
International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue III, March 2018 | ISSN 2321–2705

www.rsisinternational.org Page 98

An Effective Big Data Role of Data Storage and Job

Tracking Analysis through the HDFS
S.Janardhan

1
, Rajeshkumar.P

2
, B.Madhu Sudhan Reddy

3

1
Student, Master of Computer Applications, SKIIMS, Srikalahasti, Andhra Pradesh India

2
Research Scholar, Computer science, Bharathiar University, Coimbatore, India

3
Asst.Professor, Master of Computer Applications, SKIIMS, Srikalahasti, India

Abstraction: - Bigdata inspires new ways to transform processes,

organizations, entire industries and even society itself. Yet

extensive media coverage makes it hard to distinguish hype from

reality. Big data is a collection of massive and complex data sets

that include the huge quantities of data, social media analytics,

data management capabilities, real-time data. Big Data includes

e-mail messages, snaps, business deals, surveillance video

recordings, posts of social Medias, mobile phone GPS signals and

RFID readers, microphones, cameras, sensors and activity logs.

That’s why, the data that exceeds the processing capacity of

conventional database systems. Big data processing such as

Hadoop which uses the map-reduce paradigm. Using

MapReduce programming paradigm, the big data is processed.

Whatever the label, organizations are starting to understand and

explore how to process and analyze a vast array of information

in new ways. This paper will explain about HDFS architecture,

high volume of data storage and query processing.

Key Words: Hadoop, HDFS, Name Node, Secondary Name Node,

JobTracker, DataNode, Task Tracker

I. INTRODUCTION

adoop is an ecosystem of open source components that

fundamentally changes the way enterprises store,

process, and analyzes data. Unlike traditional systems,

Hadoop enables multiple types of analytic workloads to run

on the same data, at the same time, at massive scale on

industry-standard hardware. CDH, Cloudera's open source

platform, is the most popular distribution of Hadoop and

related projects in the world (with support available via a

Cloudera Enterprise subscription). The Hadoop Distributed

File System (HDFS) is a distributed file system designed to

run on commodity hardware. It has many similarities with

existing distributed file systems. However, the differences

from other distributed file systems are significant. HDFS[1] is

highly fault-tolerant and is designed to be deployed on low-

cost hardware. HDFS provides high throughput access to

application data and is suitable for applications that have large

data sets. HDFS relaxes a few POSIX requirements to enable

streaming access to file system data. HDFS was originally

built as infrastructure for the Apache Nautch web search

engine project. HDFS is now an Apache Hadoop subproject.

Hadoop provides a distributed filesystem and a framework for

the analysis and transformation of very large data sets using

the MapReduce paradigm. While the interface to HDFS is

patterned after the UNIX filesystem, faithfulness to standards

was sacrificed in favor of improved performance for the

applications at hand. An important characteristic of Hadoop is

the partitioning of data and computation across many

(thousands) of hosts, and the execution of application

computations in parallel close to their data. A Hadoop cluster

scales computation capacity, storage capacity and I/O

bandwidth by simply adding commodity servers. Hadoop

clusters at Yahoo! span 40,000 servers, and store 40 petabytes

of application data, with the largest cluster being 4000 servers.

One hundred other organizations worldwide report using

Hadoop. HDFS stores filesystem metadata and application

data separately. As in other distributed filesystems, like PVFS,

Lustre2, and GFS, HDFS stores metadata on a dedicated

server, called the Name Node. Application data are stored on

other servers called Data Nodes. All servers are fully

connected and communicate with each other using TCP-based

protocols. Unlike Luster and PVFS, the Data Nodes in HDFS

do not rely on data protection. Mechanisms such as RAID[3]

to make the data durable. Instead, like GFS, the file content is

replicated on multiple Data Nodes for reliability. While

ensuring data durability, this strategy has the added advantage

that data transfer bandwidth is multiplied, and there are more

opportunities for locating computation near the needed data.

Fig1: HDFS Architecture

II. HDFS ARCHITECTURE

Hadoop Distributed File System or Master Slave Architecture.

+In HDFS we have 5 Components or Demon’s

2.1 Name Node

The HDFS namespace is a hierarchy of files and directories.

