On Commutativity of Primitive Rings with Some Identities

B. Sridevi*1 and Dr. D.V.Ramy Reddy2

¹Assistant Professor of Mathematics, Ravindra College of Engineering for Women, Kurnool- 518002 A.P., India. ²Professor of Mathematics, AVR & SVR College of Engineering And Technology, Ayyaluru, Nandyal-518502, A.P., India

Abstract: - In this paper, we prove that some results on commutativity of primitive rings with some identities

Key Words: Commutative ring, Non associative primitive ring, Central

I. INTRODUCTION

In this paper, we first study some commutativity theorems of non-associative primitive rings with some identities in the center. We show that some preliminary results that we need in the subsequent discussion and prove some commutativity theorems of non-associative rings and also non-associative primitive ring with $(ab)^2 - ab \in Z(R)$ or $(ab)^2 - ba \in Z(R)$ \forall a, b in R is commutative. We also prove that if R is a nonassociative primitive ring with identity $(ab)^2 - b(a^2b) \in \mathbb{Z}(\mathbb{R})$ for all a, b in R is commutative. Also we prove that if R is an alternative prime ring with identity b (ab²) a – (ba²) b ϵ Z(R) for all a, b in R, then R is commutative. Some commutativity theorems for certain non-associative rings, which are generalization for the results of Johnsen and others and R.N. Gupta, are proved in this paper. Johensen, Outcalt and Yaqub proved that if a non-associative ring R satisfy the identity $(ab)^2 = a^2 b^2$ for all a, b in R, then R is commutative. The generalization of this result proved by R.D. Giri and others states that if R is a non-associative primitive ring satisfies the identity $(ab)^2 - a^2 b^2 \epsilon Z(R)$, where Z(R) denoted the center, then R is commutative.

A modification of Johnsen's identity viz., $(ab)^2 = (ba)^2$ for all a, b in R for a non -associative ring R which has no element of additive order 2, is commutative was proved by R.N. Gupta [1]. R.D. Giri and others [2] generalized Gupta's result by taking $(ab)^2 - (ba)^2 \in Z(R)$.

II. MAIN RESULTS

Theorem 2.1: If R is a 2-torsion free non- associative ring with unity satisfying $(ab)^2 = (ba)^2$, then R is commutative.

Proof: Let a, b ϵ R.

Then
$$[a(1 + b)^2] = [(1 + b) a]^2$$

i.e., $(a + ab)^2 = (a + ba)^2$
i.e., $a^2 + a(ab) + (ab) a + (ab)^2 = a^2 + a(ba) + (ba) a + (ba)^2$
i.e., $a(ab) + (ab) a = a(ba) + (ba) a$2.1
substituting a by $(1 + a)$ in 2.1., we get

$$(1 + a) (b + ab) + (b + ab) (1 + a) = (1 + a) (b + ba) + (b + ba) + (b + ba)$$

By simplifying,,

$$b + ab + ab + a$$
 (ab) $+ b + ba + ab + (ab)$ $a = b + ba + ab + a(ba) + b + ba + ba + ba + (ba)$ a.

Using 2.1, we get

$$2(ab - ba) = 0$$
, i.e., $ab = ba$.

Hence R is commutative.

Theorem 2.2: If R is a 2 – torsion free non-associative primitive ring with unity

such that $(ab)^2 - (ba)^2 \in Z(R)$, for all a, b in R, then R is commutative.

Proof: Given
$$(ab)^{2} - (ba)^{2} \in Z(R)$$
2.2

Replacing b by (b+1) in 2.2, and using 2.2, we obtain

$$a(ab) + (ab) a - a(ba) - (ba)a \in Z(R)$$
. ...2.3

Now replacing a by a + 1 in 2.3, and using 2.3.,

we achieve, $2ab - 2ba \in Z(R)$.

i.e.,
$$2(ab - ba) \in Z(R)$$
.

Since R is a 2-torsion free ring, $ab - ba \in Z(R)$.

We conclude that R is commutative.

