International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue lll, March 2018 | ISSN 2321-2705

Clustering Algorithms for High Dimensional Data
Literature Review

S. Geetha”, K. Thurkai Muthuraj”

*Department of Computer Applications, Mepco Schlenk Engineering College, Sivakasi, TamilNadu, India
“Tata Consultancy Services

Abstract — In modern world, the complex data sets are growing.
Clustering high dimensional data is challenging due to its
dimensionality problem and it affects time complexity, space
complexity, scalability and accuracy of clustering methods. This
review will be more helpful to find clustering algorithms suitable
for high dimensional data.

I. INTRODUCTION

In modern scientific and business domains, the high-
dimensional data are involved. Clustering in high
dimensional spaces presents much difficulty [1]. When talking
about clustering high dimensional data, the clustering steps,
Dimensionality Reduction, Subspace Clusteringand Co-
Clustering will be more helpful to address the problem of high
dimension [20].

Clustering is helpful to understand the structure and abstract
of the large data set [2]. Clustering methods are available for
categorical data, spatial data, etc. Clustering methods are
applied in object recognition, pattern recognition, image
processing, text mining and information retrieval [21].

Clustering means partitioning data point into a set of
groups.Simplification can be achieved by representing data in
fewer clusters [3]. There are number of clustering algorithms
introduced for clustering high dimensional data. It is broadly
classified into partitioning and Hierarchical.Partitioning
subdivided into K-means and K-medoids [8].CLARA and
CLARANS are popular to deal with large datasets.
Hierarchical further classified into Agglomerative and
Divisive. BIRCH, Chameleon, ROCK and CURE are
examples of hierarchical method which deal with large
amount of data [5]. Other categories of clustering methods are
Model based clustering, Density based clustering, Grid—based
clustering, and Constrained based clustering.

Cluster analysis has been an area of research for many
decades. Many new methods are still being developed. In
section 2, popular and mostly used clustering algorithms are
discussed.

Il. HIGH DIMENSIONAL DATA

A dataset with large amount of attributes or features is called
high dimensional data. There are many application domains
where the data is of considerably higher dimensionality such
as spatial data, medical data, gene data, ecological data, social

media data, web log data, financial data, etc [4].The
dimensionality of data makes learning problems hardly
amenable. In particular, the high dimensionality of data is a
highly challenging factor for the clustering task [13]. The
following problems need to be faced for clustering high-
dimensional data:

e Curse of dimensionality.

e Concentration effects.

e Local feature relevance problem.

e In arbitrarily oriented affine subspaces.

e High-dimensional data could likely include irrelevant
features, which may obscure the effect of the relevant
ones.

Forthcoming section of the paper is organized as follows. In
Section 3, we review clustering algorithms, based on the
naturesof generated clusters and techniques and theories
behind them [10].Furthermore, we discuss approaches for
clustering large data sets, and high-dimensional data.

I1l. HIGH-DIMENSIONAL DATA CLUSTERING
ALGORITHMS

This paper presents various clustering algorithms with by
considering the problems of high dimensional such as time
complexity, space complexity, scalability, etc. The overview
of clustering taxonomy for high dimensional data is shown the
figure 3.1.

| Clustering Algorithms ‘

Hierarchical

www.rsisinternational.org

Based Partition Based Density Based Grid Based Model Based
b Komems
- BIRCH :
— DBSCAN I GRIDCLUS GAUSSIAN (EM)
L come b Kemodss
[—DBCLASD — BANG COOLCAT
I Chameieon L cLara
|— DENCLUE L w ;
L rock L cLaraNs Vet stueco
L ren S f—STING SOM
H::‘;)GE CLIQUE
i ENCLUS
+ CUBN MAFIA
OPTIGRD
— + O-Clister
«CaF
PROCLUS
ORCLUS
GDILC
Fig 1. Overview of Clustering Algorithms
Page 77

International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue lll, March 2018 | ISSN 2321-2705

Hierarchical Based Clustering

Hierarchical clustering techniques is one of the clustering
technique used for clustering of high dimensional data.
Hierarchical clustering techniques works in two ways. One is
Agglomerative (top-bottom) and another on is Divisive
(bottom- top). In Agglomerative approach,initially starts with
one object and successively merges the neighbour objects
based on the distance (minimum, maximum and average) [9].
The process is continuous until a desired cluster is shaped. In
Divisive approach, starts with set of objects as single cluster
and divides them into further clusters until desired number of
clusters are shaped. BIRCH [2], CURE [16], ROCK,
Chameleon [6], Echidna, Wards, CACTUS are some of
Hierarchical clustering.

Partition Based Clustering

All objects are considered initially as a single cluster. The
objects are divided into number of partitions by iteratively
locating the points between the partitions. The partitioning
algorithms like K-means, K-modes, ROCK, CLARA,
CLARANS, and FCM.

Density Based Clustering

Data objects are categorized into core points, border points
and noise points. All the core points are connected together
based on the densities to form cluster [7]. Arbitrary shaped
clusters are formed by various clustering algorithms such as
DBSCAN, DBCLASD, DENCLU, SUBCLU, SNN and
hybrid clustering algorithms such as BRIDGE (which
combines k-means and density based) and CUBN (which
combines density based and distance based).

Grid Based Clustering

Grid based algorithm partitions the data set into number of
cells to form a grid structure. Clusters are formed based on the
grid structure [9]. To form clusters, Grid algorithm uses
subspace and hierarchical clustering techniques.
GRIDCLUST, BANG, STING, Wave cluster [11], CLIQUE,
ENCLUS [14], MAFIA [12], OptiGrid (O-cluster and CBF),
PROCLUS, ORCLUS, GRIDCLUS, GDILC [9], FC and
STIRR. Compare to all Clustering algorithms, Grid
algorithms are very fast processing algorithms.

Model Based Clustering

Set of data points are connected together based on various
strategies like statistical methods, conceptual methods, and
robust clustering methods [19]. There are two approaches for
model based algorithms one is neural network approach and
another one is statistical approach [17].Algorithms such as
EM [19], COOLCAT, STUCCO, SOM [18], and SLINK are
well known Model based clustering algorithms.

