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Abstract:- A Linear Multistep Method of order six with two off-
grid points is presented for direct numerical integration of
second order initial value problems of ordinary differential
equations. Several methods are developed using interpolation
and collocation approach with special cognizance of two hybrid
points which are selected to enhance the accuracy of the block
methods. The properties and convergence of the proposed
method are discussed. Superiority of the method over existing
methods is established by implementing the method on different
test problems.
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I. BACKGROUND

I n this work, initial value second-order problems of the
form:

y'=f(t,y y) v@=a, y@=a,
)

is numerically integrated where a, b, @,, @, are real
numbers.

The mathematical models in engineering and many spheres of
human endeavors often lead to initial value problem of
ordinary differential equations (1)

Several numerical methods have been designed and
proposed in literature for solving second order ordinary
differential equations. For example, [1] developed a self-
starting linear multistep method and applied it to solve second
order I\VVPs of ODEs directly. Two intra step grid points were
considered by means of collocation and interpolation
approach. [2] proposed a single-step hybrid block method of
order five to solve second order ODEs. In the work, three off-
step points were approximated by collocation approach. In the
work by [3], continuous hybrid multistep method with
Legendre polynomial as the approximate solutions was
investigated to obtain the approximation of stiff second order
ODEs. Also, two intra step grid points were considered by
means of collocation and interpolation approach. Moreso, [4]
developed numerical solution of stiff and oscillatory first
order differential equations, using the combination of power
series and exponential function as basis function. [5] used the
same basis function to produce a new numerical integration

for the solution of stiff first order ODEs. Most of the methods
proposed for the solution of stiff problems are numerically
unstable unless the step size is taken to be extremely small
and the adoption of implicit A-stable schemes is better for the
solution of stiff or stiff oscillatory problems. Above all, most
proposed numerical methods implemented in block modes
were problem dependent. In other words, the numbers of
interpolation are subject to the order of the problem.

In this work, a linear multistep hybrid formula with two-
point for direct solution of IVPs of second order ODEs is
proposed. The method is implemented in block mode and
problem independent. It was also shown that the block method
is zero stable and consistent and therefore convergent.

Il. DERIVATION OF THE METHOD

In this section, the derivation of a continuous implicit two-
point hybrid method for the solution of IVP (1). Consider the
equally spaced points on the integration interval given by

A=Xy <X < <Xy, <Xy =Db 2

With a specified positive integer step size given by

b-a

h=x,,—X,n=1---,N;N :T.

Assuming the polynomial function

2(k+1) _
yx) =Y ax’
j=0
@)
where a, 'S are unknown parameters to be determined,
x €[a, b], the solution interval, K is the number of step.

The second derivative of (3) as compared with (1) gives

2(k+1)

f(x v, y)= 2 (i(i-Dax'?)

j=2

(4)
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Equations (3) and (4) are approximated at points, t . i

j= O(%J 2 and j =0(1)2 respectively. A system of seven

equations with seven unknowns @;, j=0,1,---,6. These
may be written in matrix form:

100 0 0 0 0
L1111 11 gy |
2 4 8 16 32 64 | o Y,
111 1 1 1 1 ‘
3| | %

3 9 27 81 243 729
L T S % m e B
2 4 8 16 32 64 3
00 2 0 0 0 0 [[%] ¢
00 2 6 12 2 30 ||%] ¢
00 2 12 48 160 480 |\%/) |
®)

Solving (5) above using Gaussian Elimination method in
Maple soft environment gives the following values of a; 's

aQ =Y,

_23 48 5T 12 +hz(_23f LA +1fj
75°° 2572 257 7572 200 ° 100 ' 200 °

aZ:%hzf0

64 128 448 256 2[ 137 . 203, 11 ]
45 ' 180 °

=—V,+—Y,—— Y, +—Vy,+h°| - —
RRETRANT y; 15715 yg 180 °

16 1088

2608 1376 2(559 4217 127 j
a,= Yo y, + +h f
5 45 735

5 " 15 yg 1080 ° 540 ' 1080 *
(6)

_Ey +LSZy _%y +LG4y +h2(_4f _& _i j
%= g Yot g V1T s it Vs 25 % 25 1 2572

2 2

a ——gy +%y —2y +h2(if £ 325 +ifJ
® 97l 97t 97 54 ° 27 ' 54°

2

Equation (6) are then substituted into equation (3), and after
some algebraic evaluations obtained a continuous scheme of
the form
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0= D a0y, +m (Y + T + D A,
U]

where Y(X) is the numerical solution of the initial value
problem and  «;(X), 7,(X), 7,(X), B;(t) are continuous
coefficients.