Now we present, some examples to see that the unity and 2-torsion free are essential in theorems 2.2 and 2.3

Example 2.1: The restriction on R, being 2 - torsion free in theorem 2.1 is essential one. For if we consider the ring R of quaternion's over the field of order 4 namely splitting field of $a^2 + a + 1$ over Z_2 , then it is not of 2-torsion free but satisfies the identity of theorem 2.1. Yet it is non-commutative.

Example 2.2: Theorem 2.2 is false for rings without unity. In fact any nilpotent ring of index ≤ 4 and any nil ring of index 2 will trivially satisfy $(ab)^2 = (ba)^2$, but such rings may not be commutative. As an example let F be any field define an algebra A over F with basis $\{a, b, c\}$, where ab = c, all other products zero. A is nilpotent of index 3, A is not commutative.

It is well known that a Boolean ring satisfies $a^2 = a$, for all $a \in R$ and this implies commutativity. Similarly we can see the properties of rings in which $(ab)^2 = ab$ for each pair of elements $a, b \in R$. In [3] Quadri and others proved that an associative semi prime ring in which $(ab)^2 - ab \in Z(R)$ is commutative. In this direction we prove that a = 2 - torsion free non – associative ring with unity satisfying $(ab)^2 = ab \in Z(R)$ is commutative. We give an example to show that the unity is essential in the hypothesis. Also, We prove that a non – associative primitive ring (not necessarily having unity) satisfying $(ab)^2 - ab$ (or) $(ab)^2 - ba$ is central for all a, $b \in R$ is commutative.

First we prove the following theorem:

Theorem 2.3: Let R be a 2-torsion free non – associative ring with unity satisfying $(ab)^2$ - $ab \in Z(R)$ for all a, b in R. Then R is commutative.

Proof: By hypothesis
$$(ab)^2$$
 - $ab \in Z(R)$2.4.

Replacing a by a + 1 in 2.4. and using 2.4., we get

(ab)
$$b + b(ab) + b^2 - b \in Z(R)$$
.2.5.

Again replacing a by a + 1 in 2.5. and using it, we obtaing $2b^2 \in Z(R)$

Since R is a 2-torsion free,
$$b^2 \in Z(R)$$
2.6.

Replacing b by ab in. 2.6.

we get
$$(ab)^2 \in Z(R)$$
2.7.

But by hypothesis $(ab)^2$ - $ab \in Z(R)$,

hence we get
$$ab \in Z(R)$$
. ...2.8.

Now again replacing a by a + 1 in 2.8.,

we get
$$ab + ba \in Z(R)$$
 ...2.9.

From the equations 2.8. and 2.9. we obtain $b \in Z(R)$ for all $b \in R$.

Hence R is commutative.

Theorem 2.4.: Let R be a 2 – torsion free non- associative ring with unity satisfying $(ab)^2$ – $ba \in Z(R)$ for all a, b in R. Then R us commutative.

Proof: Given
$$(ab)^2$$
 - $ba \in Z(R)$ 2.10

Replacing a by z + 1 in 2.3.10. and using 2.10., we get

$$(ab)b + b(ab) + b^2 - b \in Z(R)$$
 ...2.11

Again replacing a by a + 1 in 2.11. and using 2.11.,

we obtain $2b^2 \in Z(R)$

Since R is a 2 torsion free, then $b^2 \in Z(R)$2.12.

Now replacing b by ab in 2.12.. we get

$$(ab)^2 \in Z(R)$$
.2.13

But by hypothesis $(ab)^2$ - ba $\in Z(R)$.

Hence we have ba
$$\in Z(R)$$

Now again replacing a by a + 1 in 2.14, we get

$$ba+b \in Z(R)$$
.2.15

....2.14

Using 2.14 and 2.15, we obtain $b \in Z(R)$ for all $b \in R$, then R is commutative.

Theorem 2.5 : If R is a 2 – torsion free primitive ring which satisfy

 $(ab)^2$ - $ab \in Z(R)$ for all a, b in R, then R is commutative.