A. Hierarchical Based Clustering

BIRCH -Balanced Iterative Reducing and Clustering using
Hierarchies

It is an unsupervised algorithm used to perform clustering on
large datasets. It is the first clustering algorithm proposed in
the database area to handle noise effectively

BIRCH Algorithm

Tnput: The dataset, threshold T, the maxinum diameter (or radius) of a cluster R, and the branching factor B,

Step 1. (Load data into memory) An initial in-memory CF-tree is constructed with one scan of the data.
Subsequent phases become fast, accurate and less order sensitive.

Step 2. (Condense into desirable range) Rebuild the CF-tree with a larger T.

Step 3. (Global clustering) Use the existing chustering algorithm on CF leaves,

Step 4. (Cluster refining) Do additional passes over the dataset and reassign data points to the closest centroid
from step £3,

Output: Compute CF ponts, where CF = (¢ of points in a cluster N, linear sum of the points in the cluster LS,
the square sum of N data SS).

CURE - Clustering Using REpresentatives

It is a novel hierarchical clustering algorithm that adopts a
middle ground between the centroid-based and the all point
extremes.

CURE Algorithm

Input: A set of points §

Stepl: For every cluster u (each input point), in v.mean and v.rep store the mean of the points in the cluster
and a set of ¢ representative points of the cluster (initially ¢ = 1 since each cluster has one data point)
also u.closest stores the cluster closest to u

Step2: All the input points are inserfed info a k-d tree T

Step3: Treat each input point as separate cluster, compute u.closest for each u and then insert each cluster into
the heap Q

Stepd: While size(Q) > k

Step3: Remove the top element of Q(say u) and merge it with its closest cluster u.closest and compute the
new representative points for the merged cluster w

Step6: Remove u and v from T and Q

StepT: Forall the clusters x in Q, update x.closest and relocate x

Step8: Insert w into Q

Step9: Repeat

Output: k clusters

Chameleon

The chameleon algorithm is a graph-based clustering
algorithm. Given a similarity matrix of the database, construct
a sparse graph representation of the data items based on the
commonly used k-nearest neighbor graph approach. Finally,
use the agglomerative hierarchical clustering algorithm to
merge the most similar sub-clusters by taking into account the
relative interconnectivity and closeness of the clusters.

Chameleon Algorithm

Input: the similarity matrix of the data set.

Step1: Find initial sub-clusters.

Step2: Use a graph-partitioning algorithm to partition the k-nearest neighbor graph of the
database into a large number of sub-clusters such that the edge-cut is minimized.

Step3: Merge the sub-clusters generated in step 2 using a dynamic framework.

Output: Merge the similar sub-clusters.

ROCK —Robust Clustering using linKs

ROCK is an agglomerative hierarchical clustering algorithm
that employs links to merge clusters. ROCK uses the link-
based similarity measure to measure the similarity between
two data points and between two clusters.

www.rsisinternational.org

Page 78

International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue lll, March 2018 | ISSN 2321-2705

ROCK Algorithm

Input: n- mumber of data points, D - data set
Stepl: fori=1ton- 1 do

Step2: forj=i+1tondo
Step3: Compute link(p;, p))
Stepd: end for

Steps: end for

Step6: fori=1tondo

Step?: Build a local heap q[i] that contains every cluster C;j such that link[C;, Ci] is non-zero |at

first, each data point forms a cluster}

Step8: end for

Step9: Build a global heap Q that is ordered in decreasing order of the best goodness measure and contains
all the clusters

Step10: repeat

Step11: Merge the max cluster C; € Q and the max cluster in q[j] into a new cluster W, delete the two
clusters from Q, and update link

Step12: until the number of links between every pair of the remaining clusters becomes zero or size(Q) =k

Output: Merge the clusters

Table 1. Computational Complexity and Scalability Analysis on Hierarchical
based Clustering Algorithms

Algorithms Computational Complexity Scalability
BIRCH Time Complexity: Ofn) Y
CURE Time Complexity: O(x! log n) Y
Space Complexity: O(n)
Chameleon | Time Complexity: Ofam +nlogn+milogm) [V
ROCK Time Complexity: O(n’ + nmumz + o2 logn) | Y
Space Complexity: O(min{n’, nmpma})

B. Partition Based Clustering
K-Means

k-means is one of the simplest
unsupervised learning algorithms that solve the well-known
clustering problem.

k-Means Algorithm

Input: Data set D, Number of Clusters k, Dimensions d:
{Ciis the itt cluster}
{1. Initialization Phase}

Step1: (Cy, Cy,...,Cy) = Initial partition of D.
{2. Iteration Phase}

Step2: repeat

Step3: dj = distance between case 1 and cluster |

Stepd: 1 = arg minyejsg di

Step5: Assign case i to cluster n;

Step6: Re-compute the cluster means of any changed clusters above

Step7: until no further changes of cluster membership occur in a complete iteration
Output: Results

K-modes

The k-modes algorithm comes from the k-means algorithm,
and it was designed to cluster categorical data sets. The main
idea of the k-modes algorithm is to specify the number of
clusters (say, k) and then to select k initial modes, followed by
allocating every object to the nearest mode.

k-modes Algorithm

Input: Data set D, Number of Clusters k, Dimensions d:

Stepl: Select k initial modes Q = {qi. qq. qx}. and q, for cluster 1

Step2: fori=1tondo

Step3: Find an | such that dsim(Xi, i) = mini= dsim(Xi, gt}

Step4: Allocate x; to cluster |

Step5: Update the mode q for cluster 1

Step6: end for

Step7: repeat

Step8: fori=1tondo

Step9: Let 10 be the index of the cluster to which x; belongs

Step10: Find an |, such that dsim(%i, q,) = Ming <pap pe1,= dsim(Xi, Gr)
Stepl1: if dsiml(Xs, q;,)) < dsim(Xs, qy,) then

Step12: Reallocate x; to cluster 1y

Step13: Update q;, and q;,

Stepl4: end if

Step15: end for
Step16: until No changes in cluster membership
Qutput: Results.