Files and directories are represented on the Name Node by

Inodes. Inodes record attributes like permissions, modification

and access times, namespace and disk space quotas. The file

content is split into large blocks (typically 128 megabytes, but

H

http://www.aosabook.org/en/hdfs.html#footnote-2

International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue III, March 2018 | ISSN 2321–2705

www.rsisinternational.org Page 99

user selectable file-by-file), and each block of the file is

independently replicated at multiple Data Nodes (typically

three, but user selectable file-by-file). The Name Node

maintains the namespace tree and the mapping of blocks to

Data Nodes. The current design has a single Name Node for

each cluster. The cluster can have thousands of Data Nodes

and tens of thousands of HDFS clients per cluster, as each

Data Node may execute multiple application tasks

concurrently. In Name Node the status of Data Node and Task

Tracker is maintained in Meta Data internally all Nodes are

connected these connection is called Data Localization.

2.2 Secondary Name Node

The Name Node stores modifications to the file system as a

log appended to a native file system file, edits. When a Name

Node starts up, it reads HDFS state from an image file,

fsimage, and then applies edits from the edits log file. It then

writes new HDFS state to the fsimage and starts normal

operation with an empty edits file. Since Name Node merges

fsimage and edits files only during start up, the edits log file

could get very large over time on a busy cluster. Another side

effect of a larger edits file is that next restart of Name Node

takes longer. The secondary Name Node merges the fsimage

and the edits log files periodically and keeps edits log size

within a limit. It is usually run on a different machine than the

primary Name Node since its memory requirements are on the

same order as the primary NameNode. The start of the

checkpoint process on the secondary Name Node is controlled

by two configuration parameters.

 dfs. namenode. check point .period, set to 1 hour by

default, specifies the maximum delay between two

consecutive checkpoints, and

 dfs.namenode.checkpoint.txns, set to 1 million by

default, defines the number of uncheck pointed

transactions on the Name Node which will force an

urgent checkpoint, even if the checkpoint period has not

been reached.

The secondary Name Node stores the latest checkpoint in a

directory which is structured the same way as the primary

Name Node’s directory. So that the check pointed image is

always ready to be read by the primary Name Node if

necessary. in Secondary Name Node provide the back up of

Name Node and it can store the text data into fsimages.the

fsimages can convert into the text format data to the fsimages

format it is called EDIT LOG. It’s software to convert the text

data to image format and image format to text format.

2.3 Job Tracker

JobTracker and Task Tracker are[4] 2 essential process

involved in MapReduce execution in MRv1 (or Hadoop

version 1). Both processes are now deprecated in MRv2 (or

Hadoop version 2) and replaced by Resource Manager,

Application Master and Node Manager Daemons.

1. Job Tracker process runs on a separate node

and not usually on a Data Node.

2. Job Tracker is an essential Daemon for MapReduce

execution in MRv1. It is replaced by Resource

Manager/Application Master in MRv2.

3. Job Tracker receives the requests for MapReduce

execution from the client.

4. Job Tracker talks to the Name Node to determine the

location of the data.

5. Job Tracker finds the best Task Tracker nodes to

execute tasks based on the data locality (proximity of

the data) and the available slots to execute a task on a

given node.

6. Job Tracker monitors the individual Task Trackers

and the submits back the overall status of the job

back to the client.

7. Job Tracker process is critical to the Hadoop cluster

in terms of MapReduce execution.

8. When the Job Tracker is down, HDFS will still be

functional but the MapReduce execution cannot be

started and the existing MapReduce jobs will be

halted.

2.4 Data Node

Each block replica on a Data Node is represented by two files

in the local native filesystem. The first file contains the data

itself and the second file records the block's metadata

including checksums for the data and the generation stamp.

The size of the data file equals the actual length of the block

and does not require extra space to round it up to the nominal

block size as in traditional filesystems. Thus, if a block is half

full it needs only half of the space of the full block on the

local drive. During startup each Data Node connects to the

Name Node and performs a handshake. The purpose of the

handshake is to verify the namespace ID[7] and the software

version of the Data Node. If either does not match that of the

Name Node, the Data Node automatically shuts down. The

namespace ID is assigned to the filesystem instance when it is

formatted. The namespace ID is persistently stored on all

nodes of the cluster. Nodes with a different namespace ID will

not be able to join the cluster, thus protecting the integrity of

the filesystem. A Data Node that is newly initialized and

without any namespace ID is permitted to join the cluster and

receive the cluster's namespace ID. After the handshake the

Data Node registers with the Name Node. Data Nodes

persistently store their unique storage IDs. The storage ID is

an internal identifier of the Data Node, which makes it

recognizable even if it is restarted with a different IP address

or port. The storage ID is assigned to the Data Node when it

registers with the Name Node for the first time and never

changes after that. A Data Node identifies block replicas in its

possession to the Name Node by sending a block report. A

block report contains the block ID, the generation stamp and

the length for each block replica the server hosts. The first

block report is sent immediately after the Data Node

registration. Subsequent block reports are sent every hour and

provide the Name Node with an up-to-date view of where

International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue III, March 2018 | ISSN 2321–2705

