that no priori information is needed 

and no such choice of basis function is required as the solution 

procedure develops the nature of the solution. This is 

accomplished by the Hilbert Transform  which is a very 

fundamental property of nature that the real and imaginary part 

of the nonminimum phase transfer function can satisfy the 

relationship. The application of this method has been applied to 

the some antenna radiation pattern and scattering parameters of 

microwave filters.  
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I. INTRODUCTION 

N an electromagnetic system, the magnitude response can 

easily be measured but the phase response is hard to obtain. 

Thereforeitis importanttoreconstructthe phaseresponsefrom 

amplitude-onlydata.For minimum phase systems, the 

reconstruction of phase from amplitude-only data is relatively 

straightforward as the phase response is given by the Hilbert 

transform of the log of the magnitude of the amplitude data . 

In other words, the minimum phase as a function of frequency 

is given by and is expressed as It can be shown that the 

minimum phase and the log magnitude of the amplitude have 

a Hilbert transform relationship. In other words, the minimum 

phase as a function of frequency w can be expressed as 

arg [X(w)] = −
1

𝜋
𝑃  

ln⁡|𝑋(λ)|

λ−w

∞

−∞
d𝜆   (1) 

where P denotes a principal-value integral, as the integrand 

has a singularity and is not integrable. The integral in (1) only 

exists in a principal-value sense. However, this property given 

by (1) of a linear-time invariant system does not hold if the 

system is not minimum phase. The minimum-phase property 

of a transfer function refers only to all the zeros of X(s) . The 

zeros must lie in the left half (s = 𝜎 +jw, 𝜎 < 0)of the -plane. 

If the system is not minimum phase (i.e., when some of the 

zeros of the transfer function may be on the right half-plane), 

then (1) does not hold. From a practical stand point a 

minimum phase representation between a single input and 

single output implies that there is a single path of propagation 

between the input and the output and that the input arrives at 

the output instantaneously without a delay. For a real system, 

which may be distributed implies there are many paths 

between the input and the output and that the energy arrives at 

the output after some delay at which it has been applied to the 

input. Since most electromagnetic systems are distributed and 

have a nonminimum phase response, the Cepstrum method 

given by (1) is not much useful for practical nonminimum 

phase reconstruction. Hence, (1) has very little use for the 

practical problems. However, there is a more general result of 

the Hilbert transform, which is based on causality. This result 

is valid for a nonminimum phase system. We utilize the 

principle of causality to do nonminimum phase realizations. 

The principle of causality implies that the function for and is 

nonzero otherwise. It is important at the onset to point out that 

the phase realization (be it minimum or nonminimum phase) 

is not a unique problem. A linear-phase term may be added to 

any phase function without altering its amplitude spectrum. 

This is because the addition of a linearphase to the phase of 

the transfer function with a uniform amplitude is equivalent to 

a pure delay in the time domain. Since we are dealing with 

linear-shift invariant systems (as the response of the system is 

the same independent of the time origin), changing the 

impulse response of the system by a time shift does not alter 

the transfer function of the original system, except that the 

phase spectrum is modified by a linear-phase function. The 

slope of this linear-phase function is equivalent to the time 

delay. For an antenna problem this is equivalent to a shift in 

the spatial coordinates 

II. CAUSALITY AND PROPERTIES OF THE TRANSFER 

FUNCTION 

A function x(t) is said to be ―causal‖ if 

x(t) = 0 whenever t< 0.                                     (2) 

These types of functions arise in the study of causal systems 

and are of obvious importance in describing phenomena that 

have well-defined starting points.Let x(t)be a real causal 

function with Fourier transform X(ω), and let R(ω) and I(ω) 

be the real and the imaginary parts of X(ω).Then 

X(ω)=R(ω)+jI(ω)=|X(ω)|e
jϕ(w)