CLARA —Clustering LARge Application

CLARA algorithm randomly chooses a small portion of the
actual data as a representative of the large data. A sample
dataset D' is drawn from the original dataset D, and the PAM
algorithm is applied to D' to find the k medoids. Calculate the
current dissimilarity using these k medoids and the dataset D.
If it is smaller than the previous iteration, then these k
medoids are kept as the best k medoids. The whole process is
performed iteratively till getting the best clusters.

CLARA Algorithm

Input: X, d, k

Stepl: bestDissim « oo

Step2: fort<« 1 to S

Step3: do X' « RANDOM-SUBSET(X, s)

Step4: D <« BUILD-DISSIM-MATRIX(X'.d)
Step5: (C'"M) « PAM(X',D.k)

Step6: C « ASSIGN-MEDOIDS(X.M.,S)
Step7: dissim <« TOTAL-DISSIM{(C.M.D)
Step8: if dissim < bestDissim

Step9: then bestDissim «— dissim
Step10: Chrest < C

Step11: Mpest < M

Step12: return {Coest, Mpest)
Output: Best clusters

CLARANS -Clustering Large Applications based on
RANdomized Search

CLARANS has two parameters: the maximum number of
neighbors examined (Max neighbor) and the number of local
minima obtained (numlocal). The higher the value of max
neighbor, the closer is CLARANS to PAM, and the longer is
each search of a local minima. But, the quality of such local
minima is higher and fewer local minima need to be obtained.

CLARANS Algorithm

Input: Parameters numlocal and maxneighbor. Initialize i to 1, and mincost to a large number
Stepl: Set current fo an arbitrary node in Gy
Step2: Setjto |

Step3: Consider a random neighbor § of current, and based on 3, calculate the cost differential of the two nodes

Stepd: I S has a lower cost, set current o S, and go to Step 3
Step3: Otherwise, increment j by 1. If j maxneighbor, go to Step 4

Step6: Otherwise, when j > maxneighbor, compare the cost of current with mincost. If the former is less than

mincost, set mincost to the cost of current and set bestnode o current
Step7: Increment 1 by 1. If 1> numlocal, output bestnode and halt. Otherwise, go to Step 2
Output: Best node

www.rsisinternational.org

Page 79

International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue lll, March 2018 | ISSN 2321-2705

FCM —Fuzzy C-Means

The FCM algorithm partitions X into ¢ fuzzy clusters and find
out each clusters center so that the cost function (objective
function) of dissimilarity measure is minimization or below a
certain threshold. FCM analyze membership value of each
data in each cluster.

FCM Algorithm
Input: Given the dataset, set the desire number of clusters c, the fuzzy parameter m (a constant > 1),
stopping condition, initialize the fuzzy partition matrix, and set stop = false
Step 1: Do:
Step 2: Calculate the cluster centroids and the objective value T
Step 3: Compute the membership values stored in the matrix
Step 4: If the value of T between consecutive iterations is less than the
stopping condition, then stop = true
Step 5: While (!stop)
Output: A list of ¢ cluster centres and a partition matrix are produced

Table 2. Computational Complexity and Scalability Analysis on Partition
based Clustering Algorithms

Algorithms Computational Complexity Scalability
k-means Time Complexity: O{I¥K*m¥n) Y

Space Complexity: O((m+Kn)
k-modes Time Complexity: O{U[) N
CLARA Time Complexity: Ofks"2+kin-k)) | Y
CLAFRANS [Time Complexity: O(n"2) Y
FCM Time Complexity: O(tkNn®) Y

C. Density Based Clustering

DBSCAN - Density-Based Spatial Clustering of Applications
with Noise

Density based clustering algorithm has played a vital role in
finding non-linear shapes structure based on the density.
DBSCAN is most widely used density based algorithm. Only
one input parameter is required, and the algorithm also
supports the user in determining an appropriate value for this
input parameter.

DBSCAN Algorithm

Input: Let X = {x), X3, X3, ..., Xa} be the set of data points. DBSCAN requires two parameters: € (eps) and the
minimum number of points required to form a cluster (minPts).

Stepl: Start with an arbitrary starting point that has not been visited.

Step2: Extract the neighborhood of this point using € (All points which are within the € distance are
neighborhood).

Step3: If there are sufficient neighborhood around this point then clustering process starts and point is marked
as visited else this point is labelled as noise (Later this point ~ can become the part of the cluster).

Stepd: If a point is found to be a part of the cluster then its € neighborhood is also the part of the cluster and
the above procedure from step 2 is repeated for all ¢ neighborhood points. This is repeated until all
points in the cluster is determined.

StepS: A new unvisited point is retrieved and processed, leading to the discovery of a further cluster or noise.

Step6: This process continues until all points are marked as visited.

DBCLASD -Distribution Based Clustering of Large Spatial
Databases

DBCLASD is an incremental algorithm, i.e. the assignment of
a point to a cluster is based only on the points processed so far
without considering the whole cluster or even the whole
database. DBCLASD incrementally augments an initial
cluster by its neighboring points as long as the nearest

neighbor distance set of the resulting cluster still fits the
expected distance distribution.

