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Abstract: The floating admittance matrix (FAM) approach is an 

elegant method that provides unified approach to analysis of 

different terminal functions such as impedances, and gains or 

ratios of voltages, currents and powers of both active and passive 

network with ease. The zero sum property of the floating 

admittance matrix provides a check to the researchers to 

proceed further or re observe the first equation itself. All 

transfer functions are represented as cofactors of the floating 

admittance matrix of the circuit. 
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I. INTRODUCTION 

he well-known conventional and convenient low 

frequency model of the BJT is h-parameter and hybrid-

model. For the purpose of deriving the floating admittance 

model (FAM) of the BJT, the h-parameters model is 

considered [1-18]. The same floating admittance matrix is 

used for the derivation of its voltage gain, current gain, and 

power gain, input impedance and output impedance of BJT 

amplifier in any of its three configurations to demonstrate the 

beauty and superiority this approach[22-24].  

If any one of the three terminals of a BJT is taken common to 

both of its input and output sides, then it can be assumed as 

four terminal of two port network as indicated in Fig. 1. Here, 

the emitter terminal is common to both input and output sides. 

The base, collector and emitter terminals have been assigned 

digital numbers 1, 2, and 3 respectively to be used in the 

derivation of the floating admittance matrix of the BJT.  

 

                                 Fig. 1 BIT as Two Port Network  

The four variables in Fig. 1 are defined as the base voltage 

(𝑉𝐵 = 𝑉1), the collector voltage (𝑉𝐶 = 𝑉2), the input (base) 

current (𝐼𝐵 = 𝐼1 , and the output current (𝐼𝐶 = 𝐼2). Out of these 

four variables any two variables can be assumed to be 

independent variables, then the other two variable become 

dependent of these independent variables. The selection of 

independent and dependent variables leads to the various 

types of parameter representation of the BJT. A few among 

these representations are; 

 Impedance parameters 

 (𝑉1 = 𝑓1 𝐼1 ,  𝐼2 &𝑉2 = 𝑓2(𝐼1 ,  𝐼2)                          (1) 

 Admittance parameters,  

(𝐼1 = 𝑓1 𝑉1 ,  𝑉2 &𝐼2 = 𝑓2 𝑉1, 𝑉2                              (2) 

 Hybrid parameters etc. 

 (𝑉1 = 𝑓1 𝐼1 ,  𝑉2 & 𝐼2 = 𝑓2 𝐼1 ,  𝑉2                             (3) 

Since the hybrid parameter model of the BJT is the normally 

used at low frequency to analyze its characteristics, we have 

to select the independent variable in the mixed mode of 

voltages and currents. For the purpose, let the input 

current𝐼𝐵 = 𝐼1 and the output voltage 𝑉2 = 𝑉𝐶 = 𝑉23  of the 

two port network shown in Fig.1 are selected as the 

independent variables; then the input voltage  𝑉1 = 𝑉𝐵 =
𝑉13and the output current 𝐼𝐶 = 𝐼2  become the dependent 

variables and they can be represented mathematically as; 

  𝑉13 = 𝑓1(𝐼1 , 𝑉23)                                 (4) 

  𝐼2 = 𝑓2(𝐼1 , 𝑉23)                                 (5) 

The input voltage (𝑉13) from Eq. (4) partially dependence on 

the input current𝐼1 and partially on the output voltage 

𝑉23 .Similarly, the output current 𝐼2 partially depends on the 

input current 𝐼1 and partially on the output voltage 𝑉23 .The 

effect of partial variations in the independent variables 𝐼1 and 

𝑉23   would result into the total variations in the dependent 

variables 𝑉13  and 𝐼2 in Eqs. (4) and (5). Hence, these 

equations can be represented by partial differential equations 

as; 

𝛿𝑉13 =  𝜕𝑉13

𝜕𝐼1
∆𝐼1 

𝑉23 =𝑘
+  𝜕𝑉13

𝜕𝑉23
∆𝑉23 

𝐼1=𝑘
=  

𝑣13

𝑖1
 𝑖1 +  

𝑣13

𝑣23
 𝑣23

 (6) 

𝛿𝐼2 =  𝜕𝐼2

𝜕𝐼1
∆𝐼1 

𝑉23 =𝑘
+  𝜕𝐼2

𝜕𝑉23
∆𝑉23 

𝐼1=𝑘
=  

𝑖2

𝑖1
 𝑖1 +  

𝑖2

𝑣23
 𝑣23

 (7) 

T 

V2 

 V1 

2 

1 

3 

𝐼2  

𝐼1  
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In Eq. (6), the ratio 
𝑣13

𝑖1
 is the small change in input port 

voltage to the small change in input port current  which is 

defined as the self-port (input) resistance or input impedance. 

