On Commutatativity of Primitive Rings with Some Identities

B. Sridevi* ${ }^{1}$ and Dr. D.V.Ramy Reddy ${ }^{2}$
${ }^{1}$ Assistant Professor of Mathematics, Ravindra College of Engineering for Women, Kurnool- 518002 A.P., India.
${ }^{2}$ Professor of Mathematics, AVR \& SVR College of Engineering And Technology, Ayyaluru, Nandyal-518502, A.P., India

Abstract

In this paper, we prove that some results on

 commutativity of primitive rings with some identitiesKey Words: Commutative ring, Non associative primitive ring, Central

I. INTRODUCTION

In this paper, we first study some commutativity theorems of non-associative primitive rings with some identities in the center. We show that some preliminary results that we need in the subsequent discussion and prove some commutativity theorems of non-associative rings and also non-associative primitive ring with $(\mathrm{ab})^{2}-\mathrm{ab} \in \mathrm{Z}(\mathrm{R})$ or $(\mathrm{ab})^{2}-\mathrm{ba} \epsilon \mathrm{Z}(\mathrm{R}) \quad \forall$ a, b in R is commutative. We also prove that if R is a nonassociative primitive ring with identity $(a b)^{2}-b\left(a^{2} b\right) \in Z(R)$ for all a, b in R is commutative. Also we prove that if R is an alternative prime ring with identity $b\left(a b^{2}\right) a-\left(b a^{2}\right) b \in Z(R)$ for all a, b in R, then R is commutative. Some commutativity theorems for certain non-associative rings, which are generalization for the results of Johnsen and others and R.N. Gupta, are proved in this paper. Johensen, Outcalt and Yaqub proved that if a non-associative ring R satisfy the identity $(a b)^{2}=a^{2} b^{2}$ for all a, b in R, then R is commutative. The generalization of this result proved by R.D. Giri and others states that if R is a non-associative primitive ring satisfies the identity $(a b)^{2}-a^{2} b^{2} \in Z(R)$, where $Z(R)$ denoted the center, then R is commutative.

A modification of Johnsen`s identity viz., \((\mathrm{ab})^{2}=\) \((\mathrm{ba})^{2}\) for all \(\mathrm{a}, \mathrm{b}\) in R for a non -associative ring R which has no element of additive order 2 , is commutative was proved by R.N. Gupta [1]. R.D. Giri and others [2] generalized Gupta`s result by taking $(\mathrm{ab})^{2}-(\mathrm{ba})^{2} \in \mathrm{Z}(\mathrm{R})$.

II. MAIN RESULTS

Theorem 2.1 : If R is a 2-torsion free non- associative ring with unity satisfying $(a b)^{2}=(b a)^{2}$, then R is commutative.

Proof : Let $\mathrm{a}, \mathrm{b} \in \mathrm{R}$.
Then $\left[a(1+b)^{2}\right]=[(1+b) a]^{2}$
i.e., $(a+a b)^{2}=(a+b a)^{2}$
i.e., $a^{2}+a(a b)+(a b) a+(a b)^{2}=a^{2}+a(b a)+(b a) a+(b a)^{2}$
i.e., $a(a b)+(a b) a=a(b a)+(b a) a$.
substituting a by $(1+a)$ in 2.1., we get

$$
\begin{aligned}
& (1+a)(b+a b)+(b+a b)(1+a)=(1+a)(b+b a)+(b+b a) \\
& +(b+b a)(1+a)
\end{aligned}
$$

By simplifying, ,
$b+a b+a b+a(a b)+b+b a+a b+(a b) a=b+b a+a b+$ $a(b a)+b+b a+b a+b a+(b a) a$.

Using 2.1, we get
$2(a b-b a)=0$, i.e., $a b=b a$.
Hence R is commutative.
Theorem 2.2 : If R is a 2 - torsion free non-associative primitive ring with unity
such that $(a b)^{2}-(b a)^{2} \in Z(R)$, for all a, b in R, then R is commutative.