. Since x(t) is real, R(ω) is even 

and I(ω) is an odd function of ω. A general question of 

whether a specified amplitude characteristic can be realized as 

a causal system response is answered by the Paley–Wiener 

criterion.Let Consider a specific magnitude |X(ω)|of a transfer 

function X(ω).It can be realized by means of a causal system if 

and only if the integral 

I 



International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue I, January 2018 | ISSN 2321–2705 

www.rsisinternational.org Page 91 
 

 

 
ln⁡|𝑋(w)|

1+𝑤2

∞

−∞
d𝑤<∞   (3) 

is bounded. So the phase function associated with |X(w)| exists 

such that x(t) is causal. If X(w) has a causal representation it  

can be stated that  

             x(t) = 
2

𝜋
 𝑅 𝑤 cos 𝑤𝑡 𝑑𝑤
∞

0
          0<t                (4) 

            x(t) =- 
2

𝜋
 𝐼 𝑤 sin(𝑤𝑡) 𝑑𝑤
∞

0
           0<t                (5) 

and  

 |𝑥(𝑡)|
∞

0
2
dt = 

1

𝜋
 |𝑅(𝑤)|
∞

−∞
2
dw =

1

𝜋
 |𝐼(𝑤)|
∞

−∞
2
dw(6) 

If x(t) is bounded in the origin then we have 

               𝑅 𝑤 =  −
1

𝜋
 

𝐼(𝑠)

𝑤−𝑠
 𝑑𝑠 =  −𝐻[𝐼(𝑤)]

∞

−∞
(7) 

              𝐼 𝑤 =  
1

𝜋
 

𝑅(𝑠)

𝑤−𝑠
 𝑑𝑠 =  −𝐻[𝑅(𝑤)]

∞

−∞
                        (8)   

Where H[.]defines the Hilbert transform which constitutes a 

convolution operation with function 
1

𝜋𝑤
 , which is not defined 

at w = 0. The last two integral (7) and (8) are defined in terms 

of Hilbert transform and Cauchy Principle value sense.   

III. APPLICATION OF THE PROPERTY OF THE HILBERT 

TRANSFORM TO RECONSTRUCT THE PHASE  

In the previous sections the analysis of the transfer function 

R(w) +jI(W) defined over the  -∞ < 𝑤 < ∞  . But in the 

practical application R(w) and I(w) are generally define over a 

finite segment. Now if we modified the previous assumption 

by assuming R(w) and I(w) are periodic functions with a 

period of 2𝜋 denoted by Rp(w) and Ip(w), one can write 

Rp(w) = a0 +  𝑎∞
𝑛=1 n cos(nw +ϕn)                for      0<w<𝜋 

                                                                                            (9) 

Where aifor i = 0,1……….∞ are the discreate Fourier cosine 

transform of R(w)  and ϕn is the certain phase associated with 

it.  

Now if we take the Hilbert transform of Rp(w) , the one can 

obtain from (7) 

Ip(w) = -  𝑎∞
𝑛=1 n sin (nw +ϕn)                     for      0<w<𝜋 

                                                                                            (10) 

It is important to note that the same Fourier coefficient are 

used in (9) are also used in (10). So (9) and (10) are related 

through the coefficients ai and ϕi. The equations (9) and (10) 

are very important in the sense of modulation and 

demodulation scheme implemented on all the hardware 

instrument.When a low frequency signal fm modulated with 

carrier frequency f0 two side band is generated, one located at 

fm- f0and other located at fm+ f0. The modulated signal 

translated up in the frequency and effective bandwidth of the 

total waveform with respect to the carrier frequency decreases. 

So when the signal travel to the desired destination one have 

to demodulate the signal and eliminate the carrier frequency to 

recover the baseband signal. But it is not very easy to 

demodulate the original signal at high frequency which cannot 

be beat with a local oscillator, as the two side band 

simultaneously create interference. So, in the first step of  the 

demodulation process one generate an analytic signal through 

I (in-phase) and the Q(quadraturephase) components of the 

modulated signal so that the signal is defined only for positive 

frequencies and the negative frequencies will be eliminated 

through. Now, the analytic signal beats with the local 

oscillator generating a single sideband generating a translated 

version of the baseband signal of interest. It is very important 

to note that the economic cost goes almost double for using 

two different channel. A more effective way is to generate  a I 

channel only, then digitized it, apply the Hilbert transform and 

create a Q channel. The next step can be done by the software 

. This way the cost can be reduce by half. Some ground 

probing radar has used this innovative technique. 