Hence, it is replaced by 𝑟11  or 𝑟𝑖  having dimension of 

resistance (). The ratio 
𝑣13

𝑣23
 is the small change in the input-

port voltage to the small change in the output-port voltage. 

Hence, it is called the reverse voltage ratio of input voltage to 

the output voltage and written as 𝑎12  (dimensionless 

quantity). Similarly, the ratio 
𝑖2

𝑖1
 from Eq. (7) is the of small 

change in the output-port current to the small change in input-

port current and hence called forward current ratio or gain and 

is represented as 𝑎21(dimensionless quantity). The ratio 
𝑖2

𝑣23
 is 

the small change in the output-port current to the small change 

in the output-port voltage and hence called self-port output 

conductance or resistance and represented as 𝑔22 =
𝑔𝑜(Siemen=S).  

 Assuming  =  and also that the small changes in static 

voltages (𝑉13 , 𝑉23) and currents (𝐽1, 𝐼2) result in small signals 

voltages (𝑣13 , 𝑣23) and currents (𝑖1 , 𝑖2). Eqs. (6) and (7) reduce 

to 

𝑣13 =  𝑟11 𝑖1 +  𝑎12 𝑣23 = (𝑟𝑖)𝑖1 + (𝑎12)𝑣23  (8) 

𝑖2 =  𝑎21 𝑖1 +  𝑔22 𝑣23 =  𝑎21 𝑖1 +  𝑔𝑜 𝑣23  (9) 

It is evident from Eqs. (8) and (9) that the dimensions of the 

4-parameters𝑟11 = 𝑟𝑖 , 𝑎12 , 𝑎21 , and 𝑔22 = 𝑔𝑜are different. 

Here, 𝑟11 = 𝑟𝑖  has the dimension of resistance (), the 

parameters 𝑎12  and 𝑎21  are dimensionless, and 𝑔22 = 𝑔𝑂  has 

the dimension of conductance (Siemen =S). Since all 4-

parameters are of different dimensions, it is called hybrid 

parameter. All the hybrid parameters are represented by letter 

h and Eqns. (8) and (9) are now expressed as; 

𝑣13 =  𝑕11 𝑖1 +  𝑕12 𝑣23 = (𝑕𝑖)𝑖1 + (𝑕𝑟 )𝑣23 = (
1

𝑔𝑖
)𝑖1 +

(𝑕𝑟)𝑣23                                                                            (10) 

𝑖2 =  𝑕21 𝑖1 +  𝑕22 𝑣23 =  𝑕𝑓 𝑖1 + (𝑕𝑂)𝑣23     (11) 

Equation (10) suggests that the input voltage 𝑣13  across input 

port of Fig. 1 is equated as the sum of a voltage drop across 

the resistance/ impedance (𝑟11  or 𝑕𝑖) produced by the flow of 

the input current (𝑖1) through and the output voltage (𝑣23) 

controlled voltage source equal to (𝑕𝑟)𝑣23  as in Fig. 1. This is 

the internal feedback part of voltage from output side to the 

input side of the BJT. Similarly, Eq.(11) suggests that the 

output current 𝑖2 is sum of two current sources  𝑕𝑓 𝑖1 and 

(𝑕𝑂)𝑣23 . The 1
st 

current source  𝑕𝑓 𝑖1 is the input current (𝑖1) 

controlled current source and the 2
nd

 current source (𝑕𝑂)𝑣23  is 

the output voltage (𝑣23) controlled current source. With the 

help of these statements, Eqns. (10) and (11) can be arranged 

in the form of a circuit as shown in Fig.2. 