Proof : Given $(\mathrm{ab})^{2}-(\mathrm{ba})^{2} \in \mathrm{Z}(\mathrm{R})$
Replacing b by $(\mathrm{b}+1)$ in 2.2 , and using 2.2, we obtain
$a(a b)+(a b) a-a(b a)-(b a) a \in Z(R)$.
Now replacing a by $\mathrm{a}+1$ in 2.3 , and using 2.3.,
we achieve, $2 a b-2 b a \in Z(R)$.

```
i.e., 2(ab - ba) \in Z(R).
```

Since R is a 2-torsion free ring, $a b-b a \in Z(R)$.
We conclude that R is commutative.
Now we present, some examples to see that the unity and 2torsion free are essential in theorems 2.2 and 2.3

Example 2.1 : The restriction on R, being 2 - torsion free in theorem 2.1 is essential one. For if we consider the ring R of quaternion's over the field of order 4 namely splitting field of $a^{2}+a+1$ over Z_{2}, then it is not of 2-torsion free but satisfies the identity of theorem 2.1. Yet it is noncommutative.

Example 2.2: Theorem 2.2 is false for rings without unity. In fact any nilpotent ring of index ≤ 4 and any nil ring of index 2 will trivially satisfy $(a b)^{2}=(b a)^{2}$, but such rings may not be commutative. As an example let F be any field define an algebra A over F with basis $\{a, b, c\}$, where $a b=c$, all other products zero. A is nilpotent of index $3, \mathrm{~A}$ is not commutative.

It is well known that a Boolean ring satisfies $\mathrm{a}^{2}=\mathrm{a}$, for all a ϵ R and this implies commutativity. Similarly we can see the properties of rings in which $(a b)^{2}=a b$ for each pair of elements $a, b \in R$. In [3] Quadri and others proved that an associative semi prime ring in which $(a b)^{2}-a b \in Z(R)$ is commutative . In this direction we prove that a $2-$ torsion free non - associative ring with unity satisfying (ab) ${ }^{2}$ $=a b \in Z(R)$ is commutative. We give an example to show that the unity is essential in the hypothesis. Also, We prove that a non - associative primitive ring (not necessarily having unity) satisfying (ab) $)^{2}-a b(o r)(a b)^{2}-b a$ is central for all a, $\mathrm{b} \in \mathrm{R}$ is commutative.

First we prove the following theorem:
Theorem 2.3 : Let R be a 2 - torsion free non-associative ring with unity satisfying $(a b)^{2}-a b \in Z(R)$ for all a, b in R. Then R is commutative.
Proof : By hypothesis $(a b)^{2}-a b \in Z(R)$.
Replacing a by $\mathrm{a}+1$ in 2.4. and using 2.4., we get
$(a b) b+b(a b)+b^{2}-b \in Z(R)$.
Again replacing a by $a+1$ in 2.5 . and using it, we obtaing $2 b^{2} \in Z(R)$

Since R is a 2 - torsion free, $b^{2} \in Z(R)$
Replacing b by $a b$ in. 2.6.
we get $(a b)^{2} \in Z(R)$
But by hypothesis (ab) $)^{2}-a b \in Z(R)$,
hence we get $a b \in Z(R)$.
Now again replacing a by $\mathrm{a}+1$ in 2.8.,
we get $a b+b a \in Z(R)$
From the equations 2.8. and 2.9. we obtain $b \in Z(R)$ for all $b \in R$.

Hence R is commutative.
Theorem 2.4. : Let R be a 2 - torsion free non- associative ring with unity satisfying $(a b)^{2}-b a \in Z(R)$ for all a, b in R . Then R us commutative.
Proof : Given (ab) ${ }^{2}$ - ba $\in \mathrm{Z}(\mathrm{R})$
Replacing a by $\mathrm{z}+1$ in 2.3.10. and using 2.10., we get
(ab) $b+b(a b)+b^{2}-b \in Z(R)$
Again replacing a by $\mathrm{a}+1$ in 2.11. and using 2.11., we obtain $2 b^{2} \in Z(R)$

Since R is a 2 torsion free, then $b^{2} \in Z(R)$.
Now replacing b by ab in 2.12.. we get
$(a b)^{2} \in Z(R)$.
But by hypothesis (ab) ${ }^{2}-b a \in Z(R)$.