www.rsisinternational.org Page 100

block replicas are located on the cluster. During normal

operation Data Nodes send heartbeats to the Name Node to

confirm that the Data Node is operating and the block replicas

it hosts are available. The default heartbeat interval is three

seconds. If the Name Node does not receive a heartbeat from

a Data Node in ten minutes the Name Node considers the Data

Node to be out of service and the block replicas hosted by that

Data Node to be unavailable. The Name Node then schedules

creation of new replicas of those blocks on other Data Nodes.

Heartbeats from a Data Node also carry information about

total storage capacity, fraction of storage in use, and the

number of data transfers currently in progress. These statistics

are used for the Name Node’s block allocation and load

balancing decisions. The Name Node does not directly send

requests to Data Nodes. It uses replies to heartbeats to send

instructions to the Data Nodes. The instructions include

commands to replicate blocks to other nodes, remove local

block replicas, re-register and send an immediate block report,

and shut down the node. These commands are important for

maintaining the overall system integrity and therefore it is

critical to keep heartbeats frequent even on big clusters. The

Name Node can process thousands of heartbeats per second

without affecting other Name Node operations.

2.5 Task Tracker

A Task Tracker is a node in the cluster that accepts tasks -

Map, Reduce and Shuffle operations - from a Job Tracker.

Every Task Tracker is configured with a set of slots; these

indicate the number of tasks that it can accept. When the Job

Tracker tries to find somewhere to schedule a task within

the MapReduce operations, it first looks for an empty slot on

the same server that hosts the Data Node containing the data,

and if not, it looks for an empty slot on a machine in the same

rack. The Task Tracker spawns a separate JVM [10] processes

to do the actual work; this is to ensure that process failure

does not take down the task tracker. The Task Tracker

monitors these spawned processes, capturing the output and

exit codes. When the process finishes, successfully or not, the

tracker notifies the Job Tracker. The Task Trackers also send

out heartbeat messages to the Job Tracker, usually every few

minutes, to reassure the Job Tracker that it is still alive. These

messages also inform the Job Tracker of the number of

available slots, so the Job Tracker can stay up to date with

where in the cluster work can be delegated. in this Job Tracker

performing the particular task after completion of task it will

send the status of task tracker then Name node assign to the

next work these process will be continue until finish the work.

Every three seconds Data Node and Task Tracker send the

report or update when am free or not what work am doing

now to send a report to the Name Node.

III. DATA STORAGE IN HDFS

 Data storage in HDFS is different from the way files

are stored in Windows or Linux.

 In HDFS, the system breaks down the file meant for

storage into a set of Individual blocks and later stores

the blocks in various slave nodes of the Hadoop

cluster.

 Minimum size of block is 64MB and Maximum size

can be integral (excluding zero and negative

numbers) multiple of 64MB

Example: A file (Sample.log) being divided into blocks of

data (a,b,c,d,e,f)

3.1 Replicating data blocks

 HDFS was designed to store the data even in

inexpensive commodity hardware. The hardware can

be sometimes unreliable. So to overcome any

hardware failures, HDFS replicates data blocks that

are stored in the system.

 Note: The norm is three copies of individual data

blocks and any order can be stored in the data

node. However, no two blocks of same type are

stored in the data node (i.e. a1, a2 in the same data

node 1).

From the above example the file (Sample.log) being

divided into blocks of data (a,b,c,d,e,f). Which in turn are

replicated in to three (a1,b1,c1,d1,e1,f1).

(a2,b2,c2,d2,e2,f2) and (a3,b3,c3,d3,e3,f3)

https://wiki.apache.org/hadoop/JobTracker
https://wiki.apache.org/hadoop/JobTracker
https://wiki.apache.org/hadoop/JobTracker
https://wiki.apache.org/hadoop/MapReduce
https://wiki.apache.org/hadoop/DataNode
https://wiki.apache.org/hadoop/JobTracker
https://wiki.apache.org/hadoop/TaskTrackers
https://wiki.apache.org/hadoop/JobTracker
https://wiki.apache.org/hadoop/JobTracker
https://wiki.apache.org/hadoop/JobTracker
https://wiki.apache.org/hadoop/JobTracker

International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue III, March 2018 | ISSN 2321–2705

www.rsisinternational.org Page 101

3.2 Name Node Memory concerns

In order to scale the name service horizontally, federation uses

multiple independent Namenodes/namespaces. The

Namenodes are federated; the Namenodes are independent

and do not require coordination with each other. The

Datanodes are used as common storage for blocks by all the

Namenodes. Each Datanode registers with all the Namenodes

in the cluster. Datanodes send periodic heartbeats and block

reports. They also handle commands from the Namenodes.