 

 

 

Fig. 2 Two Port mathematical model of BJT 

II. FLOATING ADMITTANCE MATRIX OF THE BJT [19-

23] 

In order to dwell upon the floating admittance model of the 

BJT, we would like to convert the h-parameter model into the 

conductance parameters model of the BJT.  Since, the current 

source  𝑕22 𝑣23in Fig. 2 appears across the self-output port 

voltage 𝑣23 , it can be replaced by an admittance of 𝑕22  =

𝑕22
𝑣23

𝑣23
 = 𝑕𝑂 = 𝑔𝑂 . Fig. 2 simplifies to Fig. 3 using these 

statements. 

 

E 3 

B 
1 

C 

2 

 

+ 

1

𝑔𝑖
= 𝑕𝑖  

𝑕𝑟𝑣23 

𝑣13 = 𝑣𝑏𝑒  𝑣23 = 𝑣𝑐𝑒  

𝑖1 = 𝑖𝑏  𝑖2 = 𝑖𝑐  

𝑕𝑓 𝑖1 𝑕𝑂𝑣23 
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Fig. 3 h-parameter model of BJT 

In Fig. 3, the output voltage 𝑣13  is the potential difference 

between terminals 1 and 3 and voltage 𝑣23  is the potential 

difference between terminal voltage 2 and 3. Hence, it is 

written as; 

𝑣13 = 𝑣1 − 𝑣3 = 𝑣𝑏𝑒 = 𝑣𝑏 − 𝑣𝑒   and 𝑣23 = 𝑣2 − 𝑣3 = 𝑣𝑐𝑒 =
𝑣𝑐 − 𝑣𝑒 ;                                                                               (12) 

Substituting these values of 𝑣13  and 𝑣23from Eq. (12) in 

Eqs.(10) and (11) yield 

 𝑣13 = 𝑣1 − 𝑣3 = 𝑕𝑖𝑒 𝑖1 + 𝑕𝑟𝑒  𝑣2 − 𝑣3  

𝑕𝑖𝑒 𝑖1 = 𝑣1 − 𝑣3 − 𝑕𝑟𝑒  𝑣2 − 𝑣3 = 𝑣1 − 𝑕𝑟𝑒 𝑣2 − (1 − 𝑕𝑟𝑒 )𝑣3 

 𝑖1 =
1

𝑕𝑖𝑒
𝑣1 −

𝑕𝑟𝑒

𝑕𝑖𝑒
𝑣2 − (

1

𝑕𝑖𝑒
−

𝑕𝑟𝑒

𝑕𝑖𝑒
)𝑣3                     (13) 

𝑖2 =  𝑕𝑓𝑒 𝑖1 +  𝑕𝑂𝑒   𝑣2 − 𝑣3 =  𝑕𝑓𝑒 𝑖1 +  𝑕𝑂𝑒 𝑣2 −

 𝑕𝑂𝑒 𝑣3                                                                               (14) 

Substituting h-parameter in the form of conductance 

parameters as; 

𝑔𝑖 =
1

𝑕𝑖
, 𝑔𝑟 =

𝑕𝑟

𝑕𝑖
= 𝑔𝑖𝑕𝑟 , 𝑔𝑚 =

𝑕𝑓

𝑕𝑖
= 𝑔𝑖𝑕𝑓 , 𝑕𝑜 = 𝑔𝑂       (15) 

Equation (13) and (14) are simplified by substituting Eq. (15) 

in them as; 

 𝑖1 = 𝑔𝑖𝑣1 − 𝑔𝑖𝑕𝑟𝑣2 − 𝑔𝑖(1 − 𝑕𝑟)𝑣3        (16) 

Substituting the value of 𝑖1 from Eq.(16) in Eq.(14) yields 

𝑖2 = 𝑕𝑓𝑒𝑔𝑖𝑣1 − 𝑕𝑓𝑒𝑔𝑖𝑕𝑟𝑣2 − 𝑕𝑓𝑒 𝑔𝑖(1 − 𝑕𝑟)𝑣3 + (𝑕𝑂𝑒 )(𝑣2

− 𝑣3) 