Hence we have ba $\in \mathrm{Z}(\mathrm{R})$
....2.14
Now again replacing a by $\mathrm{a}+1$ in 2.14 , we get $b a+b \in Z(R)$.

Using 2.14 and 2.15, we obtain $b \in Z(R)$ for all $b \in R$, then R is commutative.

Theorem 2.5 : If R is a 2 - torsion free primitive ring which satisfy
$(a b)^{2}-a b \in Z(R)$ for all a, b in R, then R is commutative.
Proof : By hypothesis, $(a b)^{2}-a b \in Z(R)$.
Replacing a by $\mathrm{a}+\mathrm{b}$ in 2.16 and using 2.16,
we obtain $(a b) b^{2}+b^{2}(a b)+b^{4}-b^{2} \epsilon Z(R)$.
Now replacing a by b in $(a b)^{2}-a b \in Z(R)$, we get
$b^{4}-b^{2} \in Z(R)$.
Using 2.3.17 and 2.3.18, we obtain
(ab) $b^{2}+b^{2}(a b) \in Z(R)$.
We replacing a by $a+b$ in 2.19 , then $(a b) b^{2}+b^{4}+b^{2}(a b)$ $+b^{4} \in Z(R)$.

By . $2.12 b^{4}+b^{4} \in Z(R)$., i.e., $2 b^{4} \in Z(R)$.
Since R is a 2 - torsion free ring, $b^{4} \in Z(R)$.
Using 2.18 and 2.20 , we obtain
$b^{2} \in \mathrm{Z}(\mathrm{R})$.
Taking b by $a b$ in 2.21 , we get $(a b)^{2} \epsilon \mathrm{Z}(\mathrm{R})$.
But by hypothesis $(a b)^{2}-a b \in Z(R)$.
Hence, $a b \in Z(R)$.
Replacing b by $a+b$ in 2.3.21, we get $a^{2}+b^{2}+a b+b a \epsilon$ Z(R).
Since $a^{2}, b^{2} \in Z(R)$., we get
$a b+b a \epsilon Z(R)$.

From 2.22 and 2.23, ba $\epsilon Z(R)$. Hence $a b-$ ba $\epsilon Z(R)$.
If R is a primitive ring, ten R has a maximal right ideal which contains no non - zero ideal of R .Consequently, we obtain $(\mathrm{ab}-\mathrm{ba}) \mathrm{R}=0$,
which further yields $\mathrm{ab}-\mathrm{ba}=0$
Due to primitivity of R. Hence R is commutative.
Theorem 2.6 : Let R be a 2 - torsion free primitive ring which satisfy the identity $(a b)^{2}-b a \epsilon(R)$. for all a, b in R. Then R is commutative.

Proof : Given (ab)2 - ba $\in \mathrm{Z}(\mathrm{R})$.

Replacing a by $\mathrm{a}+\mathrm{b}$ in 2.24, and using 2.3.24, we obtain $(\mathrm{ab}) \mathrm{b}^{2}+\mathrm{b} 2(\mathrm{ab})+\mathrm{b} 4-\mathrm{b} 2 \epsilon \mathrm{Z}(\mathrm{R})$.