Now the magnitude response of the system is given by 

 

|X(w)|
2   

= |R(w)|
2
 + |I(w)|

2 

 

≅|Rp(w)|
2
 + |Ip(w)|

2 

 

=  |a0 +  𝑎∞
𝑛=1 n cos(nw +ϕn) |

2  

 

                        + | 𝑎∞
𝑛=1 n sin (nw +ϕn|

2
   (11) 

 

So from the given power spectrum of the system the 

coefficients can be calculated. Once the coefficients from the 

(11) is known one can obtain the nonminimum phase function 

from  

 

Φ(w) = tan
-1

[
𝐼(𝑤)

𝑅(𝑤)
] 

=tan
-1

[
−  𝑎𝑛

∞
𝑛=1 𝑠𝑖𝑛  (𝑛𝑤  +𝜙𝑛  )      

𝑎0  +  𝑎𝑛
∞
𝑛=1 𝑐𝑜𝑠 (𝑛𝑤  +𝜙𝑛 ) 

]   (12) 

 

By utilizing the minimum phase function the real part of the 

transfer function can be derived from  

 

Rmin(w) = |H(w)|cos[ϕmin(w)]    for 0<w<𝜋                  (13) 

 

Then we obtain the discreate cosine transform to calculate the 

coefficients 

IV. PHASE SYNTHESIS 

Any element of current or charge located in a medium produce 

magnetic and electric fields. Now the amount of finite energy 

transmitted to infinity can be term as radiation of the small 

current element. So the far fields is related to the radiation that 
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fields at infinity. It is important to note that a static charge 

may generate near fields but the field at infinity due to this 

charge is zero. Far field of an electromagnetic system is 

proportional to the current distribution .As all the antennas are 

of finite spatial size one can say that the spatial current 

distribution is causal. Because of the causal current 

distribution the real and imaginary part of the magnetic vector 

potential is related by the Hilbert transform.So one can obtain 

the far-field phase pattern from the magnitude of the magnetic 

vector potentials. This phase is nonminimum phase. 

Now any z-directed current distribution can be expressed as 

Jx(x,y,z) 

𝑥 ∈  −𝑎; 𝑎 

𝑧 ∈  −𝑐; 𝑐 

𝑦 ∈ [−𝑏; 𝑏]
         (14) 

And the magnetic vector potential is given by 

Az = 

𝑒−𝑗𝑘𝑟

4𝜋𝑟
 𝑑𝑥  𝑑𝑦  𝑑𝑧

𝑐

−𝑐

𝑏

−𝑏

𝑎

−𝑎
Jx(x,y,z) 𝑧 .exp[jkx sin 𝜃 sin ∅+ 

jky sin 𝜃 cos ∅ + 𝑗𝑘𝑧 cos 𝜃]                      (15) 

Where k = 
2𝜋

𝜆
 and r the spatial far field variable.The Fourier 

transform of Jx(x,y,z) can be written asAz[k sin 𝜃 sin ∅ ; k 

sin 𝜃 cos ∅ ; 𝑘 cos 𝜃]. If we restrict the current distribution to 

the y = 0 plane and also set ∅ = 0, then we have 

Az = 

𝑒−𝑗𝑘𝑟

4𝜋𝑟
 𝑑𝑥  𝑑𝑧

𝑐

−𝑐

𝑎

−𝑎
Jx(x,y).exp [𝑗𝑘𝑧 cos 𝜃]       (16) 

 

As the magnetic vector potential is only reponsible for the far 

field and there is no contribution of the sclar field potential , 

one can write 

 

Efar(x,y,z) = -jwA    (17) 

 

Now we can transform (17) into Eθ(θ) and hence we have 

 

Eθ(θ) = jw sin(θ) fun(θ)   (18) 

 

Therefore, the real and the imaginary parts ofAzare related 

through the Hilbert transform. In general, we are given the 

power field patterns and, hence, we transform the field 

patterns to by utilizing the following transformation. 

 

Eθ(Ω) = j 1 − Ω2
( 𝑎𝑛 n𝑒

−𝑗(𝑛Ω+𝜙𝑛 ))w (19) 

 

 Where  Ω = cos⁡(𝜃). The inportance of (19) is that the real an 

imaginart part of the magnetic vector potential are related by 

the Hilbert transform but it does not apply to the fileds. 

