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Abstract:-Climate projections suggest the frequency and intensity 

of some environmental extremes will be affected in the future 

due to a changing climate. Ecosystems and the various sectors of 

human activity are sensitive to extreme weather events, such as 

heavy rains and floods, droughts and high and low temperatures, 

especially when they occur over prolonged periods. In 1985 

Wigley studied about extreme events dangerously affected 

human society which is included among others agriculture, water 

resources, energy demand and mortality. In this paper, extreme 

elevated temperature events for nearly 117 years from the 

Minneapolis/St Paul, Minnesota State, and area are analyzed 

from the major international airport [St. Paul] and popular city 

in Minnesota. The main aim of this study is to find the best 

fitting distribution to the extreme daily temperature measured 

over the Minneapolis region for the years 1900-2016 by using the 

maximum likelihood approach. The study also predicts the 

extreme temperature for return periods and their confidence 

bands. In this paper, extreme temperature events are defined by 

two different methods based on (1) the annual maximums of the 

daily temperature, (2) the daily temperature exceeds some 

specific threshold value and (3) Bayesian Model using Markov 

chain Monte Carlo (MCMC). The Generalized Extreme Value 

distribution and the Generalized Pareto distribution are fitted to 

data corresponding to the methods 1 and 2 to describe the 

extremes of temperature and to predict its future behavior. 

Finally, we find the evidence to suggest that the Frechet 

distribution provides the most appropriate model for the annual 

maximums of daily temperature after removing an outlier and 

the Generalized Pareto Distribution (GPD) gives the reasonable 

model for the daily temperature data over the threshold value of 

96°F for the Minneapolis location. Further, we derive estimates 

of 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150 and 200 years 

return levels and its corresponding confidence intervals for 

extreme temperature.  

Keywords: Annual maximum, Threshold, Generalized Extreme 

Value distribution (GEVD), Generalized Pareto Distribution 

(GPD), Maximum likelihood estimation, Return period, Bayesian 

I. INTRODUCTION 

lobal climate change is generally considered a result of 

increasing atmospheric concentrations of greenhouse 

gases, mainly due to human activity. Climate change (i.e., 

global temperature increases) then in turn can modify the 

frequency (and intensity) of extreme weather and climate 

events (e.g., heat waves and sea-level rise). This research 

paper will take a case study approach by identifying observed 

extreme temperature events in the Minneapolis region in 

Minnesota. Information on these observed events will be 

discussed with future climate change projections on 

temperature. Approaches to analyse observed data with 

consideration of climate change and potential challenges for 

adoption into engineering practice will be discussed. The body 

of the paper will begin by covering background on 

temperature extremes, and then is a discussion of the data and 

methodologies used. Analysis using the methodologies is 

discussed subsequently. The final portion of the paper talks 

about conclusions for these paper and future steps to be taken. 

The statistical analysis of extreme value analysis has been 

done by the scholars in various locations all over the world. 

Hirose (1994) have found Weibull distribution is the best fit 

for the annual maximum of daily rainfall in Japan by 

considering the maximum likelihood parameter estimation 

method. Nadarajah and Choi (2007) have studied annual 

maxima of daily rainfall for the years 1961–2001 and 

modelled for five locations in South Korea. They found the 

Gumbel distribution provides the most reasonable model for 

four of the five locations considered using maximum 

likelihood estimation and they derived estimates of 10, 50, 

100, 1000, 5000, 10,000, 50,000 and 100,000-year return 

levels for daily rainfall and described how they vary with the 

locations. Chu and Zhao (2008) have applied the Generalized 

Extreme value distribution for annual maxima of daily rainfall 

data for Hawaii Islands using L-moments method and derived 

estimates for return periods. Husna B. Hasan et al. (2012) has 

used 10years’ daily temperature data in Penang Malaysia, and 

studied Modelling of Extreme Temperature Using 

Generalized Extreme Value (GEV) Distribution.Nadarajah 

and Withers (2001) and Nadarajah (2005) provided the 

application of extreme value distributions to rainfall data over 

sixteen locations spread throughout New Zealand and fourteen 

locations in West Central Florida, respectively. Varathan et al. 

(2010) has used 110 years’ data in Colombo district, studied 

the annual maximums of rainfall by using the GEV 

distribution and found Gumbel is the best fitting distribution. 

Mayooran and Laheetharan(2014) have used 110 years’ data 

in Colombo district, Srilanka and identified best fit probability 

distribution revealed that the probability distribution pattern 

for different data set are identified out of a very large number 

of commonly employed probability distribution models by 

using different goodness of fit tests. 

G 
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In Minnesota, Sanjel and Wang (2014) have considered 

maximum gage height for 110 years recorded in Minnesota 

River at Mankato 1903 to 2013. They analysed of Minnesota 

River flood level data has been performed using traditional 

Block Maxima Model, relatively new Pick over Threshold 

(POT) model, and nonparametric Bayesian MCMC technique. 

In this paper, the following objectives were considered, to find 

the best fitting distribution for annual maximums of daily 

temperature data by considering the common Generalized 

Extreme Value distribution and estimate the return-periods & 

their confidence bands. To find the best fitting distribution for 

daily temperature (peaks over a threshold) data by considering 

the common Generalized Pareto distribution and estimate the 

return-periods & their confidence bands. To estimate the 

return-periods & their confidence bands by using 

nonparametric Bayesian MCMC technique. Finally, in Section 

5 contains some concluding remarks and future work. To 

facilitate the exposition, the R, SAS programming codes and 

figures of the section 5’s results are relegated to the Appendix. 

II. STUDY AREA 

The data which consists of daily temperatures measured (in 

Fahrenheit) at the Minneapolis, Minnesota weather station, is 

obtained from the Minnesota, Department of Natural 

Resources webpage. We consider the years 1900 to 2016 

December 6, Minneapolis–Saint Paul is a major metropolitan 

area built around the Mississippi, Minnesota and St. Croix 

rivers in east central Minnesota. The area is commonly known 

as the Twin Cities after its two largest cities, Minneapolis, the 

city with the largest population in the state, and Saint Paul, the 

state capital. It is an example of twin cities in the sense of 

geographical proximity. Minnesotans often refer to the two 

together (or the seven-county metro area collectively) as The 

Cities. There are several different definitions of the region. 

Many refer to the Twin Cities as the seven-county region 

which is governed under the Metropolitan Council regional 

governmental agency and planning organization. The United 

States Office of Management and Budget officially designates 

16 counties as the Minneapolis-St. Paul–Bloomington MN-

WI Metropolitan Statistical Area, the 16th largest in the 

United States. The entire region known as the Minneapolis-St. 

Paul MN-WI Combined Statistical Area, has a population of 

3,866,768, the 14th largest, according to 2015 Census 

estimates. 