Replacing a by y in 2.24 , we get
$b^{4}-b^{2} \in Z(R)$.
Using 2.25 and 2.26, we get
(ab) $b^{2}+b^{2}(a b) \in Z(R)$.
....2.27
Now we replacing a by $(a+b)$ in 2.3.27, then $(a b) b^{2}+b^{4}+$ $b^{2}(a b)+b^{4} \in Z(R)$.
But by $2.27, b^{4}+b^{4} \in Z(R)$., i.e., $2 b^{4} \in Z(R)$.
Since R is a 2 - torsion free ring, then $b^{4} \in Z(R)$. 2.28
Using 2.26 and 2.28 , we get $b^{2} \in \mathrm{Z}(\mathrm{R})$.
Now replacing b by $a b$ in 2.29 , $(a b)^{2} \in Z(R)$.
By assumption, $(\mathrm{ab})^{2}-\mathrm{ba} \epsilon \mathrm{Z}(\mathrm{R})$. Hence, ba $\in \mathrm{Z}(\mathrm{R})$. .. 2.30
Replacing by $(a+b)$ in 2.30 ,
we get, $a b \in Z(R)$.
Hence, $a b-b a \in Z(R)$.
Now using the same argument as in the proof of theorem 2.5 we conclude that R is commutative.Now we give examples showing that unity in the statement of the theorems is essential.

Example : Let R =

$$
\left\{\left[\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right] / a, b, c \in \mathrm{Z}\right.
$$

a, b, c $\in \mathrm{Z}$
Clearly, R is not commutative though it satisfy the relations $(a b)^{2}-a b \in Z(R)$ or $(a b)^{2}-b a \epsilon Z(R)$, for all a, b in R.

Ram Awatar [4] generalized Gupta`s [5] result and proved that if R is an associative semi prime ring in which $a b^{2}$ $\mathrm{a}-\mathrm{ba}{ }^{2} \mathrm{~b}$ is central, then R is commutative. In this section we show that if R is an alternative prime ring in which $\left(a b^{2}\right) a$ $-\left(b a^{2}\right) b$ is central, then R is commutative.
Now we prove the following theorem.
Theorem 2.7 : Let R be a non - associative primitive ring with unity satisfying $(a b)^{2}-b\left(a^{2} b\right) \in Z(R)$
for all a, b in R . Then R is a commutative.
Proof: By hypothesis $(a b)^{2}-b\left(a^{2} b\right) \in Z(R)$
For all a, b in R.
Replacing a by $a+1$ in 2.32 , we get $((a+1) b)^{2}-b\left((a+1)^{2} b\right) \epsilon$ Z(R).
i.e., $(a b+b)^{2}-b\left(a^{2} b+2 a b+b\right) \in Z(R)$.

Using 2.32 , we obtain $(a b) b-b(a b) \in Z(R)$

Now replacing by by $(\mathrm{b}+1)$ in 2.3 .33 and using 2.33 , we get ab-ba $\epsilon \mathrm{Z}(\mathrm{R})$.

If R is a primitive ring then R has a maximal right ideal which contains no non-zero ideal of R. Consequently, we obtain $(a b-b a) R=0$. This further yields $a b-b a=0$ due to primitivity of R. Hence R is commutative.
Theorem 2.3.8: Let R be an alternative prime ring with $\left(a b^{2}\right) a-\left(b a^{2}\right) b \in Z(R)$ for all a, b in R. Then R is commutative.

Proof : First we shall prove that $Z(R) \neq(0)$
Let us suppose that $Z(R)=(0)$
Hence by hypothesis, $\left(a b^{2}\right) a=\left(b a^{2}\right) b$,
for all a, b in R .
Replacing b by $b+b^{2}$ in 2.3.34. we obtain $\left(a\left(b^{2}+b^{4}+2 b^{3}\right)\right) a$ $=\left(b a^{2}+b^{2} a^{2}\right)\left(b+b^{2}\right)$
i.e., $\left(a b^{2}\right) a+\left(a b^{4}\right) a+2\left(a b^{3}\right) a=\left(b a^{2}\right) b+\left(b a^{2}\right) b^{2}+\left(b^{2} a^{2}\right) b+$ $\left(b^{2} a^{2}\right) b^{2}$
i.e., $2\left(a b^{3}\right) a=\left(b^{2} a^{2}\right) b+\left(b a^{2}\right) b^{2}$