𝑖2 = 𝑔𝑚𝑣1 + (𝑔𝑂 − 𝑔𝑚𝑕𝑟 )𝑣2 −  𝑔𝑂 + 𝑔𝑚 (1 − 𝑕𝑟) 𝑣3

                                                                              (17) 

From Fig. 3, 𝑖1 + 𝑖2 + 𝑖3 = 0                                   (18) 

  𝑖3 = −𝑖1 − 𝑖2 

= −(𝑔𝑖 + 𝑔𝑚 )𝑣1 −  𝑔𝑂 − (𝑔𝑚 + 𝑔𝑖)𝑕𝑟 𝑣2 −  𝑔𝑂 + (𝑔𝑚 +
𝑔𝑖  1−𝑕𝑟)𝑣3                                                                (19) 

Equations (16), (17) and (19) have been derived without 

considering any reference or ground point.  

Now Eqns. (16), (16) and (19) are arranged in the form of 

matrix as; 

 

𝑖1 = 𝑖𝑏
𝑖2 = 𝑖𝑐
𝑖3 = 𝑖𝑒

 =

 

𝑔𝑖

𝑔𝑚

−𝑔𝑖 − 𝑔𝑚

−𝑔𝑖𝑕𝑟

𝑔𝑜 − 𝑔𝑚𝑕𝑟

−𝑔𝑜 +  𝑔𝑚 + 𝑔𝑖 𝑕𝑟

−𝑔𝑖(1 − 𝑕𝑟)
−𝑔𝑜 − 𝑔𝑚 (1 − 𝑕𝑟)

𝑔𝑜 + (𝑔𝑚 + 𝑔𝑖)(1 − 𝑕𝑟)
  

𝑣1 = 𝑣𝑣

𝑣2 = 𝑣𝑐

𝑣3 = 𝑣𝑒

 

                                                                                (20) 

The typical values of these h-parameters of any BJT at low 

frequencies are assumed to be as; 

𝑔𝑖𝑒 = 1𝑚𝑆, 𝑕𝑟𝑒 = 10−4, 𝑕𝑓𝑒 = 100, 𝑕𝑜𝑒 = 𝑔𝑜 = 10−6𝑆

= 0.001𝑚𝑆, 𝑔𝑚 = 100𝑚𝑆, 

𝑔𝑖𝑒𝑕𝑟𝑒 = 0.0001𝑚𝑆, 𝑔𝑚𝑕𝑟 = 100𝑚𝑆𝑥10−4 = 10−5𝑆 =
0.01𝑚𝑆,    

𝑔𝑖 1 − 𝑕𝑟 = 1𝑚𝑆 1 − 0.0001 = 0.9999𝑚𝑆, 𝑔𝑜 − 𝑔𝑚𝑕𝑟 =
0.001 − 0.01 = 0.009𝑚𝑆 

After substituting these parameter values, Eq. (20) reduces to  

 

𝑖1 = 𝑖𝑏
𝑖2 = 𝑖𝑐
𝑖3 = 𝑖𝑒

 = 

 
1

100
−101

−0.0001
0.001 − 0.01

−0.001 +  101 0.0001

                                     −0.9999
         −0.001 − 100𝑥(0.9999)
           0.001 + (101)(0.9999)

  

𝑣1 = 𝑣𝑣

𝑣2 = 𝑣𝑐

𝑣3 = 𝑣𝑒

  

 

  

𝑖1 = 𝑖𝑏
𝑖2 = 𝑖𝑐
𝑖3 = 𝑖𝑒

 =  
1

100
−101

−0.0001
−0.0090
0.0091

−0.9999
99.991

100.9909
  

𝑣1 = 𝑣𝑣

𝑣2 = 𝑣𝑐

𝑣3 = 𝑣𝑒

 

  

(21) 

E 3 

B 
1 

C 

2 

 

+ 

1

𝑔𝑖
= 𝑕𝑖  

𝑕𝑟𝑣23 

𝑣13 = 𝑣𝑏𝑒  𝑣23 = 𝑣𝑐𝑒  

𝑖1 = 𝑖𝑏  𝑖2 = 𝑖𝑐  

𝑕𝑓 𝑖1 𝑕𝑂 = 𝑔𝑜  
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We observe from Eq. (21) that the algebraic sum of all 

elements of any row or any column is zero. This verifies the 

zero sum property of the floating admittance matrix.  