DBCLASD Algorithm

Input: initialize the points of db as being assigned to no cluster
Stepl: initialize an empty list of candidates

Step2: initialize an empty list of unsuccessful candidates
Step3: initialize an empty set of processed points

Step4: for each point p of the database db do

Step5: if p has not yet been assigned to some cluster then
Step6: create a new cluster C and insert p into C
Step7: reinitialize all data structures for cluster C
Step8: expand cluster C by 29 neighboring points
Step9: for each point pl of the cluster C do

Stepl0: answers = retrieve neighborhood(C.pl)
Stepll: update candidates(C.,answers)

Step12: end for each point pl of the cluster C

Stepl3: expand_ cluster (C)

Stepl4: end if p has not yet been assigned to some cluster
Step15: end for each point of the database

Stepl6: procedure expand cluster (cluster C)

Stepl6: procedure expand cluster (cluster C)

Stepl17: change := TRUE

Step18: while change do

Stepl19: change := FALSE

Step20: while the candidate list is not empty do

Step21: remove the first point p from the candidate list
Step22: assign it to cluster C

Step23: if distance set of C still has the expected distribution then
Step24: answers:— retrieve neighborhood(C,p|)
Step25: update candidates(C.,answers)

Step26: change := TRUE

Step27: else

Step28: remove p from the cluster C

Step29: insert p into the list of unsuccessful candidates
Step30: end if distance set still has the expected distribution

Step31: end while the candidate list is not empty

Step32: list of candidates := list of unsuccessful candidates

Step33:end while change

Step34: listOfPoints procedure retrieve neighborhood(cluster C; point p)
Step35: calculate the radius m according to (ii) in section 4.1

Step36: return result of circle query with center p and radius m

Step37: procedure update_candidates(cluster C: listOfPoints points)
Step38: for each point in points do

Step39: if point is not in the set of processed points then
Step40: insert point at the tail of the list of candidates
Step41: insert point into the set of processed points
Step42: end if point is not in the set of processed points

Step43: end for each point in points

DENCLUE -DENSsity-based CLUst Ering

The DENCLUE algorithm works in two steps. Step one is a
pre-clustering step, in which a map of the relevant portion of
the data space is constructed. The map is used to speed up the
calculation of the density function which requires to
efficiently access neighboring portions of the data space. The
second step is the actual clustering step, in which the
algorithm identifies the density-attractors and the
corresponding density-attracted points.

DENCLUE Algorithm

Tnput: The dataset,o, and &

Step1: Take dataset in a map which has each side is of 20, consider only populated cubes.

Step2: Calculate the mean of each populated cubes.

Step3: Find highly populated cubes.

Stepd: Determine the connection between each highly populated cube, and other cubes (Highly or just
populated cubes) by the distance between their means. If d(mean(c1), mean(c2)) < 4a, then the two
cubes are connected.

Step5: Only the highly populated cubes and cubes which are connected to a highly populated cube are
considered in determining clusters.

Step6: Find the representative of the hyper-cube.

Step7: Connecting the representatives of hyper-cubes having the same path to form a cluster,

Output: Assignment of data values to clusters.

www.rsisinternational.org

Page 80

International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue lll, March 2018 | ISSN 2321-2705

SNN —Shared Near Neighbour Graph) CUBN Algorithm
Algorithm for Finding border points
|n|t|a||yl the SNN a|g0rithm finds the K nearest neighbours of Input: the d?)ta set S (n points in d-dimensional space), p — the value in the matrix B
each point of the dataset. The similarity between pairs of Stepl:7 =%/ 3
H H H . Step2: for each column b in matrix B
points is calculated in terms of how many nearest neighbours Step3: for each point in x in §
the two points share. The points are classified as core points, Stepd: tk=#{ylye 0(x+br)nS}
H H S H Step5: ifk=0
if t_he density of the point is equal or greater than_l_/llnF_’ts (core Steps: Cocupy
point threshold). If any points that are not classified into any Output: C — a set of border points
cluster will be classified as noise points. Algorithm for clustering border points
Input: C — a set of border points
- Stepl: regard the C as the initial PC, i.e., PC « C;
SNN Algonthm Step2: repeat
Tnput: K, the neighbours' list size, Eps, the threshold density, MinPts, the threshold that define the core Step3: for each PC; and PC; ‘
. Step4: if3u € PC;,3u € PCj, and distance (u,v) <e
pous. o Steps: merge PC; and PGy, i.e., PC; « PC; U PC;
Stepl: Identify the k nearest neighbours for each point (the k points most similar to a given point, using a Step6: until no change
distance fonction to caleulate the similarity). Output: PC —a set of border clusters
Step2: Calculate the SNN similarity between pairs of points as the mumber of nearest neighbours that the two Algorithm for clustering inner points
pointsshare. The SNN similriy is 1o if the second point in not n s st of k nearest neghbours Sir s O e e all inner points
and vice-versa, Step2: Rﬁ o 2
Stepd: Calculate the SNN density of each point: number of nearest neighbours that share Eps or greater b e 229
llCiﬁ]bOUl’S. StepS: for each inner point x
. . L . . Step6: fi h PC;
Stepd: Detect the core points. If the SNN density of the point is equal or greater than MinPts then classify the St:ﬂ—h e » € PC; and distance (x.y) <<
point as core. g:epgf ;F Iz U LX%
StepS: Form the cluster from the core points. Classify core points into the same cluster if they share Eps or Step10: PC < T o
greater llCigthUl'S. (S)tl‘:tl'lglft:ll{l((‘jtf s(étuoil clusters
Step6: Identify the noise points. All non-core points that are not within a radius of Eps of a core point is
classified as noise. Table 3. Computational Complexity and Scalability Analysis on Density
Step7: Assign the remainder points to the cluster that contains the most similar core poiat. based Clustering Algorithms
Output: Assignment of dafa values to clusters. Algorithms Computational Complexity Scalability
. . . DESCAN Time Complexity: O(m log m) N
Hybrid Clustering Algorithm Space Complexity: O(m})
. . DBSCLAD | Time Complexity: O(3a%) i
BRIDGE (Combines k-means and density based) DENCLUE | Time Complexity: O(log[D]) ¥
. . . SN Time Complexity: O{n?) i
BRIDGE, which integrates the popular k-means algorithm and ERIDGE Time Complexity: O(m) +
the density-based algorithm DBSCAN. BRIDGE enables CUBN Time Complexity: O{n) N

DBSCAN to handle very large databases and at the same time

improves the quality of k-means clusters by removing noise. D. Grid Based Clustering