Proof: By hypothesis,
$$(ab)^2$$
 - $ab \in Z(R)$2.16

Replacing a by a + b in 2.16 and using 2.16,

we obtain(ab)
$$b^2 + b^2$$
 (ab) $+ b^4 - b^2 \epsilon Z(R)$2.17

Now replacing a by b in $(ab)^2$ - ab $\epsilon Z(R)$, we get

$$b^4 - b^2 \in Z(R)$$
.2.18

Using 2.3.17 and 2.3.18, we obtain

(ab)
$$b^2 + b^2$$
 (ab) $\epsilon Z(R)$2.19

We replacing a by a + b in 2.19, then (ab) $b^2 + b^4 + b^2$ (ab) $+b^4 \in Z(R)$.

By . 2.12
$$b^4 + b^4 \in Z(R)$$
., i.e., $2b^4 \in Z(R)$.

Since R is a 2 – torsion free ring,
$$b^4 \in Z(R)$$
.2.20

Using 2.18 and 2.20, we obtain

$$b^2 \in Z(R)$$
.2.21

Taking b by ab in 2.21, we get $(ab)^2 \in Z(R)$.

But by hypothesis $(ab)^2$ - $ab \in Z(R)$.

Hence, ab
$$\in$$
 Z(R).2.22

Replacing b by a + b in 2.3.21, we get $a^2 + b^2 + ab + ba \in Z(R)$.

Since a^2 , $b^2 \in Z(R)$., we get

$$ab + ba \in Z(R)$$
.2.23

From 2.22 and 2.23, ba ϵ Z(R). Hence ab - ba ϵ Z(R).

If R is a primitive ring, ten R has a maximal right ideal which contains no non – zero ideal of R . Consequently, we obtain (ab - ba) R = 0,

which further yields ab - ba = 0

Due to primitivity of R. Hence R is commutative.

Theorem 2.6: Let R be a 2 – torsion free primitive ring which satisfy the identity $(ab)^2 - ba \in Z(R)$. for all a, b in R. Then R is commutative.

Proof: Given (ab)2 - ba
$$\epsilon$$
 Z(R).2.24

Replacing a by a + b in 2.24, and using 2.3.24, we obtain

$$(ab)b^2 + b2 (ab) + b4 - b2 \in Z(R)$$
.2.25

Replacing a by y in 2.24, we get

$$b^4 - b^2 \in Z(R)$$
.2.26

Using 2.25 and 2.26, we get

(ab)
$$b^2 + b^2$$
 (ab) $\epsilon Z(R)$2.27

Now we replacing a by (a + b) in 2.3.27, then $(ab)b^2 + b^4 + b^2(ab) + b^4 \in Z(R)$.

But by 2.27, $b^4 + b^4 \in Z(R)$., i.e., $2b^4 \in Z(R)$.

Since R is a 2 – torsion free ring, then $b^4 \in Z(R)$2.28

Using 2.26 and 2.28, we get
$$b^2 \in Z(R)$$
.2.29

Now replacing b by ab in 2.29, $(ab)^2 \in Z(R)$.

By assumption, $(ab)^2 - ba \in Z(R)$. Hence, $ba \in Z(R)$2.30

Replacing b by (a + b) in 2.30,

we get, ab
$$\epsilon$$
 Z(R).2.31

Hence, $ab - ba \in Z(R)$.

Now using the same argument as in the proof of theorem 2.5 we conclude that R is commutative. Now we give examples showing that unity in the statement of the theorems is essential.

Example : Let R =

$$\left\{ \begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array} \right\} / a, b, c \in Z$$

a, b, c $\in \mathbb{Z}$

Clearly, R is not commutative though it satisfy the relations $(ab)^2 - ab \in Z(R)$ or $(ab)^2 - ba \in Z(R)$, for all a, b in R.

Ram Awatar [4] generalized Gupta`s [5] result and proved that if R is an associative semi prime ring in which ab^2 a $-ba^2$ b is central, then R is commutative. In this section we show that if R is an alternative prime ring in which (ab^2) a $-(ba^2)$ b is central, then R is commutative.