 

One inportant thing is to note that thefrequency variable Ω is 

related with cos⁡(𝜃) . So the E- field data we get need to 

interpolate the in  cos⁡(𝜃) space i.e cos⁡(𝜃) = -1,……0,1/N, 

2/N, 3/N,…..1 before one can do the optimization. 

 
Fig. 1. Magnitude response of the far field of a dipole antenna in cos𝜃 space 

V. EXAMPLE 

In this first example we have considered a half-wavelength 

long z-directed transmitting dipole  of radius 0.001𝜆 . The 

magnitude response of the far field is given in Fig. 1.The 

reconstructed phase obtain from (12) shown in Fig. 2. Both the 

magnitude plot and reconstructed phase are equispaced in 

cos⁡(𝜃) space. Thishas been calculated by the MATLAB code 

with  the help of wire antennas and scatterers(AWAS) [3]. As 

the dipole is centered at the origin, it is not strictly a causal 

function. So the delay in the time domain accounts for this 

spatial displacement of the origin. 

 

 

Fig.2. Reconstructed Nonminimum Phase of a  center placed dipole 
 

For the second example we have considered two z-directrd 

dipole with opposite phase. The length of the each dipole is 

0.83𝜆 and radius is 0.001𝜆. The separation between two dipole 

is 1.25𝜆. The magnitude plot is given in Fig. 3 which has been 

calculated using MATLAB code with the help of AWAS code 

[3]. The reconstructed phase shown in Fig. 4. 
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Fig. 3. Magnitude response of the far field of two z-directed  dipole antenna 

with opposite phase in cos𝜃 space 

Fig.4. Reconstructed  Phase of two z directed dipole with opposite phase 

 

In the third example we have considered three z-directed 

planner dipole of radius 0.001𝜆 and length of 0.5𝜆 each. The 

dipole are seperated with 0.5𝜆 distance. The magnitude plot is 

shown in Fig. 5. The reconstructed phase respone with 

∅ = 90° is given in Fig. 6. This has been calculated using 

MATLAB code with the help of AWAS code [3]. Both the 

magnitude plot and phase response are interpolated in cosθ 

space. 

 

 
Fig. 5. Magnitude plot of the far field of three z-directed planner dipole 

 

 

Fig.6. Reconstructed  Phase of three z-directed planner dipole antenna 
 

Atlast we test the postulate presented earlier on our measured 

data. Here the experimental data consist of the S21 parameter 

of a coupled line microwave bandpass filter in the frequency 

band of 1.85 GHz to 2.15 GHz with a center frequency of 2 

GHz. The magnitude response of the S21 and S11 parameter of 

the coupled line filer are shown in Fig.7 and Fig. 8 

respectively. 
 

 

Fig. 7. Magnitude response of s21 of a Microwave Filter 
 

The actual phase of the filter is given in Fig. 9. This has been 

calculated using Advanced Design System(ADS) software.  It 

is very important to note that S21 is nonminimum phase 

function where as S11 is minimmum phase function.The 

measured S21 response below the -15 dB is discraded along 

with the phase. We do not consider S11 response for phase 

reconstruction as it is minimum phase function.  The 

reconstructed phase of the S21of the coupled line band pass 

filter is shown in Fig.9 which has been calculated using 

MATLAB code with the help of AWAS code [3]. Here one 

can notice the phase chnges with 360° i.e -180° to +180°. 
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Fig. 8 Magnitude response of s11 of a Microwave Filter 
 

 

Fig. 9. Actual phase response of a Microwave Filter 
 

 
 

Fig. 10. Reconstucted phase  of a Microwave Filter 

 

VI. CONCLUSION 

This paper present a nonparametric method to reconstruct 

the nonminimum phase of an electromagnetic system. The 

advantage of this method is that no such choices of the basis 

functions need to be made, asthe solution procedure itself 

develops the nature of the solution and no a prioriinformation 

is necessary. This is done by Hilbert transform which signifies 

one of the fundamental property of the nature i.ecasualty. It 

states that the real and imaginary part of the of any 

nonminimum-phase transfer function from a causal system 

satisfy this relationship. 
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