Owing to its northerly latitude and inland location, the Twin 

Cities experience the coldest climate of any major 

metropolitan area in the United States. However, due to its 

southern location in the state and aided further by the urban 

heat island, the Twin Cities is one of the warmest locations in 

Minnesota. The average annual temperature at the 

Minneapolis–St. Paul International Airport is 45.4 °F; 3.5 °F 

colder than Winona, Minnesota, and 8.8 °F warmer than 

Roseau, Minnesota. Monthly average daily elevated 

temperatures range from 21.9 °F in January to 83.3 °F in July; 

the average daily minimum temperatures for the two months 

are 4.3 °F and 63.0 °F respectively. Minimum temperatures of 

0 °F or lower are seen on an average of 29.7 days per year, 

and 76.2 days do not have a maximum temperature exceeding 

the freezing point. Temperatures above 90 °F occur an 

average of 15 times per year. Elevated temperatures above 

100 °F have been common in recent years; the last occurring 

on July 6, 2012. The lowest temperature ever reported at the 

Minneapolis–St. Paul International Airport was −34 °F on 

January 22, 1936; the highest, 108 °F was reported on July 14 

of the same year. Early settlement records at Fort Snelling 

show temperatures as low as −42 °F. Recent records include 

−40 °F at Vadnais Lake on February 2, 1996 (National 

Climatic Data Centre) 

The Twin Cities area takes the brunt of many types of extreme 

weather, including high-speed straight-line winds, tornadoes, 

flash floods, drought, heat, bitter cold, and blizzards. Hail and 

Wind damage exceeded $950 million, much of it in the Twin 

Cities. Other memorable Twin Cities weather-related events 

include the tornado outbreak on May 6, 1965, the Armistice 

Day Blizzard on November 11, 1940, and the Halloween 

Blizzard of 1991. In 2014, Minnesota experienced 

temperatures below those in areas of Mars when a polar 

vortex dropped temperatures as low as −40 °F in Brimson and 

Babbitt with a wind-chill as low as −63 °F in Grand Marais. 

(Source: Wikipedia) 

III. METHODOLOGY 

3.1 Univariate Extreme Value Theory 

Classical extreme value theory is used to develop stochastic 

models towards solve real life problems related to unusual 

events. Classical theoretical results are concerned with the 

stochastic behaviour of some maximum (minimum) of a 

sequence of random variables which are assumed to be 

independently and identically distributed.  

There are three models that are commonly used for extreme 

value analysis. These are the Gumbel, Frechet, and Weibull 

distribution functions. The Gumbel is easier to work with 

since it requires only location and scale parameters, while the 

Weibull and Frechet require location, scale, and shape 

parameters. These three models may be unified in what is 

sometimes called the Unified Extreme Value model (Reiss 

and Thomas, 1997). The Generalized Extreme Value (GEV) 

distribution function is, 

𝐻 𝑥 = 𝑒𝑥𝑝  −  1 + 𝜉  
𝑥−𝜇

𝜎
  

−
1

𝜉
    (1) 

where 𝜎 > 0 –scale, 𝜉- shape and 𝜇-location parameter 

According to the value of, H(x) can be divided into following 

three standard types of distributions: This concept stated 

without detailed mathematical proof by Fisher and Tippett 

(1928), and later rigorously derived by Gnedenko (1943). 

1. If 𝜉 → 0(Gumbel Distribution)  
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𝐻 𝑥 = 𝑒𝑥𝑝  −𝑒𝑥𝑝   
𝑥−𝜇

𝜎
       for − ∞ < 𝑥 < ∞(2) 

 

2. If 𝜉 > 0  (Frechet Distribution with 𝛼 = 1
𝜉 ) 

𝐻 𝑥 = 𝑒𝑥𝑝  −  
𝑥−𝜇

𝜎
 
−𝜉

      if    𝑥 > 𝜇  and  𝐻 𝑥 =

0   if      𝑥 ≤ 𝜇            (3) 

3. If 𝜉 < 0  (Weibull Distribution with 𝛼 = −1
𝜉 ) 

𝐻 𝑥 = 𝑒𝑥𝑝  −  
𝑥−𝜇

𝜎
 
𝜉

   if        𝑥 < 𝜇  and     𝐻 𝑥 =

1   if       𝑥 ≥ 𝜇          (4) 

3.2 Sample Selection 

In every research problems or experiments, the sample 

selection procedure contributes a key role of statistics. Sanjel 

and Wang (2014) have considered maximum gage height for 

110 years recorded in Minnesota river at Mankato 1903 to 

2013. Begueria and Vicente-Serrano (2006) were applied the 

threshold technique to model the extreme daily rainfall in 

Spain by considering 43 daily precipitation series from 1950 

to 2000. In this study, two different methods are used to select 

the sample of extreme daily temperature values. The First 

method is, by considering the annual maximums of daily 

temperature and the second method is by considering the 

exceedance over some specific threshold. The data consists of 

daily temperatures for the years from 1900 to 2016 for the 

Minneapolis/St Paul, Minnesota location. The data were 

collected from the Minnesota, Department of Natural 

Resources webpage, which lists the daily Maximum and 

Minimum temperatures in Fahrenheit. The extreme values 

were selected from the tabulated daily data(from 

approximately 42700 data points). 

3.2.1 Annual maxima 

In this procedure, the annual maximums of daily temperature 

for 117 years are taken as a sample of extreme temperature 

and the modeling is done by under Univariate extreme value 

theory. Coles (2001), Sanjel and Wang (2014) theoretically 

explains this topic in their papers, Extremes of temperatures 

are best expressed in terms of statistical variation, rather than 

in Fahrenheit of temperatures. Evaluating temperature events 

as standard deviations above the mean provides a truer 

measure of maximum temperatures. When extreme 

temperatures are thus normalized, the highest values often are 

shown to have occurred at stations other than those that 

received the highest temperatures. If   X1, X2….X365 are daily 

temperature values then our data selection point (extreme 

point) =Max {X1, X2 ….X365}; where Xi is the daily 

temperature data in degrees Fahrenheit of any year. i= 1, 2, 

3…...365 

3.2.2 Peaks over threshold 

The Peaks over threshold (POT) approach generates a subset 

of data points from a parent set by only considering those 

events (data peaks) above a defined threshold. By only 

considering peaks above a threshold the data is more than 

likely to be from the same distribution. This intrinsically 

assists with obtaining an identically distributed data set. In 

addition to this, provided the data peaks can be considered 

statistically independent, thus the i.i.d. condition is satisfied, 

the distribution of the peak events should have a Generalized 

Pareto distribution.  

Generalized Pareto distribution 

In general, we are interested not only in the maxima of 

observations, but also in the behavior of large observations 

that exceed a high threshold. Given a high threshold u, the 

distribution of excess values of x over threshold u is defined 

by 

𝐹𝑢 𝑦 = 𝑃 𝑋 − 𝑢 ≤ 𝑦|𝑋 > 𝑢 =   
𝐹 𝑦+𝑢 −𝐹(𝑢)

1−𝐹(𝑢)
                    (5) 

Which represents the probability that the value of x exceeds 

the threshold u by at most an amount y given that x exceeds 

the threshold u. A theorem by Balkema and de Haan (1974) 

and Pickands (1975) shows that for sufficiently high threshold 

u, the distribution function of the excess may be approximated 

by the generalized Pareto distribution (GPD) such that, as the 

threshold gets large, the excess distribution Fu(y) converges to 

the GPD, which is 

𝐺 𝑥 =  1 −  1 + 𝑘 ∗ 𝑥

𝛽
 
−1 𝑘 

if    𝑘 ≠ 0   

and     1 − 𝑒−𝑥 𝛽  if      𝑘 = 0                                                 (6) 

; Where k is the shape parameter. The GPD embeds several 

other distributions; When k >0, it takes the form of the 

ordinary Pareto distribution. This case is the most relevant for 

financial time series analysis, since it is a heavy-tailed one.   