Since $\left.\left(b^{2} a^{2}\right) b=\left(b\left(b a^{2}\right)\right) b=b\left(b a^{2}\right) b\right)=b\left(\left(a b^{2}\right) a=\left((b a) b^{2}\right) a\right.$ $=(b a)\left(b^{2} a\right)$
and $\left(b a^{2}\right) b^{2}=((b a) a) b^{2}=(b a)\left(a b^{2}\right)$
Hence 2.35 reduced to, $2\left(a b^{3}\right) a=(b a)\left(b^{2} a+a b^{2}\right) \quad \ldots .2 .36$
If R is not 2 -torsion free, 2.36 , becomes (ba) $\left(b^{2} a+a b^{2}\right)=0$
With $a=(a+b)$, this gives $\left(b a+b^{2}\right)\left(b^{2} a+b^{3}+a b^{2}+b^{3}\right)=0$
i.e., $b^{2}\left(b^{2} a+a b^{2}\right)=0$
put $\mathrm{a}=\mathrm{ra}$ in 2.37, then we get
$b^{2}\left(b^{2}(r a)+(r a) b^{2}\right)=0$
since $b^{2}\left(b^{2} r\right)=b^{2}\left(r b^{2}\right)$
From 2.37 and 2.38, we have $b^{2}\left(r\left(b^{2} a+a b^{2}\right)\right)=0$.
We write this as $b^{2} r\left(b^{2} a+a b^{2}\right)=0$
Since R is prime, either $b^{2}=0$ or $b^{2} a+a b^{2}=0$. i.e.., $b^{2} \epsilon$ $Z(R)=0$.
Thus in either case $b^{2}=0$ for every b in R.
If R is 2 - torsion free, we replace b by $\mathrm{b}+\mathrm{b}^{3}$ in 2.33 , and get
$2\left(a b^{4}\right) a=\left(b^{3} a^{2}\right) b+\left(b a^{2}\right) b^{3} \quad$ or
$2\left(b^{2} a^{2}\right) b^{2}=b^{2}\left(\left(b a^{2}\right) b\right)+\left(\left(b a^{2}\right) b\right) b^{2}=b^{2}\left(\left(a b^{2}\right) a\right)+\left(\left(a b^{2}\right) a\right) b^{2}$
We write this as $\left(b^{2} a^{2}\right) b^{2}-b^{2}\left(\left(a b^{2}\right) a\right)=\left(\left(a b^{2}\right) a\right) b^{2}-\left(b^{2} a^{2}\right) b^{2}$ or
$\left(b^{2} a\right)\left(a b^{2}-b^{2} a\right)=\left(a b^{2}-b^{2} a\right) b^{2}$
We replacing a by $\mathrm{a}+\mathrm{b}$: Then we get
$b^{3}\left(a b^{2}-b^{2} a\right)=\left(a b^{2}-b^{2} a\right) b^{3}$
For all a, b in R
Let Ib^{2} be the inner derivation by b^{2} i.e., $\mathrm{a} \rightarrow \mathrm{ab}^{2}-\mathrm{b}^{2} \mathrm{a}$ and Ib^{3} be the inner derivation by b^{3}. Then 2.39 becomes $1 b^{3}$ $1 b^{2}(a)=0$
Thus the product of these derivation is again a derivation. we can conclude
that either b^{2} or b^{3} in $Z(R)$, i.e., b^{2} or b^{3} is zero.
If $b^{3}=0$, then 2.35 , becomes $\left(b^{2} a^{2}\right) b+\left(b a^{2}\right) b^{2}=0$
Substituting $\mathrm{a}+\mathrm{b}$ for a , we get
$\left(b^{2} a^{2}+b^{3}+2 b^{2}(a b)\right) b+\left(b a^{2}+b^{3}+2 b(a b)\right) b^{2}=0$
i.e., $2\left(b^{2} a\right) b^{2}+2\left(b\left(a b^{3}\right) b^{2}\right)=0$