GRIDCLUS - GRIDCLUStering

BR[DGE Algl)l'lﬂllll GRIDCLUS Algorithm
4 | Al ithm GRIDZCLUS
Inpu: k: number of clusters. | o Stepl: Instislization
Stepl: Run the k-means algorithm and label each deta point with the k-means chister [D and corele- ~ Step2: Create the Grid Structure
Stepd: Calculate the block densities DEi
Core‘c"noncorel Stepd: Generate a sorted block sequence 5 = <B1. Br. .. Be>
. Step5: MMark all blocks 'not active' and 'not clustered’
Stf[ﬂ: Determine ¢ dﬂd Nmm fOf DBSCAN, Step6: while a "not active' block exist do
. Step7: u=u-+1
Step3: Run DBSCAN for core and ¢ -core points of each k-means cluster Steps: Find active blocks By . By
. Step9: 1i h 'not clustered' block By -= Br .. By do
Stepd: Run DBSCAN for all ore and noncore poins. Step10: create a new cluster set Clu]
: S 11: AT = TS + 1
Steps: Resolve multiple chuster IDs, Stop12. e e 2 B
Step: Run the ke means algoritn without the nose found in DBSCAN, ekng earler centesas it~ S4By 35 EIGHBOR SE A D CEItBy, Cla. W]}
| SteplS: o
pUlnIS . - . Stzilﬁ: :‘:r e:rch 'not active' block Bl do
CUBN (Combines density based and distance based) Stepl7: Wu] ="W[a] + 1
SteplS8: Clu, Wul] =- Ba
The CUBN algorithm consists of three phases. At the first g::ﬂgf O blocks ot clustered’
phase, the erosion operation is used to find border points. Step21: endwhile
Then the nearest neighbor method is used to cluster the border ;I;docfﬂ%gérmon SEARCH(®,
pOintS' Fina”y’ the nearest neighbor method is employed to Stepll: for each "active’ and 'not c,luste;'ed' neighbor Bn of B do
cluster the inner points. Step23: C <-Ba

Step24: mark block Be clustered
Step25: NEIGHEOR-SEARCH(Bq., C)
Stepl6: endfor

end NEIGHEOR-SEARCH

www.rsisinternational.org Page 81

International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue lll, March 2018 | ISSN 2321-2705

BANG

In the BANG-clustering system, the feature space into is
partitioned into a hierarchical set of grid regions and each grid
region is assigned a unique identity (r, I), where r is the region
number and | is the level number. The blocks are sorted
according to their density indices. Blocks with the highest
density index become clustering centers and the remaining
blocks are clustered iteratively in order of their density indices
and the remaining blocks either build new cluster centers or
merge with existing clusters.

BANG Algorithm

Step1: Partition the feature space into rectangular grids such that each grid contains up to a maxinum of pre
dafa points.

Step2: Construct a binary free to maintain the populated grids, in which the partition level according to the
node depth in the tree.

Step3: Calculate the dendrogram in which the density indices of all regions are calculated and sorted in
decreasing order.

Step4: Starting with the highest-density region (i.¢., the first region), determine all the neighbors and classify
them in decreasing order. BANG Clustering places the found regions to the right of the original
regions in the dendrogram.

Steps: Repeat step 4 for the remaining regions of the dendrogram.

WaveCluster

WaveCluster is an algorithm for clustering spatial data based
on wavelet transforms. WaveCluster is insensitive to noise,
capable of detecting clusters of arbitrary shape at different
degrees of detail, and efficient for large databases.

WaveCluster Algorithm

Step1: Partitions the original data space info non-overlapping liyper-rectangles, i.e., cells.
Step2: The j* dimension is segmented into m; of intervals.

Step3: Each cell c; is the intersection of one interval from each dimension and has the form (¢, ca, .. ., cig,

where ¢; = [1;, b) is the right open interval in the partitioning of the j# dimension and d is the
umber of dimensions,
Stepd: A point x=(X;, X, ..., Xg) is said to be contained ina cell x; if [y <x; <y forj=1,2,... ,d.
StepS: Let c; - count denote the number of points contained in the cell c.
Step6: a wavelet transforms to c; - count values.

Step?: transformed space is defined as the set of cells after the wavelet transformation on the count values of

the cells in the quantized space.

STING —Statistical Information
method

Grid-based clustering

STING is a query-independent approach since the statistical
information exists independent of queries. The computational
complexity of STING for cluster is O(K), and this is quite
efficient in clustering large data sets especially when K << N.

STING Algorithm

Step1: Construct the grid hierarchical structure according to the database and generate the parameters of each
cell.

Step2: Determine a layer to begin with

Step3: For each cell in this layer, compute the confidence interval of the probability that this cell is relevant

to the query

Step4: if this layer is not the bottom layer then

Steps: Go to the next level in the hierarchy structure and go to step 3 for the relevant cells
of the higher-level layer

Step6: else if the specification of the query is met then

Step7: Find the regions of relevant cells and return those regions that meet the
requirements of the query

Step8: else

Step9: Reprocess the data in the relevant cells and return the results that meet the

requirements of the query
Step10: end if

CLIQUE

CLIQUE is a clustering algorithm that is able to identify
dense clusters in subspaces of maximum dimensionality. The
CLIQUE algorithm consists of three steps. In the first step, the
subspaces that contain clusters are identified. In the second
step, the clusters embedded in the subspaces identified in step
1 are found. Finally, a minimal description of each cluster is
generated.

ENCLUS —ENtropy-based CLUStering

ENCLUS is an entropy-based subspace clustering algorithm
for clustering numerical data. It can find arbitrarily shaped
clusters embedded in the subspaces of the original data space.
It follows similar approaches suggested by CLIQUE, but does
not make any assumptions about the cluster shapes and hence
is capable of finding arbitrarily shaped clusters embedded in
subspaces.

ENCLUS Algorithm

Input: D-Data set, co-Entropy threshold. -Interest threshold
Stepl: Let l = 1 and C; be one-dimensional subspaces
Step2: while C; = @ do

Step3: for all ¢ € C; do

Step4: Calculate the density f.(-)

StepS: Calculate the entropy H(c) from f.(-)
Step6: ifH(c) < w then

Step7: if interest{c) = then

StepS: Si= S1Uc;
Step2: else

Stepl0: NS =NS1Uc

Stepll: end if

Stepl2: end if

Step13: end for

Step1l4: Generate Ci+; from NS,
Stepl5: 1 <=1+ 1

Step16: end while

Output: 1J; S; as significant subspaces

MAFIA — Merging of Adaptive Finite Intervals

MAFIA is a parallel subspace clustering algorithm using
adaptive computation of the finite intervals in each dimension
that are merged to explore clusters embedded in subspaces of
a high dimensional data set. It is also a density- and grid-
based clustering algorithm.