For k >0, E [Xr] is infinite for r ≥ 1/k. For instance, the GPD 

has an infinite variance   for k= 0.5 and, when k = 0.25, it has 

an infinite fourth moment. For security returns or high-

frequency foreign exchange returns, the estimates of k are 

usually less than 0.5, implying that the returns have finite 

variance (Jansen and devries, 1991; Longin, 1996; Muller, 

Dacorogna, and Pictet, 1996; Dacorognaet al. 2001). When k 

= 0, the GPD corresponds to exponential distribution, and it is 

known as a Pareto II–type distribution for k <0. The 

importance of the Balkema and de Haan (1974) and Pickands 

(1975) results is that the distribution of excesses may be 

approximated by the GPD by choosing k and β and setting a 

high threshold u. The GPD can be estimated with various 

methods, such as the method of probability-weighted 

moments or the maximum-likelihood method.10 For k >−0.5, 

which corresponds to heavy tails, Hosking and Wallis (1987) 

presents evidence that maximum-likelihood regularity 

conditions are fulfilled and that the maximum-likelihood 

estimates are asymptotically normally distributed. Therefore, 

the approximate standard errors for the estimators of β and k 

can be obtained through maximum-likelihood estimation. 

3.3 Parameter Estimation 
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There are several well-known methods which can be used to 

estimate distribution parameters based on available sample 

data. For every supported distribution one of the following 

parameter estimation methods:  

 Method of moments (MOM);  

 Maximum likelihood estimates (MLE);  

 Least squares estimates (LSE);  

 Method of L-moments.  

Since the detailed description of these methods goes beyond 

the scope of this manual, we will just note that, where 

possible, we use the least computationally intensive methods. 

Thus, it employs the method of moments for those 

distributions whose moment estimates are available for all 

possible parameter values, and do not involve the use of 

iterative numerical methods.  

For many distributions, we use the MLE method involving the 

maximization of the log-likelihood function. For some 

distributions, such as the 2-parameter Exponential and the 2-

parameter Weibull, a closed form solution of this problem 

exists. For other distributions, we implement the numerical 

method for multi-dimensional function minimization. Given 

the initial parameter estimates vector, this method tries to 

improve it on each subsequent iteration. The algorithm 

terminates when the stopping criteria is satisfied (the specified 

accuracy of the estimation is reached, or the number of 

iterations reaches the specified maximum). The advanced 

continuous distributions are fitted using the MLE, the 

modified LSE, and the L-moments methods.  

3.3.1 Maximum Likelihood Estimation 

Maximum likelihood estimation begins with the mathematical 

expression known as a likelihood function of the sample data. 

Loosely speaking, the likelihood of a set of data is the 

probability of obtaining that set of data given the chosen 

probability model. This expression contains the unknown 

parameters. Those values of the parameter that maximize the 

sample likelihood are known as the maximum likelihood 

estimates.  

The advantages of this method are:  

 Maximum likelihood provides a consistent approach 

to parameter estimation problems. This means that 

maximum likelihood estimates can be developed for 

a large variety of estimation situations. For example, 

they can be applied in reliability analysis to censored 

data under various censoring models.  

 Maximum likelihood methods have desirable 

mathematical and optimality properties. Specifically,  

They become minimum variance unbiased estimators as the 

sample size increases. By unbiased, we mean that if we take (a 

very large number of) random samples with replacement from 

a population, the average value of the parameter estimates will 

be theoretically exactly equal to the population value. By 

minimum variance, we mean that the estimator has the 

smallest variance, and thus the narrowest confidence interval, 

of all estimators of that type.  

They have approximate normal distributions and approximate 

sample variances that can be used to generate confidence 

bounds and hypothesis tests for the parameters.  

Several popular statistical software packages provide 

excellent algorithms for maximum likelihood estimates for 

many of the commonly used distributions. This helps mitigate 

the computational complexity of maximum likelihood 

estimation. The advantage of the specific MLE procedures is 

that greater efficiency and better numerical stability can often 

be obtained by taking advantage of the properties of the 

specific estimation problem. The specific methods often 

return explicit confidence intervals. So, we used MLE method 

in this analysis.  

Suppose we have observations 𝑋1 , 𝑋2,.   .     .      .      .𝑋𝑁 which are 

annual maximum temperature values for each of N year, for 

which the Generalized Extreme Value (GEV) distribution is 

appropriate. 

The corresponding log likelihood is, 

𝑙 𝜇, 𝜎, 𝜉 =  −𝑁𝑙𝑜𝑔 𝜎 −  
1

𝜉
+ 1  𝑙𝑜𝑔  1 + 𝜉

𝑋𝑖−𝜇

𝜎
 𝑖 −

  1 + 𝜉
𝑋𝑖−𝜇

𝜎
 

−1

𝜉
𝑖                (7) 

Where 1 +  𝜉  
𝑋𝑖−𝜇

𝜎
 > 0 for all i 

3.4 Likelihood Ratio (LR) Test for the Gumbel Model  

Under the Generalized Extreme Value (GEV) distribution, we 

should test the hypothesis Testing whether the shape 

parameter ξ = 0 or not. (ie: The data fits the Gumbel 

Distribution or not) with unknown location and scale 

parameters. Thus, the Gumbel distributions are tested versus 

other type of GEV distributions for a given vector 𝑋 =
(𝑋1, 𝑋2,.   .     .      .      .𝑋𝑛)  of data. The likelihood ratio (LR) test 

statistics is given by, 

χ2 = 2 log  
 ℎ(𝑋𝑖 : 𝜉 ,𝜇 ,𝜎 )𝑖≤𝑛

 ℎ(𝑋𝑖 : 0,𝜇 ,𝜎 )𝑖≤𝑛
                                                 (8) 

Where  𝜉 , 𝜇 , 𝜎   and  𝜇 , 𝜎   are MLEs in the GEV distribution, 

because he parameter sets have dimensions 3 and 2 

respectively. But theoretically, under the null hypothesis 

likelihood ratio (LR) test statistics is asymptotically 

distributed according to the chi square distribution with one 

degree of freedom. Therefore P-value is given by  

               𝑃 − Value = 1 − 𝜒2(test statistics value)         (9) 

Moreover, suppose p value greater than our significance level 

fail to reject null hypothesis, his implies that there is enough 

evidence the data fits the Gumbel Distribution 

3.5 Bayesian Method 

Annual maximum and Peak over threshold methods are all 

assume limiting distributions. Since the amount of data 
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available is low in extreme value analysis, often asymptotic 

limiting distribution may not be correct. Alternatively, 

Bayesian approach can be used. Bayesian methods are based 

on specifying a density function for the unknown parameters, 

(prior density), and then computing a posterior density for the 

parameters given the observed data (likelihoods). Using 

Bayesian inferences allow us to use additional prior 

information about the processes. 