Fig2: name nodes

3.3 Anatomy of File Read

In the following section we are going to understand the flow

of HDFS file read operation. Let’s have a look at pictorial

representation of the data read operation and components

involved in it.

HDFS Client: HDFS client interacts with Namenode and

Datanode to fulfil user request.

User establishes communication with HDFS through File

System API and normal I/O operations, processing of user

request and providing response over it is carried out by File

System API processes.

NameNode: It is the MasterNode. It stores metadata

information contains addresses of block locations of

Datanodes, this information is used for file read and write

operation to access the blocks in a HDFS cluster.

Datanode: Datanode also known as slave node holds the

actual data. Datanode only stores block, a block is what is

used to store and process the data.Datanode gives periodic

heartbeat signals to Masternode to indicate that it is alive and

can be used to store and retrieve data

Packet: A Packet is a small chunk of data which is used

during transmission; packet is a subset of block. The default

size of a block is around 64 MB or 128 MB, it will create a

huge network overload if we transfer data of the size of

blocks, hence client API transfers this block in small chunks

known as packets.

3.4 Anatomy of File Write

Now we will look at what happens when you write a File in

HDFS.

Before client start writing data to HDFS it grabs an instance of

an object of Distributed File System (HDFS)

Distributed File System object do a RPC call to namenode to

create a new file in filesystem namespace with no blocks

associated to it Namenode process performs various checks

like

a) client has required permissions to create a file or not

b) file should not exists earlier. In case it will throw an

IOexception to client

Once the file is registered with the namenode then client will

get an object i.e. FSDataOutputStream

International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue III, March 2018 | ISSN 2321–2705

www.rsisinternational.org Page 102

Which in turns embed DFSOutputStream object for the client

to start writing data to DFSoutputStream handles

communication with the datanodes and namenode.

As client writes data DFSOutputStream split it into packets

and write it to its internal queue i.e. data queue and also

maintains an acknowledgement queue.

Data queue is then consumed by a Data Streamer process

which is responsible for asking namenode to allocate new

blocks by picking a list of suitable datanodes to store the

replicas.

The list of datanodes forms a pipeline and assuming a

replication factor of three, so there will be three nodes in the

pipeline.

The data streamer streams the packets to the first datanode in

the pipeline, which then stores the packet and forwards it to

second datanode in the pipeline. Similarly the second node

stores the packet and forwards it to next datanode or last

datanode in the pipeline

Once each datanode in the pipeline acknowledge the packet

the packet is removed from the acknowledgement queue.

IV. HDFS COMMANDS

The File System (FS) shell includes various shell-like

commands that directly interact with the Hadoop Distributed

File System (HDFS) as well as other file systems that Hadoop

supports.

The fs shell can be invoked by $ bin/hdfs dfs <args>

Most of the commands in FS shell behave like corresponding

Unix commands.

$cat Syntax: hdfs dfs -cat <<File path>>

Usage : Lists contents of the file.

$chgrp Syntax: hdfs dfs –chgrp <<group name>><<file

path>>

Usage : Lists contents of the file.

$chmod Syntax: hdfs dfs –chmod <<octal number>><<file

path>>

Usage: Change the permissions of files. With -R, make the

change recursively through the directory structure. The user

must be the owner of the file, or else a super-user.

$chown Syntax: hdfs dfs –chown <<Owner name>><<file

path>>

Usage: Change the owner of files. With -R, make the change

recursively through the directory structure. The user must be a

super-user.

$copyFromLocal Syntax: hdfs dfs –copyFromLocal

<<local input directory path>><< output hdfs directory path

>>

Note: one can use put instead of copyFromLocal

Usage: Copies file from the local source to a output hdfs

directory.

$ copyToLocal Syntax: hdfs dfs –copyToLocal

<< input hdfs directory path >><<local input directory path>>

Note: one can use get instead of copyToLocal

Usage: Copies file from the local hdfs directory to a output

local directory.

$count Syntax: hdfs dfs –count <<directory path>>

Usage: Count the number of directories, files and bytes under

the paths thatmatch the specified file pattern.

cp Syntax: hdfs dfs –cp <<source hdfs path>><<output hdfs

path>>

Usage: Copy files from source hdfs path to destination hdfs

path.