MAFIA Algorithm

Input: Di - Domain of i attribute, N - Total mumber of data points in the data set, a — Size of the generic
interval
Stepl: fori=1toddo
Stepl: Divide Dj into intervals of some small size x
Step3: Compute the histogram for each interval in the ¥ dimension, and set the value of the
window to the maximum in the window
Stepd: From left to right, merge two adjacent intervals if they are within a threshold p
Steps: if mumber of bins == 1 then
Stepf: Divide the i dimension into a fixed number of equal intervals and set 2 threshold
[for it
StepT: end if
Step8: end for

OPTIGRID

The OptiGrid clustering algorithm is a very efficient
algorithm for clustering high-dimensional databases with
noise.

www.rsisinternational.org

Page 82

International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue lll, March 2018 | ISSN 2321-2705

OptiGrid Algorithm

Input: data set D, q, min_cut_score

Step1: Determine a set of contracting projections P = {Py,Py....,Py} and calculate all the projections of the
dataset D: PyD),i=1,2,..k

Step2: Initialize a list of cutting planes BEST _CUT « @, CUT < 0

Step3: fori=0tokdo

Step4: CUT « best local cuts Py{D)

Step5: CUT SCORE « Score best local cuts P(D)

Stepé: Insert all the cutting planes with a score > min_cut_score info BEST _CUT

StepT: if BEST _CUT =@ then

Step8: Return D as a cluster

Step9: else

Step10: Select the q cutting planes of the highest score from BEST _CUT and construct a
multidimensional grid G using the q cutting planes

Stepll: Insert all data points in D into G and determine the highly populated grid cells in G and add
these cells to the set of clusters C

Step12: Refine C

Step13: for all clusters C; in C do

Stepl4: Do the same process with data set C;

Step15: end for

Step16: end if
Step17: end for

Variants of OptiGrid that were introduced to address the
issues of the scalability of the grid structure, especially with
respect to available memory,and a clear criterion for the
selection of cutting planes. They are O-Cluster and CBF
which is discussed in the below section.

O-cluster —Orthogonal partitioning CLUSTERIng

A O-cluster introduced to address three limitations of
OptiGrid. One is scalability in terms of data relative to
memory size, second, lack of clear criterion to determine if a
cutting plane is optimal or not, and third one is sensitivity to
threshold parameters for noise and cut plane density.

O-cluster Algorithm

Input: Load data buffer.

Stepl: Compute histograms for active partitions.
Step2: Find “*best™ splits for active partitions.
Step3: Flag ambiguous and “frozen™ partitions.
Step4: Split active partitions.

Step5: Reload buiffer.

CBF —Cell-Based Filtering

CBF focuses on the scalability of the grid structure, handling
large data sets in memory, and the efficiency of insertion and
retrieval of clusters from the grid structure. It also offers a
clear criterion for a cutting plane.

CBF Algorithm

Input: Ioad Data.
Step1: Split each dimension into a set of partitions.
Step2: Optimal split section in each dimension.

Step3: Create cells from overlapping regions of the partitions in each dimensi
Step4: Insert the cells with higher density into the clusters in the index structu

Step5: Provide the cluster information file by grouping clusters into sections.
Step6: For each sections of cluster

Step7: if density_of section > threshold then
Step8: secondary_index = true
Step9: else

Step10: secondary index = false

PROCLUS - (PROjected CLUStering)

PROCLUS is a variation of the k-medoid algorithm in
subspace clustering. The algorithm consists of three phases:
the initialization phase, the iteration phase, and the refinement
phase.

PROCLUS Algorithm

Input: D-Data set, k-Number of clusters, l-Average dimensions of cluster
Step1: Let A, B be constant integers

Step2: Draw a sample S of size A - k randomly

Step3: Let medoids set M < Greedy(S, B - k)

Step4: Let BestObjective < o0 and Moy < random set of medoids {my, my, . . ., mg} ©M

StepS: repeat

Step6: Let 5i be the distance to the nearest medoid from m; fori=1,2... .k

Step7: Let L; be the set of points in a sphere centered at my; with radius §; fori=1,2,. .,
Step8: (P1, Py, Py) = FindDimensions(k, I, Ly, Ly, ..., L)

Step9: (C1. Cy, C) <= AssignPoints(Py, Py, ..., Py)

Step10: Objective < EvaluateClusters(Cy, ..., Ci, Py, ..., Py)

Step11: if Objective < BestObjective then

Step12: Let BestObjective < Objective, Myest = Maur

Step13: Compute the bad medoids in Mes

Step14: end if

Step15: Compute Moy by replacing the bad medoids in Mpes with random points from M
Step16: until Stop criterion

Step17: (P, Py, ..., Py) & FindDimensions(k, |, L1, La, . .., Ly)

Step18: (Cy, Ca, . . ., Ci) < AssignPoints(Py, Py, ..., Py)

Step19: Return Myest, P1. Po. ..., By

ORCLUS -ORiented projected CLUSter generation

ORCLUS is an extension of PROCLUS. It diagonalizes the
covariance matrix of each cluster and finds information about
projection subspaces from the diagonalization of the
covariance matrix.