3.6 Return Period  

Return period (T): Once the best probability model for the 

data has been determined, the interest is in deriving the return 

levels of temperature. The T year return level, say xT, is the 

level exceeded on average only once in T years. For example, 

the 2-year return level is the median of the distribution of the 

annual maximum daily temperature. 

Probability of occurrence (p) is expressed as the probability 

that an event of the specified magnitude will be equaled or 

exceeded during a one-year period. If n is the total number of 

values and m is the rank of a value in a list ordered descending 

magnitude (x1>x2>x3 ... >xm), the exceeding probability of the 

m
th

 largest value, xm, is 

𝑃 𝑋 ≥ 𝑥𝑚  =  
𝑚

𝑛
.                                     (10) 

(See Rao. A and Hamed. K, page 6-7). However, a 

relationship between the probability of occurrence of a level 

xTand its return period T are expressed as follows. A given 

return level xT with a return period T may be exceeded once in 

T years. Hence the probability of exceedance is 

                                  𝑃 𝑋 ≥ 𝑥𝑇 =
1

𝑇
                                  (11) 

If the probability model with CDF, 𝐹 is assumed then on 

inverting 

𝐹 𝑥𝑇 = 𝑃 𝑋 ≤ 𝑥𝑇 = 1 − 𝑃 𝑋 ≥ 𝑥𝑇 = 1 −
1

𝑇
                (12) 

3.7 Outliers  

An outlying observation, or outlier, is one that appears to 

deviate markedly from other members of the sample in which 

it occurs. Outliers can occur by chance in any distribution, but 

they are often indicative either of measurement error or that 

the population has a heavy-tailed distribution. In the former 

case one wishes to discard them or use statistics that are 

robust to outliers, while in the latter case they indicate that the 

distribution has high kurtosis and that one should be very 

cautious in using tool or intuitions that assume a normal 

distribution. In larger samplings of data, some data points will 

be further away from the sample mean than what is deemed 

reasonable. This can be due to incidental systematic error or 

flaws in the theory that generated an assumed family of 

probability distributions, or it may be that some observations 

are far from the center of the data. Outlier points can therefore 

indicate faulty data, erroneous procedures, or areas where a 

certain theory might not be valid. However, in large samples, 

a small number of outliers are to be expected. In this project, 

we will use box plot for identify (graphically) any outlier 

points. 

3.8 SAS and R 

The SAS system is a widely-used resource for statistical 

analysis and data mining. It is rare to find a job advert for a 

data mining practitioner that does not ask for SAS skills. The 

main positive points of SAS are its ability to handle large files 

transparently, the ease and comprehensive way that standard 

analyses can be done, the interactive way that analyses can be 

built alongside a systematic programming environment, and 

the data handling capabilities. Its main negative points are its 

graphical capabilities, and that adding your own extensions to 

the techniques using macros and the interactive matrix 

language are slightly more cumbersome than other languages 

(e.g. R) and then more modern language constructs.R is a 

computer language for statistical computing like the S 

language developed at Bell Laboratories. The R software was 

initially written by Ross Ihaka and Robert Gentleman in the 

mid-1990s. Since 1997, the R project has been organized by 

the R Development Core Team. R is open-source software 

and is part of the GNU project. R is being developed for the 

UNIX, Macintosh, and Windows families of operating 

systems. 

In this research project, initially we used SAS for select 

extreme points (annual maximum and Peak over threshold) 

from 117 years’ daily temperature data (approximately 42700 

observations) and after analyzed the data used by R. 

IV. RESULTS AND DISCUSSION 

The data consists of daily temperatures for the years from 

1900 to 2016 for the Minneapolis/St Paul, Minnesota location. 

The data were collected from the Minnesota, Department of 

Natural Resources webpage, which lists the daily Maximum 

and Minimum temperatures in Fahrenheit. The extreme values 

were selected from the tabulated daily data (from 

approximately 42700 data points). 

Firstly, we have applied the Univariate Extreme Value Theory 

to fit the for the 117-years (1900-2016) annual maximums of 

daily temperatures in Minneapolis/St Paul by using the 

statistical software “R”. When we observe the box plot 

(Figure 4.7) most of the points are lie within the IQR box, 

only three points fall outside. Among these three points, 

twopoints’ falls far from the IQR box, so we can conclude 

these points as an outlier (88,106 and 108).After removing 

this outlier points, we should check normality assumption, 

According to QQ plot (Figure 4.8) and Shapiro.test value = 

0.98692, and corresponding p-value = 0.3445> 0.05, so we 

can say data satisfy normality assumption. 

The Table 4.1 gives the estimates of the parameters of the 

GEV distribution using maximum likelihood method after 

removing the outlier. 
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Table 4.1: Estimated parameters by MLE. 

Parameter Estimate 
Standard 

Error 

𝜇 95.8401 0.3183 

𝜎 3.0650 0.2231 

𝜉 -0.2453 0.0603 

 

The Figure 4.1 in appendix section shows, the fitted density 

seems a reasonable fit to the histogram of maximums of 

temperature.  After fitting the GEV distribution, we check the 

whether the shape parameter (𝜉) is zero or not. So, we 

consider the following statistical hypotheses,  

Ho: The data fits the Gumbel distribution (ie: 𝜉 =  0)  

H
1
: Not Ho  

Under Ho, 

Likelihood ratio test statistic value = 15.195  

Chi-square critical value = 3.8415  

Chi-square P-Value = 0.0004792 < 0.05  

Reject the null hypothesis at 5% level of significance.  

ie) The data do not fit the Gumbel distribution. 

In R output indicated, alternative hypothesis: greater, so we 

can say there is enough evidence fail to reject  𝜉 >  0 

.Therefore, the data fits the Frechet distribution. Secondly, we 

identified the threshold value or cuts-off value for the daily 

temperature using the Mean Residual Life plot. The Mean 

Residual life plot (Figure 4.2) for the daily temperature from 

1900 to 2016 shows approximate linearity above a threshold 

of 96°F. So, we select 96°F as the threshold value of the daily 

temperature. The threshold value of 96°F was found using the 

Mean Residual life plot. Initially 229 data points were 

collected using the threshold value of 96°F and after removing 

the outlier (Based on boxplot (Figure 4.10), identified 

18outlier points 108,106,105,104,103) points were collected 

as extreme points, by using this collected data, first we fit the 

Generalized Pareto Distribution (GPD).  