Now we would like to demonstrate the advantages of floating 

admittance matrix approach to the circuits analysis in different 

configurations of amplifiers containing BJTs in particular 

using the floating admittance model of the BJT derived in Eq. 

(21). 

III. COMMON EMITTER AMPLIFIER CONFIGURATION 

[20-23] 

The first assumption in the analysis of common emitter 

amplifier (CE) configuration is that the  BJT  is biased in the 

linear region of operation. The second assumption is that the 

external resistances used in biasing the BJT in the linear 

region are much larger than the small signal resistances of the 

BJT. The third assumption is that all bypass and coupling 

capacitors and the DC supply voltage (s) behave as short 

circuits at the signal frequency of operation. Hence, in all 

three configurations to follow, only source and load 

resistances would be considered in deriving different 

equations, for simplicity as in Fig. 4. 

The coefficient matrix in Eq. (20) is called the floating 

admittance matrix for a 3-terminal BJT and is separated from 

it as; 

 

 

𝑔𝑖

𝑔𝑚

−𝑔𝑖 − 𝑔𝑚

−𝑔𝑖𝑕𝑟

𝑔𝑜 − 𝑔𝑚𝑕𝑟

  −𝑔𝑜 + (𝑔𝑚 + 𝑔𝑖)𝑕𝑟

−𝑔𝑖(1 − 𝑕𝑟)
−𝑔𝑜 − 𝑔𝑚 (1 − 𝑕𝑟 )

𝑔𝑜 + (𝑔𝑚 + 𝑔𝑖)(1 − 𝑕𝑟 )
 

                                                                           (22) 

     

 

Fig. 4 Common Emitter Amplifier 

The floating admittance matrix of external source and load 

conductance 𝑔𝑠and 𝐺𝐿 of Fig. 4 are expressed as; 

1     2    3              1      2       3 

 

𝑔𝑠

0
−𝑔𝑠

0
0
0

−𝑔𝑠

0
𝑔𝑠

 
1
2
3

  and    
0
0
0

0
𝐺𝐿

−𝐺𝐿

0
−𝐺𝐿

𝐺𝐿

 
1
2
3

                                    (23) 

Merging Eqs.(22) and (23) as per its node number yields the 

floating admittance matrix of Fig. 4 as; 

 

𝑔𝑖 + 𝑔𝑠

𝑔𝑚

−𝑔𝑖 − 𝑔𝑠 − 𝑔𝑚

−𝑔𝑖𝑕𝑟

𝑔𝑜 − 𝑔𝑚𝑕𝑟 + 𝐺𝐿

−𝑔𝑜 +  𝑔𝑖 + 𝑔𝑚  𝑕𝑟 − 𝐺𝐿

−𝑔𝑖 1 − 𝑕𝑟 − 𝑔𝑠

−𝑔𝑜 − 𝑔𝑚 (1 − 𝑕𝑟) − 𝐺𝐿

𝑔𝑜 +  𝑔𝑖 + 𝑔𝑚  (1 − 𝑕𝑟) + 𝑔𝑠 + 𝐺𝐿

 

                                                                                (24) 

The input impedance or input resistance between terminals 1 

and 3 of Fig. 4 is expressed in terms of co-factors of Eq. (24) 

as; 

 𝑍𝑖𝑛 = 𝑍13 =
 𝑌13

13  

 𝑌3
3 

𝑔𝑠=0

                                   (25) 

Similarly, the output impedance or output resistance between 

terminals 2 and 3 of Fig. 4 is expressed in terms of co-factors 

of Eq. (24) as; 

 𝑍𝑜 = 𝑍23 =
 𝑌23

23  

 𝑌3
3 

𝐺𝐿=0

                                  (26) 

The voltage gain between terminals 2 & 3 and 1 & 3 of Fig. 4 

is expressed in terms of co-factors of Eq. (24) as; 

 𝐴𝑣 13
23 =

𝑣23

𝑣13
= 𝑠𝑔𝑛 2 − 3 𝑠𝑔𝑛(1 − 3)(−1)2+3+1+3  𝑌23

13  

 𝑌13
13  

                                                                              (27) 