ORCLUS Algorithm

Input: D-Data set, k-Number of clusters, and I-Number of dimensions

Step1: Pick ko > k initial data points from D and denote them by S = {sy, sy, .. ., S0}

Step2: Setk, = kpand |, = d

Step3: For each i, set P; to be the original axis system

Stepd: Set o <= 0.5 and compute p

Step5: while k. > k do

Stepé: (sl,..., Sker Cly oo e Cie) = Assign(sy, . .
by the seeds}

.Sk, Py, . .., Pyo) {find the partitioning induced

Step7: Set kyew = max (k, k. * 0} and by & max{L, L, - p}
StePS: (Slv v e Cy - Gl Py |Pkne»\):Merge(Clv ooy Gy kﬂﬂ\\'l lnev\)
Step9: Set ke = Koew a0d | = L

Step10: end while

Step11: fori=1tokdo

Step12: P;=FindVectors(C;, 1)

Step13: end for

Step14: (51,..,55,C1y e, C) = ASSIZN(S1,000, 55, Py Pi)
Step15: Output (Cy,....Cr)

GDILC —Grid-based Density-IsoLine Clustering

GDILC is capable of eliminating outliers and finding clusters
of various shapes. The distribution of data samples can be
depicted very well by the so-called density-isoline figure. A
grid-based method is employed to calculate the density of
each data sample and find relatively dense regions.

GDILC Algorithm

Step1: (Initializing cells) Divide each dimension into m infervals

Step2: (Computing distance threshold RT) For each point x, compute the distances between x and every
point in the neighbor cells of Cx. Then compute the distance threshold RT by calculating the average
distance from those distances.

Step3: (Computing density vector and density threshold DT) For each point x, compute the density of x by
counting the mumber of points within RT of x. Then compute the density threshold DT by calculating
the average density from the density vector.

Step4: (Clustering)At first, take each point whose density is more than DT as a cluster. Then, for each point x,
check whether the distance from x of each point whose density is more than DT in the neighbor cells
of Cx is less than RT. If so, then merge the two clusters containing those two points. Continue the
above merging process until all point pairs have been checked.

StepS: (Removing outliers) Remove those clusters whose sizes are less than a certain number.

www.rsisinternational.org

Page 83

International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue lll, March 2018 | ISSN 2321-2705

Table 4. Computational Complexity and Scalability Analysis on Grid based

Clustering Algorithms
Algorithms Computational Complexity Scalability
GEIDCLUS Time Complexity: O(an?) Y
BANG Time Complexity: O(n) Y
WaveCluster | Time Complexity: Ofn) Y
STING Time Complexity: O(n) N
CLIQUE Time Complexity: O{n+k"2) by
ENCLUS Time Complexity: O(n) b
MMAFIA Time Complexity: O (mP+pll) b
Space Complexity: O {mp+pl)
COPTIGRID Time Complexity: O(d - N - log W) Y
O -cluster Time Complexity: O(INd) Y
CBF Time Complexity: O[IN) Y
PROCLUS Time Complexity: O{nkl) kY
ORCLUS Time Complexity: O(kp @ ~+ kond + ko 2d) Y
GDILC Time Complexity: O(n) N

E. Model Based Clustering
Gaussian (EM)

This algorithm assumes apriori that there are 'n' Gaussian and
then algorithm try to fits the data into the 'n' Gaussian by
expecting the classes of all data point and then maximizing
the maximum likelihood of Gaussian centers.

G ian(EM) Algorithm
Inpui: Let X = {X;, X3, X3, ..., Xa} be the set of data points
. lc} be the set of means of Gaussian
P={p pp pc} be the set of probability of occurrence of each Gaussian
Stepl: On the i iteration initialize:
Ae = 100) . L) 206, 2 ... L0, pt) pAT) ... pLO P
Step2: E-Step - Compute the “expected” classes of all data points for each class using

Pl 14 2, P2)
plv]4)

. ploxe w4, (2,00)p, (1)
Pl) WA |] i

> |\l*|'~',. 21,00, (0)p,(0)
=

Step3: M-Step - Compute “maximum likelihood x> given our data class membership distribution usin;

Zpt"rl"r’::)ﬁ Z[‘(n-_ln,_,).,)
o S — + Al
ZI’(“‘,'\}-/‘L‘,) j),(l 1) M

k

w(r+1)

COOLCAT

COOLCAT algorithm is proposed to cluster categorical
attributes using entropy. Given a data set D of N data points
p’'l, p2, . .. ,p"N, where each point is a multidimensional
vector of d categorical attributes, i.e., p’j = {pjl, pjz, Cee pjd},
the goal of this algorithm is to minimize the entropy of the
whole arrangement.

COOLCAT Algorithm

Stepl: Draw a sample data set S (|S| << N) from the entire data set, where N is the size of
the entire data set
{1. Initialization phase}

Step2: Find the k most “dissimilar” records from the sample data set by maxumizing the minimum pairwise
entropy of the chosen data points {To do ths. 1t first finds the two data ponts p.;, p.2 such that the
entropy E(p.., p.o) 1s maximized, i.e., E(pa, pa) = E(p1, p2) ¥p1. p2 € S, and then puts them in two
separate clusters Cy, C; and marks the two data points; after it selects j — 1 points, 1t will find the j®
point such that

15 maximized and then put this point in the {® cluster C; and mark this pont.}
{2. Incremental phase}

Step3: Process the unmarked |8 — k data points in the sample data set § and the remaining data points (ie.,
data points outside the sample). Given the k initial sets of clusters found in the first step, bring a

batch of data € = €1, C2. - - .. Ck. points to the memory from disk and, for each data point p in

this batch of data points, place p in cluster C; and compute E(CY)
obtained by placing p in Ci, and then find the index j such that

E(C)Y<E(C) VYi=1,2,....k

> where C ~ i denotes the cluster

and place p in cluster C;. The above procedure is kept executing until all points have been assigned
to some cluster.

STUCCO

In the algorithm STUCCO, a new concept of contrast-sets is
defined in order to find the contrast-sets whose supports differ
meaningfully among different groups. To do that, a method of
tree searching is used to calculate all possible combinations of
attribute values. One then retains the significant contrast-sets,
post processes those contrast sets, and then selects a subset.

STUCCO Algorithm

Stepl: Using canonical ardering of attributes to construct 2 search tree, scan the database, count the support
for each group, and retain the significant contrast-sets

Step2: Test the null hypothesis that contrast-set support 1s equal across all groups or contrast set support is
independent of group membership to check whether a contrast-set is significant

Step3: Prune the nodes that can never be significant contrast-sets.