The cumulative distribution function of the GPD distribution 

is, 

𝐻 𝑥 = 1 −  1 +
𝜉𝑥

𝜎
 

−1

𝜉
                  for all 

1+𝜉𝑥

𝜎
> 0                                               

 (13) 

Where 𝜎 >  0 is the scale parameter and  𝜉 − is a shape 

parameter 

Table 4.2 Maximum Likelihood Parameter Estimation for GPD 

 Estimate Standard Error 

𝜎 - scale parameter 3.8489 0.3232 

𝜉 - shape parameter -0.6109 0.0637 

The Table 4.2 gives the estimates of the parameters of the 

GPD distribution using maximum likelihood method. The 

figure 4.11shows (see the Appendix 1), the fitted density 

shows a precise fit to the observed data. After fitting the GPD 

distribution, we need to check the whether the shape 

parameter (𝜉) is zero or not   (i.e.: the data fits the Exponential 

distribution or not). So, we consider the following statistical 

hypotheses,  

Ho: The data fits the Exponential distribution (ie: 𝜉 =  0)  

H
1
: Not Ho  

Under Ho,  

Likelihood ratio test statistic value = 65.59 

Chi-square critical value = 3.8415 

Chi-square P-Value = 4.229e-16< 0.05  

So, reject the null hypothesis at 5% level of significance.  ie) 

The data fits the Generalized Pareto Distribution (GPD) 

distribution. 

Finally, we will use nonparametric Bayesian MCMC 

technique, so first we will Estimate parameters. 

Table 4.3 Quantiles of MCMC Sample from Posterior Distribution 

 Estimate Standard Error 

𝜇 -location 95.8876 0.1603 

𝜎 - scale parameter 3.1384 0.0693 

𝜉 - shape parameter -0.2347 0.0049 

 

The Table 4.3 gives the estimates of the parameters of the 

nonparametric Bayesian MCMC technique method. The Table 

4.6 and 4.7 gives the return values of the annual maximum 

temperature daily and their 95% confidence levels for the 

return periods 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150 

and 200 years respectively. 

The computed return levels for each data set are listed in 

Table 4.6. It has been predicted that the 2-year return period’s 

return level is approximately 96.9144°F in GEVD method, 

which means temperature of 96.9144°F or more, should occur 

at that location on the average only once every two years.  In 

other way round, the average 101 °F or more daily extreme 

temperature event occur for the period of every ten-year with 

the occurrence probability 0.1000.  According to the table, the 

50-year return period is 103.9498 °F in Bayesian method, 

which means every 50 year we can expect in average 

103.9498°F or more daily extreme temperature with the 

probability 0.05.Among the various methods considered, the 

using nonparametric Bayesian MCMC techniqueappears to be 

associated with the highest return levels. As notice that, the 

GEVD technique’s estimated return levels have 

approximately equal to Bayesian method’s estimations. 
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V. CONCLUSION 

In this study, we have performed a statistical modeling of 

extreme daily temperature over 117 years in Minneapolis/St 

Paul, Minnesota using extreme value distributions under three 

different approaches. However our original collected data of 

annual maximum daily temperature data fits the GEV 

distribution, the distribution converges to the Frechet 

distribution and the predicted values for different return 

periods and their confidence levels decrease following the 

removal of the single outlier identified using boxplot. 

Therefore, the outlier is more important in this analysis. The 

identified outlier is 105°F, 106°F and 108°F, which occurred 

on the 07/31/1988, 5/31/1934 and 07/14/1936 respectively. 

The return period of the outlier points105°F, 106°F and 108°F 

are nearly 250, 1200 and more than 50000 years respectively. 

So, we can’t predict this return value using the identified 

results shown in Tables 4.6 and 4.7. Therefore, more 

sophisticated analysis is needed to establish its true return 

period. We have established the Frechet and Generalized 

Pareto distribution (GPD) are suitable models for extreme 

daily temperature by considering annual maximums of daily 

temperatures and daily temperatures greater than 96°F. The 

predicted return values and the confidence levels are very 

similar in sampling techniques, annual maxima and peaks 

over threshold. For example, the 50-year return value of 

extreme daily temperature using annual maxima is 103.536°F 

and using peaks over threshold is 103.4017°F and their 

corresponding confidence levels are (102.3288,104.7445) and 

(101.9243, 102.6443).  Finally, we used, Bayesian MCMC 

technique for annual maximum daily temperature data and 

estimated parameters and return levels. For example, the 100-

year return value of extreme daily temperature using annual 

maxima is 104.2918°F and using Bayesian MCMC technique 

is 104.7865°F and their corresponding confidence levels are 

(102.8251, 105.7585) and (103.3612, 107.4158). 

This research project only provides an initial study of extreme 

daily maximum temperature in Minneapolis region. This 

study can be extended in several ways. We can consider 

annual maximums of the 2-day, 4-day, 7-day & 10-day 

maximum temperature by using the GEV distribution and 

similarly if we consider daily minimum temperature data, 

which is very useful for this region. The other is a more 

sophisticated analysis of the actual return period of the 

identified outlier to assess its relevance for design. 
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Appendix I: 

Table 4.4:Annual Maximums of Daily Temperature from 1900-2016 in Minneapolis 

Obs Date Maximum Obs Date Maximum 

1 July 30, 1900 95 35 May 31, 1934 106 

2 July 20, 1901 102 36 July 27, 1935 98 

3 July 29, 1902 88 37 July 14, 1936 108 

4 July 7, 1903 92 38 July 10, 1937 100 

5 July 16, 1904 92 39 July 12, 1938 95 

6 August 10, 1905 95 40 September 14, 1939 98 

7 August 16, 1906 93 41 July 22, 1940 103 

8 August 31, 1907 94 42 July 24, 1941 104 

9 July 10, 1908 94 43 July 16, 1942 96 

10 August 2, 1909 93 44 June 26, 1943 96 

11 June 20, 1910 96 45 June 25, 1944 96 

12 July 1, 1911 99 46 July 23, 1945 96 

13 September 5, 1912 95 47 August 16, 1946 95 

14 August 15, 1913 100 48 August 4, 1947 102 

15 July 26, 1914 96 49 July 6, 1948 101 

16 July 12, 1915 88 50 July 3, 1949 100 

17 July 28, 1916 97 51 August 16, 1950 96 

18 July 28, 1917 99 52 July 15, 1951 91 

19 July 20, 1918 94 53 July 19, 1952 93 

20 July 26, 1919 96 54 June 18, 1953 98 

21 June 13, 1920 94 55 July 19, 1954 95 

22 June 30, 1921 99 56 July 26, 1955 100 

23 June 23, 1922 99 57 June 13, 1956 100 

24 July 9, 1923 97 58 July 11, 1957 97 

25 August 26, 1924 92 59 June 29, 1958 95 

26 May 22, 1925 99 60 July 29, 1959 96 

27 July 16, 1926 102 61 July 21, 1960 95 

28 June 28, 1927 96 62 June 28, 1961 98 

29 July 7, 1928 94 63 June 28, 1962 95 

30 July 26, 1929 97 64 June 30, 1963 99 

31 July 10, 1930 98 65 August 1, 1964 98 

32 July 27, 1931 104 66 July 23, 1965 95 

33 July 20, 1932 101 67 July 10, 1966 99 

34 June 19, 1933 100 68 July 21, 1967 91 

69 June 4, 1968 96 96 July 13, 1995 101 

70 August 29, 1969 96 97 June 28, 1996 96 

71 June 29, 1970 97 98 June 23, 1997 94 

72 August 22, 1971 97 99 July 13, 1998 94 

73 August 16, 1972 97 100 July 25, 1999 99 

74 June 10, 1973 98 101 June 8, 2000 94 
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75 July 8, 1974 101 102 August 6, 2001 99 