The current gain of Fig. 4 is expressed in terms of co-factors 

of Eq. (24) as; 

 𝐴𝑖 13
23 =

𝑣23

𝑣13
= 𝑠𝑔𝑛 2 − 3 𝑠𝑔𝑛(1 − 3)(−1)2+3+1+3  𝑌23

13  

 𝑌3
3 

𝐺𝐿

                                                                              (28) 

The power gain is obtained as the multiplication of the voltage 

and the current gains as; 

 𝐴𝑝  
13

23
=   𝐴𝑣 13

23   𝐴𝑖 13
23                                                   (29) 

The pertinent first order and second order cofactors are 

evaluated from Eq. (24) for subsequent use in deriving the 

mathematical equation of voltage gain, current gain, input 

resistance, output resistance, Power gain etc.are; 

 𝑌3
3 𝑔𝑠=0 =  

𝑔𝑖 + 𝑔𝑠

𝑔𝑚

−𝑔𝑖𝑕𝑟

𝑔𝑜 − 𝑔𝑚𝑕𝑟 + 𝐺𝐿
 

= 𝑔𝑖 𝑔𝑜 − 𝑔𝑚𝑕𝑟 + 𝐺𝐿 + 𝑔𝑚𝑔𝑖𝑕𝑟  

=
𝑕𝑜𝑒

𝑕𝑖𝑒

−
𝑕𝑓𝑒

𝑕𝑖𝑒

𝑥
𝑕𝑟𝑒

𝑕𝑖𝑒

+
𝐺𝐿

𝑕𝑖𝑒

+
𝑕𝑓𝑒

𝑕𝑖𝑒

𝑥
𝑕𝑟𝑒

𝑕𝑖𝑒

=
𝑕𝑜𝑒

𝑕𝑖𝑒

+
𝐺𝐿

𝑕𝑖𝑒

=
𝑕𝑜𝑒

𝑕𝑖𝑒

+
1

𝑕𝑖𝑒𝑅𝐿

=
1 + 𝑕𝑜𝑒𝑅𝐿

𝑕𝑖𝑒𝑅𝐿

 

 𝑌13
13 = 𝑔𝑜 − 𝑔𝑚 𝑕𝑟𝑒 + 𝐺𝐿 = 𝑕𝑜𝑒 −

𝑕𝑓𝑒

𝑕𝑖𝑒

𝑕𝑟𝑒 +
1

𝑅𝐿

=
𝑕𝑖𝑒𝑕𝑜𝑒 − 𝑕𝑓𝑒 𝑕𝑟𝑒

𝑕𝑖𝑒

+
1

𝑅𝐿

 

 =
∆𝑕𝑒

𝑕𝑖𝑒
+

1

𝑅𝐿
=

𝑕𝑖𝑒 +∆𝑕𝑒𝑅𝐿

𝑕𝑖𝑒 𝑅𝐿
 

Where, ∆𝑕𝑒= determinant of h-parameter matrix = 𝑕𝑖𝑒𝑕𝑜𝑒 −
𝑕𝑓𝑒𝑕𝑟𝑒  

2 

1 

3 

GL 

gs is 

3 3 3 
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 𝑌3
3 =  

𝑔𝑖 + 𝑔𝑠

𝑔𝑚

−𝑔𝑖𝑕𝑟

𝑔𝑜 − 𝑔𝑚𝑕𝑟 + 𝐺𝐿
 

= (𝑔𝑖 + 𝑔𝑠) 𝑔𝑜 − 𝑔𝑚𝑕𝑟 + 𝐺𝐿 + 𝑔𝑚𝑔𝑖𝑕𝑟  

=  𝑔𝑖𝑔𝑜 − 𝑔𝑖𝑔𝑚𝑕𝑟 + 𝑔𝑖𝐺𝐿 + 𝑔𝑠(𝑔𝑜 − 𝑔𝑚𝑕𝑟 + 𝐺𝐿)
+ 𝑔𝑚𝑔𝑖𝑕𝑟  

 