Then we get $2\left(b^{2} a\right) b^{2}=0$ or $\left(b^{2} a\right) b^{2}=0$, Then $b^{2}=0$
Thus if $Z(R)=(0)$, then $b^{2}=0$ for every b in R.
Then $0=(a+b)=(a b) a$ or $a R a=0$
Then $\mathrm{a}=0$ or $\mathrm{R}=0$, a contradiction. Therefore $\mathrm{Z}(\mathrm{R}) \neq(0)$
Taking $\lambda \neq 0$ in $Z(R)$ and let $a=a+\lambda$ in $\left(a b^{2}\right) a-\left(b a^{2}\right) b$ in $Z(R)$, we get
$\lambda\left(a b^{2}-2(b a) b+b^{2}(a)\right)$ in $Z(R)$.
Since R is prime, we must have
$a b^{2}-2(b a) b+b^{2} a$ in $Z(R)$
if $\lambda \mathrm{a}$ is in $\mathrm{Z}(\mathrm{R})$, then $\lambda \mathrm{ab}-\mathrm{b} \lambda \mathrm{a}=0=\lambda(\mathrm{ab}-\mathrm{ba})$
Then, $\mathrm{R} \lambda(\mathrm{ab}-\mathrm{ba})=0=\lambda \mathrm{R}(\mathrm{ab}-\mathrm{ba})$ and sing $\lambda \neq 0$, we have
$a b-b a=0$, i.e., is in $Z(R)$.
In 2.3.40., let $a=a b$ and get
$a b^{2}-2(b a) b+\left(b^{2} a\right) b$ in $Z(R)$, then b is in $Z(R)$,
unless $a b^{2}-2(b a) b+b^{2} a=0$. So if b is not in $Z(R)$,
$a b^{2}-2(b a) b+b^{2} a=0$, for everb a in R, and
b is in $Z(R)$, then $a b^{2}-2(b a) b+b^{2} a$ is still zero.
Therefore, $a b^{2}+b^{2} a=2(b a) b$,
for every a, b in R
If R is 2 -torsion free, then R is commutative.
If R is not 2 -torsion free, then 2.3 .41 becomes $a b^{2}+b^{2} z=0$ or b^{2} is in $Z(R)$ for every
y in R. Then $(a+b)^{2}=a^{2}+b^{2}+a b+b a$ is in $Z(R)$
i.e., $\quad a b+b a$ is in $Z(R)$

Let $a=a b$ and get $(a b+b a) b$ is in $Z(R)$
Then b is in $Z(R)$, unless $a b+b a=0$, which also means b is in $Z(R)$.

Thus $Z(R)=R$ and R is commutative
We give an eaample sowing that the unity in the statement of the theorem 2.7. is essential.
Example : Let $\mathrm{R}=$

$$
\left\{\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right] / \mathrm{a}, \mathrm{~b} \in \mathrm{Z}\right\}
$$

$a, b \in Z$, We can easily verify the identity of theorem 2.7. i.e., $(a b)^{2}-b\left(a^{2} b\right) \in Z(R)$. But R is not commutative.

REFERENCES

[1]. Gupta.R.N: A note on commutativity of Rings. The Math. Stu., 39 (1971), 184 - 186.
[2]. Giri. R.D. Rakhunde. R.R. and Dhoble A.R: On commutativity of non associative Rings, the Math. Stu, 61 (1-4), (1992), 149 152
[3]. Quadri. M.A., Ashraf. M. and Khan M.A : A commutativity condition for semiprime rings H. Bull Austral Math., Soc., 33(1986), 71-73.
[4]. Ram Awtar : A remark on the commutativity of certain Rings, Proc. Amar. Math. Soc., 41 (1973), 370-372
[5]. Herstein.I.N: A generalization of a theorem of Jacobson, Amar J.Math,73(1951),756-762.