76 July 29, 1975 98 103 June 30, 2002 97 

77 July 13, 1976 100 104 August 24, 2003 97 

78 July 19, 1977 100 105 June 7, 2004 95 

79 May 26, 1978 96 106 July 16, 2005 97 

80 August 6, 1979 96 107 July 31, 2006 101 

81 July 11, 1980 100 108 July 7, 2007 98 

82 July 8, 1981 91 109 July 29, 2008 94 

83 July 5, 1982 100 110 May 19, 2009 97 

84 August 7, 1983 97 111 August 8, 2010 96 

85 July 22, 1984 94 112 June 7, 2011 103 

86 June 8, 1985 102 113 July 6, 2012 102 

87 June 19, 1986 93 114 May 14, 2013 98 

88 June 13, 1987 99 115 July 21, 2014 92 

89 July 31, 1988 105 116 August 14, 2015 94 

90 July 5, 1989 97 117 July 22, 2016 97 

91 July 3, 1990 100    

92 June 26, 1991 95    

93 June 12, 1992 92    

94 August 9, 1993 89    

95 June 14, 1994 95    

 

Table 4.5: Daily Temperature Over 96°F from 1900-2016 in Minneapolis/St Paul 

Obs Date Maximum Obs Date Maximum 

1 July 13, 1901 98 45 July 14, 1931 98 

2 July 14, 1901 98 46 July 15, 1931 101 

3 July 20, 1901 102 47 July 16, 1931 100 

4 July 23, 1901 101 48 July 25, 1931 98 

5 July 24, 1901 101 49 July 26, 1931 99 

6 June 22, 1911 98 50 July 27, 1931 104 

7 June 30, 1911 97 51 July 28, 1931 99 

8 July 1, 1911 99 52 August 4, 1931 99 

9 July 30, 1913 97 53 September 8, 1931 99 

10 August 15, 1913 100 54 September 10, 1931 104 

11 September 1, 1913 97 55 July 12, 1932 97 

12 September 5, 1913 97 56 July 14, 1932 98 

13 July 28, 1916 97 57 July 18, 1932 97 

14 July 29, 1916 97 58 July 19, 1932 97 

15 August 6, 1916 97 59 July 20, 1932 101 

16 July 28, 1917 99 60 June 16, 1933 97 

17 June 30, 1921 99 61 June 17, 1933 97 

18 July 9, 1921 97 62 June 18, 1933 97 

19 July 10, 1921 98 63 June 19, 1933 100 
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20 July 11, 1921 98 64 June 20, 1933 98 

21 June 23, 1922 99 65 June 26, 1933 98 

22 September 5, 1922 98 66 June 27, 1933 99 

23 September 6, 1922 98 67 June 28, 1933 97 

24 July 9, 1923 97 68 July 29, 1933 98 

25 July 22, 1923 97 69 July 30, 1933 100 

26 May 22, 1925 99 70 May 28, 1934 98 

27 July 11, 1925 97 71 May 30, 1934 98 

28 September 3, 1925 97 72 May 31, 1934 106 

29 September 4, 1925 98 73 June 23, 1934 97 

30 July 16, 1926 102 74 June 25, 1934 98 

31 July 20, 1926 98 75 June 27, 1934 104 

32 August 27, 1926 99 76 July 14, 1934 97 

33 July 26, 1929 97 77 July 19, 1934 98 

34 July 10, 1930 98 78 July 21, 1934 105 

35 July 25, 1930 97 79 July 22, 1934 105 

36 July 26, 1930 97 80 July 23, 1934 105 

37 July 27, 1930 98 81 August 18, 1934 97 

38 August 2, 1930 97 82 July 27, 1935 98 

39 August 3, 1930 98 83 July 31, 1935 98 

40 June 26, 1931 99 84 July 6, 1936 104 

41 June 27, 1931 97 85 July 7, 1936 101 

42 June 28, 1931 102 86 July 8, 1936 101 

43 June 29, 1931 102 87 July 10, 1936 106 

44 June 30, 1931 100 88 July 11, 1936 106 

89 July 12, 1936 106 135 June 10, 1956 99 

90 July 13, 1936 105 136 June 13, 1956 100 

91 July 14, 1936 108 137 July 11, 1957 97 

92 July 15, 1936 98 138 July 19, 1957 97 

93 July 16, 1936 98 139 June 28, 1961 98 

94 July 17, 1936 99 140 June 30, 1963 99 

95 August 15, 1936 103 141 July 19, 1964 97 

96 June 23, 1937 99 142 July 23, 1964 97 

97 July 10, 1937 100 143 August 1, 1964 98 

98 August 5, 1937 97 144 August 5, 1964 97 

99 September 2, 1937 97 145 July 10, 1966 99 

100 September 14, 1939 98 146 July 11, 1966 99 

101 September 15, 1939 98 147 June 29, 1970 97 

102 July 18, 1940 101 148 August 22, 1971 97 

103 July 19, 1940 100 149 August 16, 1972 97 

104 July 21, 1940 99 150 August 20, 1972 97 

105 July 22, 1940 103 151 June 10, 1973 98 

106 July 23, 1940 103 152 July 7, 1974 97 

107 July 22, 1941 98 153 July 8, 1974 101 
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108 July 23, 1941 100 154 July 13, 1974 99 