Step4: Find surprising contrast-gets.

SOM -Self-Organizing Map

SOM is used for clustering data without knowing the class
memberships of the input data. The SOM can be used to
detect features inherent to the problem and thus has also been
called SOFM, the Self-Organizing Feature Map

SOM Algorithm

Stepl: Select output layer network topology — Initialize current neighborhood distance, D(0), to a positive
value

Step2: Initialize weights from inputs to outputs to small random values

Step3: Lett=1

Step4: While computational bounds are not exceeded do

Step5: Select an input sample |;
Step6: Compute the square of the Euclidean distance of |; from weight vectors (w;) associated with
each output node
2
n . 2
2 E=1 (Iz,‘,z - Wj’,a;- (I))
Step7: Select output node j* that has weight vector with minimum value from step 6)
StepS: Update weights to all nodes within a topological distance given by D(t) from j*, using the
weight update rule:
w,(F+1) = w, () +R()E —w, (1)
Step9: Increment t

Stepl0: Endwhile Tearning rate generally decreases with time:

0<n(t)<nt—1)<Is

Table 5. Computational Complexity and Scalability Analysis on Model based
Clustering Algorithms

Algorithms Computational Complexity | Scalability
Gaussian{EM) | Time Complexity: O(n?) N
COQLCAT Time Complexity: O{n) Y
STUCCO Time Complexity: O{n) N
S0M Time Complexity: O{1) Y

IV. CONCLUSION

The purpose of survey paper is to present a comprehensive
view of different clustering algorithms available for high
dimensional data. Clustering high dimensional data sets is
apervasive task. The enormous growth in data in every
domain, there is great growth in high dimensional data spaces.
This study focuses on various algorithms available for high
dimensional data. Computational complexity and scalability
are examined thoroughly for all clustering algorithms. There
are many potential applications like bioinformatics, text
mining with high dimensional data where subspace clustering,
projected clustering approaches could help to uncover patterns
missed by state-of-art clustering approaches. The major
challenge for clustering high dimensional data is to overcome

www.rsisinternational.org

Page 84

International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue lll, March 2018 | ISSN 2321-2705

the “curse of dimensionality” [15]. This survey will be helpful
to choose the right clustering algorithm for different
applications.

[1].
[2].

3.

[4].

[5].

[6].
[71.
8.

9.

REFERENCES

Jain A, Dubes R, Algorithms for clustering data, Prentice-Hall,
Inc, Upper Saddle River, 2011.

Zhang T, Ramakrishnan R, Linvy M, Birch: an efficient data
clustering method for large databases. In Proc. of 1996 ACM-
SIGMOD Int. Conf. on Management of Data, Montreal, Quebec,
1996.

Qinbao Song, Jingjie Ni, Guangtao Wang, A Fast Clustering-
Based Feature Subset Selection Algorithm for High-Dimensional
Data, IEEE Transactions on Knowledge and Data Engineering,
Vol. 25, No. 1, 2013.

Dongkuan Xu, Yingjie Tian, A Comprehensive Survey of
Clustering Algorithms, © Springer-Verlag Berlin Heidelberg,
2015.

Ng R, Han J, Clarans: a method for clustering objects for spatial
data mining. IEEE Transactions on Knowledge and Data
Engineering 14:1003-1016, 2002.

Karypis G, Han E, Kumar V, Chameleon: hierarchical clustering
using dynamic modelling. Computer 32:68—75, 1999.

Cao F, Ester M, Qian W, Zhou A, Density-based clustering over
an evolving data stream with noise. SDM 6:328-339, 2006.
Aggarwal C, Yu P, Redefining clustering for high-dimensional
applications.IEEE Transactions on Knowledge and Data
Engineering, 14(2):210-225, 2002.

Zhao Y, Song J, GDILC: A grid-based density-isoline clustering
algorithm. In Proceedings of the international conferences on info-
tech and info-net, volume 3, pages 140-145. Beijing: IEEE, 2001.

[10].

[11].

[12].
[13].
[14].
[15].

[16].

[17].

[18].

[19].

[20].

[21].

EverittB, Landau S,Leese M, Cluster Analysis, 4th edition. New
York:Oxford University Press, 2001.
GholamhoseinSheikholeslami, Surojit Chatterjee, Aidong Zhang,
Wavecluster:A multi-resolution clustering approach for very large
spatial databases. In VLDB’98,pages 428-439, 1998.

Nagesh H, Goil S and Choudhary A, MAFIA: Efficient and
scalable subspace clustering for very large data sets, 1999.
Chaogqun Ma,GuojunGan,Jianhong Wu, Data Clustering: Theory,
Algorithms,and Applications, SIAM, 2007.

Chun-Hung Cheng, ENCLUS: Entropy-based Subspace Clustering
for Mining Numerical Data, 1999.

Jain A/Murty M N, Flynn P J, Data Clustering: A Review, ACM
Computing Surveys, Volume 31(3), pp. 264-323, 2011.

Guha S, Rastogi R, Shim K, CURE: An efficient clustering
algorithm for large databases, Proc. Of ACM SIGMOD
Conference, 2012.

Rui Xu, W. Donald, Survey of Clustering Algorithms, IEEE
Transaction on Neural Network, vol. 16, 2009.

Fraley C, Raftery A, Model-based clustering, discriminant analysis
and density estimation. Journal of American Statistical
Association, 97, 611-631, 2002.

Fraley C, Algorithms for model-based Gaussian hierarchical
clustering. SIAM Journal on Scientific Computing 20, 270-281,
1998.

Murty, M N, Krishna, G, A computationally efficient technique
for data clustering. Pattern Recogn. 12, 153-158, 1980.

Song Q, Jingjie Ni, Wang G, A Fast Clustering-Based Feature
Subset Selection Algorithm for High Dimensional Data, IEEE
Transactions On Knowledge and Data Engineering Vol 25 No:1,
2013.

www.rsisinternational.org

Page 85