$du Syntax: hdfs dfs -du <<directory path>>

Usage: Displays sizes of files and directories contained in the

given directory orthe length of a file in case it’s just a file.

$mkdir Syntax:hdfs dfs -mkdir <<directory name>>

Usage: Creates a directory

$ ls Syntax: hdfs dfs -ls <<directory or file>>

Usage:For a file or directory returns the statistics.

moveFromLocal Syntax: dfs -moveFromLocal <<local file

path>><<output hdfspath>>

Similar to putcommand, except that the source file is deleted

after it's copied.

moveToLocal Syntax:hdfs dfs -moveToLocal <<input hdfs

path>><<output localfile path>>

isplays a "Not implemented yet" message.

$mv Syntax: hdfs dfs -mv <<input file path>><<output file

path>>

Moves files from source to destination. This command allows

multiple sources as well in which case the destination needs to

be a directory. Moving files across file systems is not

permitted.

$rm Syntax: hdfs dfs -rm <<File path>>

Delete the specified file

$setrep Syntax: hdfs dfs -setrep [-R] <<File path>>

Usage: Changes the replication factor of a file. -R option is for

recursively increasing the replication factor of files within a

directory.

$fsck Syntax: hdfs fsck –blocks <<file path>>

International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue III, March 2018 | ISSN 2321–2705

www.rsisinternational.org Page 103

Usage: fsck – file system check

V. HDFS ADMINISTRATIVE COMMANDS

Hadoop in safe mode means:

 Name Node will be in safe mode and HDFS will be

in read only mode There are four important HDFS

administrative commands

1) $hdfs dfsadmin –safemode get

Usage: Gives the status of hdfs system. whether Hadoop

is operating in safemode or not (i.e. either on or off state).

2) $hdfs dfsadmin –safemode enter

Usage: Hadoop operates in safemode (i.e. on state)

3) $hdfs dfsadmin –safemode leave

Usage: Hadoop leaves safemode (i.e. off state)

4) $hdfs dfsadmin –report

Usage: Gives report of the Hadoop system

VI. CONCLUSION

In This Article an overview of HDFS architecture Name

Node, Secondary Name Node, Job Tracker, Data Node, Task

Tracker have been reviewed. The results showing quickly and

processing the Data very fast it will take query and gives the

particular related information with in short time. in HDFS

Every query we are giving that is small or big it will take

same time and gives output with in time and the storage is

very large and scalable, processing the data very fast in the

mean of time frequency is low to compare other one’s HDFS

is taking time to Process the query very fast in HDFS the data

will be sharing or Distributed and processing the data this is

major point in HDFS and cost also low in future days the data

storage will expandable very high and improve ,develop the

query processing.

REFERENCES

[1]. Sagiroglu, Sinanc, "Big Data: A Review", 978-1-4673-6404-1/13

IEEE.
[2]. Sabia, Arora, "Technologies to Handle Big Data: A Survey".

[3]. Shilpa, Manjit Kaur, "Big Data and Methodology – A review",

Volume 3, Issue 10, October 2013.
[4]. http://www-01.ibm.com/software/in/data/bigdata/ (last access -

10/11/2014).

[5]. K. Bakshi, "Considerations for Big Data: Architecture and
Approach", Aerospace Conference IEEE, Big Sky Montana,

March 2012.

[6]. D. Garlasu, V. Sandulescu, I. Halcu, G.Neculoiu, "A Big Data

implementation based on Grid Computing", Grid Computing, 17-

19 January 2013.

[7]. R.D. Schneider, "Hadoop for Dummies Special Edition", John
Wiley&Sons Canada, 978-1-118-5051-8, 2012.

[8]. Yuri Demchenko, "The Big Data Architecture Framework

(BDAF)", Outcome of the Brainstorming Session at the University
of Amsterdam, 17 July 2013.

[9]. Aditya B. Patel, Manashvi Birla, Ushma Nair, "Addressing Big

Data Problem Using Hadoop and Map Reduce", Aug, 2012.
[10]. http://removeandreplace.com/2013/03/13/how-much-data-is-on-

the-internet-and-generated-online-every-minute/Query: how much

data is on the internet and generated online every minute.
[11]. http://bigdatauniversity.com/

[12]. http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html (last access

4/11/2014).
[13]. http://www.mssqltips.com/sqlservertip/3222/big-data-basics--

part-5--introduction-to-mapreduce/ (last access 29/10/2014).