Now we prove the following theorem.

Theorem 2.7: Let R be a non – associative primitive ring with unity satisfying $(ab)^2 - b(a^2b) \in Z(R)$

for all a, b in R. Then R is a commutative.

Proof: By hypothesis $(ab)^2 - b(a^2b) \in Z(R)$ 2.32

For all a, b in R.

Replacing a by a+1 in 2.32, we get $((a+1)b)^2 - b((a+1)^2b) \epsilon Z(R)$.

i.e., $(ab + b)^2 - b(a^2b + 2ab + b) \in Z(R)$.

Using 2.32, we obtain (ab)b – b(ab) ϵ Z(R)2.33

Now replacing b by (b+1) in 2.3.33 and using 2.33 ,we get $ab - ba \in Z(R)$.

If R is a primitive ring then R has a maximal right ideal which contains no non-zero ideal of R. Consequently, we obtain (ab-ba) R = 0. This further yields ab-ba=0 due to primitivity of R. Hence R is commutative.

Theorem 2.3.8: Let R be an alternative prime ring with (ab^2) a - (ba^2) b \in Z(R) for all a, b in R. Then R is commutative.

Proof: First we shall prove that $Z(R) \neq (0)$

Let us suppose that Z(R) = (0)

Hence by hypothesis, $(ab^2) a = (ba^2)b$,2.34

for all a, b in R.

Replacing b by $b+b^2$ in 2.3.34. we obtain $(a(b^2 + b^4 + 2b^3))$ a $= (ba^2 + b^2a^2)(b+b^2)$

i.e., $(ab^2)a + (ab^4)a + 2(ab^3)a = (ba^2)b + (ba^2)b^2 + (b^2a^2)b + (b^2a^2)b^2$

i.e.,
$$2(ab^3) a = (b^2a^2)b + (ba^2) b^2$$
2.35

Since $(b^2a^2)b = (b(ba^2))b = b(ba^2)b) = b((ab^2)a = ((ba)b^2)a$ = $(ba)(b^2a)$

and $(ba^2)b^2 = ((ba)a)b^2 = (ba) (ab^2)$

Hence 2.35 reduced to, $2 (ab^3)a = (ba)(b^2 a + ab^2)$ 2.36

If R is not 2 –torsion free, 2.36, becomes (ba) $(b^2a + ab^2) = 0$

With a = (a+b), this gives $(ba + b^2) (b^2a + b^3 + ab^2 + b^3) = 0$

i.e.,
$$b^2(b^2a + ab^2) = 0$$
2.37

put a = ra in 2.37, then we get

$$b^{2}(b^{2}(ra) + (ra)b^{2}) = 0$$
2.38

since $b^2(b^2r) = b^2 (rb^2)$

From 2.37 and 2.38, we have $b^2(r(b^2a + ab^2)) = 0$.

We write this as $b^2 r (b^2 a + ab^2) = 0$

Since R is prime, either $b^2 = 0$ or $b^2 a + ab^2 = 0$. i.e., $b^2 \epsilon Z(R) = 0$.

Thus in either case $b^2 = 0$ for every b in R.

If R is 2- torsion free, we replace b by $b + b^3$ in 2.33, and get

 $2(ab^4)a = (b^3 a^2)b + (ba^2)b^3$ or

$$2(b^2a^2)b^2 = b^2((ba^2)b) + ((ba^2)b)b^2 = b^2((ab^2)a) + ((ab^2)a)b^2$$

We write this as $(b^2a^2)b^2 - b^2((ab^2)a) = ((ab^2)a)b^2 - (b^2a^2)b^2$ or

$$(b^2a) (ab^2 - b^2a) = (ab^2 - b^2a)b^2$$

We replacing a by a + b: Then we get

$$b^{3}(ab^{2}-b^{2}a) = (ab^{2}-b^{2}a)b^{3}$$
2.39

For all a, b in R

Let Ib² be the inner derivation by b² i.e., a \rightarrow ab² - b²a and Ib³ be the inner derivation by b³. Then 2.39 becomes 1b³ 1b² (a) = 0

Thus the product of these derivation is again a derivation. we can conclude

that either b^2 or b^3 in Z(R), i.e., b^2 or b^3 is zero.