109 July 24, 1941 104 155 July 29, 1975 98 

110 July 25, 1941 99 156 July 30, 1975 97 

111 July 28, 1941 97 157 July 9, 1976 99 

112 August 3, 1941 99 158 July 10, 1976 99 

113 July 26, 1947 98 159 July 13, 1976 100 

114 August 4, 1947 102 160 August 18, 1976 98 

115 August 5, 1947 100 161 August 19, 1976 97 

116 August 10, 1947 101 162 August 21, 1976 97 

117 August 11, 1947 97 163 September 7, 1976 98 

118 August 17, 1947 100 164 July 19, 1977 100 

119 August 21, 1947 98 165 July 7, 1980 98 

120 July 5, 1948 98 166 July 10, 1980 98 

121 July 6, 1948 101 167 July 11, 1980 100 

122 July 7, 1948 98 168 July 14, 1980 99 

123 July 8, 1948 99 169 July 4, 1982 99 

124 August 23, 1948 97 170 July 5, 1982 100 

125 August 24, 1948 98 171 August 2, 1982 98 

126 June 30, 1949 99 172 August 7, 1983 97 

127 July 3, 1949 100 173 June 8, 1985 102 

128 July 4, 1949 100 174 July 7, 1985 97 

129 July 5, 1949 98 175 June 13, 1987 99 

130 August 7, 1949 97 176 June 14, 1987 98 

131 June 18, 1953 98 177 June 19, 1988 98 

132 July 26, 1955 100 178 June 20, 1988 97 

133 July 28, 1955 100 179 June 24, 1988 101 

134 August 1, 1955 98 180 July 5, 1988 97 

181 July 6, 1988 99 222 July 2, 2012 99 

182 July 7, 1988 99 223 July 3, 2012 97 

183 July 15, 1988 102 224 July 4, 2012 101 

184 July 27, 1988 97 225 July 6, 2012 102 

185 July 28, 1988 97 226 July 16, 2012 98 

186 July 31, 1988 105 227 May 14, 2013 98 

187 August 1, 1988 101 228 August 26, 2013 97 

188 August 2, 1988 99 229 July 22, 2016 97 

189 August 15, 1988 98    

190 August 16, 1988 99    

191 August 17, 1988 97    

192 July 5, 1989 97    

193 July 3, 1990 100    

194 July 12, 1995 97    

195 July 13, 1995 101    

196 July 15, 1999 97    

197 July 24, 1999 98    
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198 July 25, 1999 99    

199 July 29, 1999 98    

200 June 25, 2001 97    

201 July 31, 2001 98    

202 August 5, 2001 98    

203 August 6, 2001 99    

204 August 7, 2001 98    

205 June 30, 2002 97    

206 August 24, 2003 97    

207 July 16, 2005 97    

208 July 17, 2005 97    

209 August 2, 2005 96    

210 May 28, 2006 97    

211 July 15, 2006 99    

212 July 28, 2006 98    

213 July 30, 2006 99    

214 July 31, 2006 101    

215 July 7, 2007 98    

216 May 19, 2009 97    

217 June 6, 2011 97    

218 June 7, 2011 103    

219 July 1, 2011 99    

220 July 18, 2011 98    

221 July 19, 2011 97    

In above tables, outlier points were indicated in red color 

Table 4.6: Estimated return levels based on fixed return periods. 

Probability of 

Occurrence 

Return Period 

(T in years) 

Estimated Return Level 

GEVD POT Bayesian 

0.5000 2 96.9144 102.1878 96.9893 

0.2000 5 99.6864 102.2359 99.8541 

0.1000 10 101.1404 102.2580 101.3778 

0.0500 20 102.3048 102.2725 102.6153 

0.0333 30 102.8872 102.2786 103.2423 

0.0250 40 103.2636 102.2820 103.6511 

0.0200 50 103.5367 102.2843 103.9498 

0.0167 60 103.7484 102.2860 104.1827 

0.0143 70 103.9199 102.2872 104.3722 

0.0125 80 104.0631 102.2882 104.5311 

0.0111 90 104.1854 102.2890 104.6675 

0.0100 100 104.2918 102.2897 104.7865 

0.0067 150 104.6760 102.2920 105.2197 

0.0050 200 104.9259 102.2933 105.5048 
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Table 4.7: 95% Confidence bands of Estimated return levels based on fixed return periods. 

Probability of 

Occurrence 

Return Period 

(T in years) 

95% Confidence interval of Return Level 

GEVD POT Bayesian 

0.5000 2 (96.2731, 97.5558) (101.8822, 102.4934) (96.2031, 97.7967) 

0.2000 5 (98.9798, 100.3930) (101.9071, 102.5647) (98.9881, 100.7952) 

0.1000 10 (100.3572, 101.9235) (101.9164, 102.5997) (100.4361, 102.4934) 

0.0500 20 (101.3795, 103.2301) (101.9213, 102.6237) (101.5618, 104.0634) 

0.0333 30 (101.8480, 103.9263) (101.9230, 102.6341) (102.1189, 104.9212) 

0.0250 40 (102.1324, 104.3948) (101.9238, 102.6402) (102.4588, 105.5536) 

0.0200 50 (102.3289, 104.7445) (101.9243, 102.6443) (102.7011, 106.0448) 

0.0167 60 (102.4752, 105.0217) (101.9246, 102.6473) (102.8908, 106.4015) 

0.0143 70 (102.5897, 105.2501) (101.9249, 102.6496) (103.0461, 106.7075) 

0.0125 80 (102.6824, 105.4437) (101.9250, 102.6514) (103.1754, 106.9723) 

0.0111 90 (102.7596, 105.6112) (101.9251, 102.6529) (103.2724, 107.2070) 

0.0100 100 (102.8251, 105.7585) (101.9252, 102.6542) (103.3612, 107.4158) 

0.0067 150 (103.0487, 106.3033) (101.9255, 102.6585) (103.6774, 108.1543) 

0.0050 200 (103.1827, 106.6691) (101.9256, 102.6610) (103.8679, 108.6844) 

Appendix II 

SAS and R Codes: 

*******************Extreme points Selection - SAS**************** 

PROC IMPORT OUT= WORK.MinnesotaMSPdatamax  

DATAFILE= "C:\Users\vp0011hr\Desktop\MinnesotaMSPdatamax.xlsx" 

DBMS=xlsx REPLACE; 

SHEET="DataFull";  

GET NAMES=YES; 

RUN; 

 

PROC PRINT DATA = WORK.MinnesotaMSPdatamax; 

TITLE'Minnesota MSP Tempdata'; 

 

Data Extremetempthreshold; 

 Set WORK.MinnesotaMSPdatamax; 

 where Maximum >96 ; 

run; 

proc print data=Extremetempthreshold; 

run; 

****** Annual Maximums of daily temperature data Analysis – R ******* 

library(graphics) 

library(extRemes) 

library(evd) 

library(POT) 

library(PASWR) 

library(evir) 

MSPTempmax<-read.table("C:/Users/vnuu/Desktop/MSPannualmax.txt",header=T) 

names(MSPTempmax) 
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plot(MSPTempmax$Year,MSPTempmax$Maximum, type ="p", pch=20,xlab = "Year",ylab = 

"Maximum temperature(in °F)",col ="red",lwd=0.5,cex.lab = 1.0,main="Scatter plot for 

Annual Maximum Temperature in MSP",col.main= "blue",font.main= 6,col.lab= 

"darkblue",font.lab= 6) 

shapiro.test(MSPTempmax$Maximum) 

qqnorm(MSPTempmax$Maximum,col="blue") 

qqline(MSPTempmax$Maximum,col="red") 

boxplot(MSPTempmax$Maximum,id.n=Inf,col = "lightpink",main="Box plot for Annual 

maximum temperature in MSP region",col.main= "blue",ylab = "Maximum temperature(in 