=  
𝑕𝑜𝑒

𝑕𝑖𝑒

+
1

𝑕𝑖𝑒𝑅𝐿

 + (
𝑕𝑜𝑒

𝑟𝑠
−

𝑕𝑓𝑒

𝑕𝑖𝑒

𝑥
𝑕𝑟𝑒

𝑟𝑠
+

1

𝑟𝑠𝑅𝐿

)

=  
1 + 𝑕𝑜𝑒 𝑅𝐿

𝑕𝑖𝑒𝑅𝐿

 + 𝑔𝑠(
𝑕𝑖𝑒𝑕𝑜𝑒 − 𝑕𝑓𝑒𝑕𝑟𝑒

𝑕𝑖𝑒

+
1

𝑅𝐿

) 

 =  
1+𝑕𝑜𝑒 𝑅𝐿

𝑕𝑖𝑒 𝑅𝐿
 + 𝑔𝑠(

∆𝑕𝑒

𝑕𝑖𝑒
+

1

𝑅𝐿
) =  

1+𝑕𝑜𝑒 𝑅𝐿

𝑕𝑖𝑒 𝑅𝐿
 +

𝑔𝑠(
𝑕𝑖𝑒 +∆𝑕𝑒𝑅𝐿

𝑕𝑖𝑒 𝑅𝐿
) =  

1+𝑕𝑜𝑒 𝑅𝐿+𝑔𝑠(𝑕𝑖𝑒 +∆𝑕𝑒𝑅𝐿)

𝑕𝑖𝑒 𝑅𝐿
  

 

 𝑌3
3 𝐺𝐿=0 =  

𝑔𝑖 + 𝑔𝑠

𝑔𝑚

−𝑔𝑖𝑕𝑟

𝑔𝑜 − 𝑔𝑚𝑕𝑟 + 𝐺𝐿
 

=  𝑔𝑖 + 𝑔𝑠  𝑔𝑜 − 𝑔𝑚 𝑕𝑟 + 𝑔𝑚𝑔𝑖𝑕𝑟  

  =  𝑔𝑖𝑔𝑜 − 𝑔𝑖𝑔𝑚𝑕𝑟 + 𝑔𝑠 𝑔𝑜 − 𝑔𝑚𝑕𝑟 +
𝑔𝑚𝑔𝑖𝑕𝑟 = 𝑔𝑖𝑔𝑜 + 𝑔𝑠 𝑔𝑜 − 𝑔𝑚𝑕𝑟  

=
𝑕𝑜𝑒

𝑕𝑖𝑒

+ 𝑔𝑠  𝑕𝑜𝑒 −
𝑕𝑓𝑒

𝑕𝑖𝑒

𝑕𝑟𝑒  =
𝑕𝑜𝑒

𝑕𝑖𝑒

+ 𝑔𝑠  
∆𝑕𝑒

𝑕𝑖𝑒

 

=
𝑕𝑜𝑒 + 𝑔𝑠∆𝑕𝑒

𝑕𝑖𝑒

 

 𝑌23
23 = 𝑔𝑖 + 𝑔𝑠 =

𝑕𝑖𝑒 + 𝑟𝑠
𝑕𝑖𝑒𝑟𝑠

 

The voltage gain between terminals 2 & 3 and 1 & 3 of Fig. 4 

is expressed in terms of co-factors of Eq. (24) as; 

 𝐴𝑣 13
23 =

𝑣23

𝑣13
=  −1  −1  −1 

 𝑌23
13  

 𝑌13
13  

= −
 𝑌23

13  

 𝑌13
13  

= −
𝑔𝑚

𝑕𝑖𝑒 +∆𝑕𝑒𝑅𝐿
𝑕𝑖𝑒 𝑅𝐿

=

−
𝑔𝑚 𝑕𝑖𝑒 𝑅𝐿

𝑕𝑖𝑒 +∆𝑕𝑒𝑅𝐿
  

= −
𝑕𝑓𝑒 𝑅𝐿

𝑕𝑖𝑒 +∆𝑕𝑒𝑅𝐿
 −

𝑕𝑓𝑒 𝑅𝐿

𝑕𝑖𝑒
= −𝑔𝑚𝑅𝐿                                    (30) 