If
$$b^3 = 0$$
, then 2.35, becomes $(b^2a^2)b + (ba^2)b^2 = 0$

Substituting a +b for a, we get

$$(b^2 a^2 + b^3 + 2b^2 (ab))b + (ba^2 + b^3 + 2b(ab))b^2 = 0$$

i.e.,
$$2(b^2a)b^2 + 2(b(ab^3)b^2) = 0$$

Then we get $2(b^2a)b^2 = 0$ or $(b^2a)b^2 = 0$, Then $b^2 = 0$

Thus if Z(R) = (0), then $b^2 = 0$ for every b in R.

Then
$$0 = (a + b) = (ab)a$$
 or $a R a = 0$

Then a = 0 or R = 0, a contradiction. Therefore $Z(R) \neq (0)$

Taking $\lambda \neq 0$ in Z(R) and let $a = a + \frac{\lambda}{\lambda}$ in $(ab^2)a - (ba^2)b$ in Z(R), we get

 λ (ab²-2(ba)b + b² (a)) in Z(R).

Since R is prime, we must have

$$ab^2 - 2(ba)b + b^2 a \text{ in } Z(R)$$
2.40

if λ a is in Z(R), then λ ab - $b \lambda$ a = 0 = λ (ab -ba)

Then, $R \frac{\lambda}{\lambda} (ab - ba) = 0 = \frac{\lambda}{\lambda} R(ab - ba)$ and sing $\lambda \neq 0$, we have

$$ab - ba = 0$$
, i.e., is in $Z(R)$.

In 2.3.40., let a = ab and get

 $ab^2 - 2(ba)b + (b^2a)b$ in Z(R), then b is in Z(R),

unless $ab^2 - 2(ba)b + b^2a = 0$. So if b is not in Z(R),

$$ab^2 - 2(ba)b + b^2a = 0$$
, for everb a in R, and

b is in Z(R), then $ab^2 - 2(ba)b + b^2a$ is still zero.

Therefore,
$$ab^2 + b^2a = 2(ba)b$$
,2.41

for every a, b in R

If R is 2 –torsion free, then R is commutative.

If R is not 2 –torsion free, then 2.3.41 becomes $ab^2 + b^2z = 0$ or b^2 is in Z(R) for every

y in R. Then
$$(a+b)^2 = a^2 + b^2 + ab + ba$$
 is in $Z(R)$

i.e.,
$$ab + ba$$
 is in $Z(R)$

Let a = ab and get (ab + ba)b is in Z(R)

Then b is in Z(R), unless ab + ba = 0, which also means b is in Z(R).

Thus Z(R) = R and R is commutative

We give an eaample sowing that the unity in the statement of the theorem 2.7. is essential.

Example : Let
$$R =$$

$$\left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \middle/ a, b \in Z \right\}$$

 $a, b \in \mathbb{Z}$, We can easily verify

the identity of theorem 2.7. i.e., $(ab)^2 - b(a^2b) \in Z(R)$. But R is not commutative.

REFERENCES

- Gupta.R.N: A note on commutativity of Rings. The Math. Stu., 39 (1971), 184 – 186.
- [2]. Giri. R.D. Rakhunde. R.R. and Dhoble A.R: On commutativity of non associative Rings, the Math. Stu, 61 (1-4), (1992), 149 – 152
- [3]. Quadri. M.A., Ashraf. M. and Khan M.A: A commutativity condition for semiprime rings H. Bull Austral Math., Soc., 33(1986), 71-73.
- [4]. Ram Awtar : A remark on the commutativity of certain Rings, Proc. Amar. Math. Soc., 41 (1973), 370 372
- [5]. Herstein.I.N: A generalization of a theorem of Jacobson, Amar J.Math,73(1951),756-762.