°F)",font.main = 6) 

fit1 <- fevd(Maximum, MSPTempmax, units = "deg F") 

fit1 

distill(fit1) 

summary(MSPTempmax$Maximum) 

hist(MSPTempmax$Maximum,prob=T, main="Histogrm of Annual Maximum temperature data with 

dencity", col=gray(0.8), xlab = "Maximum temperature(in °F)", col.main= 

"blue",font.main= 6,col.lab= "darkblue",font.lab= 6) 

lines(density(MSPTempmax$Maximum),col="red", lty=2) 

curve(dgev(x,95.6563637,3.4752222,-0.2139041),col="blue", lwd=2,add=T) 

leglebels<- c("Est pdf","Actual pdf" ) 

legend ("topright", legend=leglebels, lty=c(2,1), col=c("red","blue"),lwd=2 ) 

fit2 <-fevd(Maximum, MSPTempmax,type = "Gumbel",units = "deg F") 

fit2 

lr.test(fit1,fit2) 

plot(fit1) 

plot(fit1, "trace") 

return.level(fit1) 

return.level(fit1, do.ci = TRUE) 

ci(fit1,return.period = c(2,5,10,20,30,40,50,60,70,80,90,100,150,200)) 

ci(fit1, type = "parameter") 

*** Annual Maximums of daily temperature data Analysis (after removing outlier points) 

– R *** 

MSPTempmaxrout<-read.table("C:/Users/vnuu/Desktop/MSPannualmaxrout.txt",header=T) 

names(MSPTempmaxrout) 

boxplot(MSPTempmaxrout$Maximum,id.n=Inf) 

shapiro.test(MSPTempmaxrout$Maximum) 

EDA(MSPTempmaxrout$Maximum) 

qqnorm(MSPTempmaxrout$Maximum,col="blue") 

qqline(MSPTempmaxrout$Maximum,col="red") 

fitremout<- fevd(Maximum, MSPTempmaxrout, units = "deg F") 

fitremout 

hist(MSPTempmaxrout$Maximum,prob=T, main="Histogrm of Annual Maximum temperature data 

with dencity", col=gray(0.8), xlab = "Maximum temperature(in °F)", col.main= 

"blue",font.main= 6,col.lab= "darkblue",font.lab= 6) 

lines(density(MSPTempmaxrout$Maximum),col="red", lty=2) 

curve(dgev(x,95.8400740,3.0650074,-0.2453332),col="blue", lwd=2,add=T) 

leglebels<- c("Est pdf","Actual pdf" ) 

legend ("topright", legend=leglebels, lty=c(2,1), col=c("red","blue"),lwd=2 ) 

fitremout2 <-fevd(Maximum, MSPTempmaxrout,type = "Gumbel",units = "deg F") 

fitremout2 

lr.test(fitremout,fitremout2) 

plot(fitremout) 

plot(fitremout, "trace") 

return.level(fitremout) 
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return.level(fitremout, do.ci = TRUE) 

ci(fitremout,return.period = c(2,5,10,20,30,40,50,60,70,80,90,100,150,200)) 

ci(fitremout, type = "parameter") 

ci(fitremout,return.period = c(250,1100,1000000)) 

 

*** Daily extreme temperature data Analysis (by using Peaks Over a Threshold) – R *** 

MSPTemp<-read.table("C:/Users/vnuu/Desktop/MSPmaximum.txt",header=T) 

names(MSPTemp) 

mrlplot(MSPTemp$Maximum,xlim=c(-20,120),col=c("blue","red","blue")) 

MSPTempthreshold<-read.table("C:/Users/vnuu/Desktop/MSPthreshold.txt",header=T) 

names(MSPTempthreshold) 

plot(MSPTempthreshold$Year,MSPTempthreshold$Maximum, type = "p",pch=20, xlab = 

"Year",ylab = "Maximum temperature(in °F)",col = "darkgreen", lwd = 0.5, cex.lab = 

1.0,main="Scatter plot for Temperature in MSP by using threshold value 95 

°F",col.main= "blue",font.main= 6,col.lab= "darkblue",font.lab= 6) 

boxplot(MSPTempthreshold$Maximum,id.n=Inf,col = "lightpink",main="Box plot for Annual 

maximum temperature in MSP region",col.main= "blue",ylab = "Maximum temperature(in 

°F)",font.main = 6) 

EDA(MSPTempthreshold$Maximum) 

 

MSPTempthreshold<- read.table("C:/Users/vnuu/Desktop/MSPthreshold.txt",header=T) 

names(MSPTempthreshold) 

boxplot(MSPTempthreshold$Maximum,id.n=Inf,col= "lightblue",main="Box plot for 

temperature in MSP region by using threshold value 96 °F",col.main= "blue",ylab = 

"Maximum temperature(in °F)",font.main = 6) 

plot(MSPTempthreshold$Year,MSPTempthreshold$Maximum, type = "p",pch=20, xlab = 

"Year",ylab = "Maximum temperature(in °F)",col = "darkgreen", lwd = 0.5, cex.lab = 

1.0,main="Scatter plot for Temperature in MSP by using threshold value 96 

°F",col.main= "blue",font.main= 6,col.lab= "darkblue",font.lab= 6) 

 

MSPTempthresholdremoveout<-

read.table("C:/Users/vnuu/Desktop/MSPthresholdremoveout.txt",header=T) 

names(MSPTempthresholdremoveout) 

boxplot(MSPTempthresholdremoveout$Maximum,id.n=Inf,col= "lightblue",main="Box plot for 

temperature in MSP region by using threshold value 96 °F",col.main= "blue",ylab = 

"Maximum temperature(in °F)",font.main = 6) 

fitD1 <- fevd(Maximum,MSPTempthresholdremoveout, threshold = 96, type = "GP", units = 

"deg F") 

fitD1 

hist(MSPTempthresholdremoveout$Maximum,prob=T, main="Histogrm of Maximum temperature 

data with dencity by using threshold value 96 °F", col=gray(0.8), xlab= "Maximum 

temperature(in°F)",col.main= "blue",font.main= 6,col.lab= "darkblue",font.lab= 6) 

lines(density(MSPTempthresholdremoveout$Maximum),col="red", lty=1) 

fitD2<-fevd(Maximum,MSPTempthresholdremoveout,threshold=96,type="Exponential", units = 

"deg F") 

fitD2 

lr.test(fitD1,fitD2) 

plot(fitD1) 

plot(fitD1, "trace") 

return.level(fitD1) 

return.level(fitD1, do.ci = TRUE) 

ci(fitD1,return.period = c(2,5,10,20,30,40,50,60,70,80,90,100,150,200)) 

ci(fitD1, type = "parameter") 
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fitB <- fevd(Maximum,MSPTempmax, method="Bayesian",verbose=TRUE) 

fitB 

plot(fitB) 

plot(fitB, "trace") 

return.level(fitB) 

return.level(fitB, do.ci = TRUE) 

ci(fitB,return.period = c(2,5,10,20,30,40,50,60,70,80,90,100,150,200)) 

ci(fitB, type = "parameter") 

 

Appendix III 
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                                                        Figure 4.5                                                                                                                   Figure 4.6 

 

  

                                                           Figure 4.7                                                                                                                   Figure 4.8 
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Figure 4.9 

 

Figure 4.10 
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Figure 4.11 

 

Figure 4.12 
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Figure 4.13 

 

Figure 4.14 
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