The input impedance or input resistance between terminals 1 

and 3 of Fig. 4 is expressed in terms of co-factors of Eq. (24) 

as; 

𝑍𝑖𝑛 = 𝑍13 =
 𝑌13

13  

 𝑌3
3 

𝑔𝑠=0

=

𝑕𝑖𝑒 +∆𝑕𝑒𝑅𝐿
𝑕𝑖𝑒 𝑅𝐿

1+𝑕𝑜𝑒 𝑅𝐿
𝑕𝑖𝑒 𝑅𝐿

=
𝑕𝑖𝑒 +∆𝑕𝑒𝑅𝐿

1+𝑕𝑜𝑒 𝑅𝐿
        (31) 

The output impedance or output resistance between terminals 

2 and 3 of Fig. 4 is expressedin terms of co-factors of Eq. (24) 

as; 

 

 𝑍𝑜 = 𝑍23 =
 𝑌23

23  

 𝑌3
3 

𝐺𝐿=0

=

𝑕𝑖𝑒 +𝑟𝑠
𝑕𝑖𝑒 𝑟𝑠

𝑕𝑜𝑒 +𝑔𝑠∆𝑕𝑒
𝑕𝑖𝑒

=
𝑕𝑖𝑒 +𝑟𝑠

𝑟𝑠(𝑕𝑜𝑒 +𝑔𝑠∆𝑕𝑒)
=

𝑕𝑖𝑒 +𝑟𝑠

𝑟𝑠𝑕𝑜𝑒 +∆𝑕𝑒
                                                                               (32) 

The current gain of Fig. 4 is expressed in terms of co-factors 

of Eq. (24) as; 

 𝐴𝑖 13
23 =

𝑣23

𝑣13
= 𝑠𝑔𝑛 2 − 3 𝑠𝑔𝑛(1 − 3)(−1)2+3+1+3  𝑌23

13  

 𝑌3
3 

𝐺𝐿

                                                                               (33) 

=  −1  −1  −1 
 𝑌23

13 

 𝑌3
3 

𝐺𝐿 = −
 𝑌23

13 

 𝑌3
3 

𝐺𝐿

= −
𝑔𝑚𝐺𝐿

1+𝑕𝑜𝑒 𝑅𝐿+𝑔𝑠(𝑕𝑖𝑒 +∆𝑕𝑒𝑅𝐿)

𝑕𝑖𝑒 𝑅𝐿

 

= −
𝑔𝑚𝐺𝐿𝑕𝑖𝑒𝑅𝐿

1 + 𝑕𝑜𝑒𝑅𝐿 + 𝑔𝑠 𝑕𝑖𝑒 + ∆𝑕𝑒𝑅𝐿 

= −
𝑕𝑓𝑒

1 + 𝑕𝑜𝑒𝑅𝐿 + 𝑔𝑠(𝑕𝑖𝑒 + ∆𝑕𝑒𝑅𝐿)
 

= −
𝑕𝑓𝑒

1+𝑕𝑜𝑒 𝑅𝐿
 for 𝑔𝑠 = 0  (−𝑕𝑓𝑒 )                                  (34) 

Equation (34) is available in all standard books which is the 

approximate ones after assuming𝑔𝑠 = 0. Our method is 

simple and yields exact ones.  

The power gain is obtained as the multiplication of the voltage 

and the current gains as; 

 𝐴𝑝  
13

23
=   𝐴𝑣 13

23   𝐴𝑖 13
23 =  −

𝑔𝑚 𝑕𝑖𝑒 𝑅𝐿

𝑕𝑖𝑒 +∆𝑕𝑒𝑅𝐿
  −

𝑕𝑓𝑒

1+𝑕𝑜𝑒 𝑅𝐿
 ≅

𝑔𝑚𝑅𝐿𝑥𝑕𝑓𝑒 = 𝑕𝑓𝑒 𝑔𝑚𝑅𝐿                                                 (35) 

IV. CONCLUSION 

The floating admittance matrix approach is very simple, once 

conceived. The computer can be used to solve all the elements 

of the FAM and the voltage gain, current gain, power gain, 

input resistance (impedance), and output resistance 

(impedance) of any complex floating admittance matrix of 

any circuit to the fractional part of the values.  
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