2, :7—15(37| ~1601° + 481°)

a, = i(225+1073| —46401° — 40001* +13921° +16001°)
t205

r =t (928l +3040I° + 20001* —9121° —8001°)
> 225

2

T. = 1 (225+10731 — 46401° — 40001 +13921° +16001°)
3225

2

~ 1 (01144301 — 251 - 2641° +1001°
" 5400

B = %Oo(lwl +135012 — 49601° — 49601 +14881° + 23001°)

®)
1
=_——(171-110I° - 251* +168I° +100I°
P2 =5a00 )
1 d 1
where | = H(X— Xn+k—l)7 & = H

when (8) is evaluated at X =X, or | =1, the result yields a
symmetric scheme

256 395 395 256 he
=y -y 2y, -y, 4y, +——— (28,1856 f, + 28,).
273 yg 397 gg g 1T 9477( ’ v+ 281,)

©)

The first and second derivatives of (8) are

al = i(37—480|2 +2401%)
° 75

L

275 (1073-139201* —160001° + 69601 +96001°)

,_
o, =
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T = 1 (—928+912012 +80001° — 45601 —48001°)
L 225

Ty = %25 (1073-139201° —160001° + 69601 +9600I°)

B = ﬁ (91+12901° —100I° -13201* +6001°)

Bl = Tloo (1147 + 27001 —148801 —198401° + 74401 * +138001°)

Bl = — (173301 —100I° +8401* + 6001°)

5400
(10)
o= 192
=— (l 1°)
ol = E (5568l —96001° +5568I° +96001*)
T =— (3648I + 480012 —36481° — 48001)
2
Ty =— (5568I —96001° +5568I° +96001*)
2
1
"= _——_ (1291 —15I% — 2641° +1501*
yix 270 ( )
= % (135-14881 — 29761 +1488I° +34501*)
= 1 (331 —15I1° +168I° +1501*)
270
(11)

To get additional discrete schemes to form the block, the first
and second derivatives (10) and (11) are evaluated at points

X=X,1= 0(%)2 and (% gj respectively give
1
Yo = h

, 1(259 272 217 68 h
= =y

o 51 48 209
75°2 257 2572 75

2

h
y0]+200(f2+82f1—23f0)

- 12141, +571f,)

=2 =2y, - t—(-f
: 225y§ P 225y1 75 21600(

+ Ty - 17f+2294f -91f
st T o0 )

22575 2257 2257 15

, 1 256 1073 928 h
y1:H _7y

1(653 408 213 68 ) h
e Sy, Ty 2 + f,—982f, +23f
E h[75 Yo7 s W s 75y] s00” o)

(12)

V) :i[f’%“ y, - 12287 - 27386, +3791,)

6832 203 h
R
257 225

ey -y = (f
225 y; 75 b 5400(

, 1
Y175

2

[_43/3 +32y, —52y, +24y0j+io( f,+22 f1—23f0)
2 2

Vi :5:]2(204y3 - 432y, + 252y, —24y0j+82( f,- 6541, +11f,)
2 2 2

1. IMPLEMENTATION OF THE BLOCK METHOD

The general block formula with modification for the
implementation of the new block method in the normalized
form is as given below
AY,, = Ay, +BF,. (13)
Solving equations (9) and (12) using matrix inversion to
obtain the coefficients of (13) of the new block method as

Y1 1 Y1
10000000 2 0001000 >h 2
01000000 zl 0001000 h i’/’l
3 3
00100000} 0001000 3n|| =
00010000y, 2 ||y,
00001000|y,|7[00010002h |y "
00000100 2 0000O0OO0O01 2
00000010 % | |00000001 |Y4
00000001 yg 00000001 y%
v, 00000001 )|
367h2 3h2  47h2? 29h? 7h?
5760 32 960 1440 1920
53h2 2h?  h? 2h? h?
360 5 12 45 120
147h% 117h® 27h? 3h?  9h? .
640 160 320 32 640 f°
14h2 16h2 4h2? 16h?2 o 1
45 15 15 45 f,
251h 323h 11h 53h  19h fl
1440 720 60 720 1440 s
29h  31h 2h  h _ h f,
180 45 15 45 180
27h 51h oh 21h 3h
160 80 20 80 160
7h  32h 4h  32h 7h
45 45 15 45 45
(14)
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Writing equation (14) explicitly gives:

2

1., h
Y, =Y, +=hy, +

— (367 +540f, —2821 +116f, - 21f
; 2 5760( " : v+ief, 21t

2 2

2
y, =y, +hy’ +%(53fn +144f, —30f +16f, —3f,)

2 2

3 h?
=y +—hy' +—(147f +468f, +54f +60f, —9f
yg yn 2 yn 640( n % 1 g 2)
hZ
Yy, =Y, +2hy; +4—5(314 f +48f, +12f +16f,)

2 2

! ! h
y% =hy; +%(251f” +646 fl —264f, +106 f§ -191,)

2 2

w::hy;+i£6(29fn+124fl+24f1+4f3—-g)

2 2

yo by + (27 +102f, +721, + 421, —3f,)
s 160 ! s
(15)

y, =hy; +£(7 f,+32f, +12f, +32f, +7f1,)
45 2 2
IV. ANALYSIS OF THE PROPERTIES OF THE METHOD
4.1 Order and error constant of the block method
Following the multistep collocation method (7), the
associated linear difference operator  defined by

S

y(x);h]= iqﬁj ()Y (x+ 3 +(SO)y(x+uh) +y () y(x+vh)) + hzZ}'j(X)Y”(H i)
(16)

where  Y(X) is an arbitrary function, continuously

differentiable on [&, b]. Following [6], equation (16) can be
written as Taylor series expansion about point X to obtain

y(); 1= Coy(x) +Cihy'(x) + Cn*y"(x) + -+« +C hPy P (x) +---,
(17)

where the constant coefficients. Expanding the block method
(14) by Taylor series and combining coefficients of like terms

in hngive the order of the proposed block methods as
[5,5,555,5,5, 5]T and error constants as
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8.2930x10°°,1.9841x10,3.1390x10°*,3.9683x10™, 2.9297x10,1.7371x10*,2.9297x10™,

-6.6138x10°

4.2 Zero stability of the block method

The new block method (14) is said to be zero stable if the
k

za(i)lk—l

i=0

first characteristic polynomial /0(/1) = =0 and

satisfies ‘/1,-‘31, J=1---,K and for those roots with

‘ﬂj‘ =1 the multiplicity does not exceed two, [6]. The
characteristics function of the new block method is as follows:

1
10000000 00010005h
01000000/ /0001000h
001000001 1545010003

00010000 9 7

pi)= 00001000/ 100021000 2h =1 (4-1)=0
00000100 (00000001
00000010/ /00000001
00000001/ (00000001
00000001

and the solution is given as 4=0,0,0,0,0,0,0,1 The
roots of the characteristic polynomial are 4 =0, for

i=1...,7 and 45 =1 Therefore, the method is zero-

stable, since the roots of the characteristic polynomial are all
zero except one, whose absolute value is one (see [10]) .

4.3 Consistency

The hybrid block method is said to be consistent if the
order of the individual method that make up the block is
greater than or equal to one. It is therefore clear from
subsection 4.1 that the new hybrid block method is consistent.

4.4 Convergence

The necessary and sufficient conditions for the hybrid
block method (13) to be convergent are that it must be
consistent and zero-stable (see [2]). Therefore, since the new
derived hybrid block method is consistent and zero-stable,
then the method is convergent.

4.5 Region of Absolute Stability

In this section, the regions of absolute stability of the new
methods are determined in order to guide the choice of the
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step size for the method. In doing this, let the test problem for
the methods be given as

y"=—A%f where f = f(x,y,Yy’) and A is complex.
(18)

The stability polynomial of the derived continuous block
method (7) given by

z(r,h) = p(r)—ho(r)=0 (19)

where p(r) and o(r) are the first and second characteristic

d*f

PR

polynomials respectively, h = —1?h? and 1 =

Using the test problem in (18) for the block mode (13) the
method gives

= [ AN =AY

since h is given as h =h?1? and r=€", James et al.
(2013).

Equation (20) is adopted to determine the region of
absolute stability for the new hybrid block method.

Adopting the method of [1], the method was reformulated as

'Y 1 [A U || h*f(y)
=. ) ) (21)
Y. | |B V__ f, |
where
0 0 0 0 0 i o
f Y
3 4 0 71 ' '
5760 32 960 1440 1920 fa !
53 2 1 2 1 : :
I = A 11 B S R
360 5 12 45120 v) f"” Yo
wowoo27 39 il |
640 160 320 2 640 ¢
L "n+2 yn+2
o4
L 45 15 15 45 ]
) 01
%7 3 YR 7 01
60 2 980 1440 1920 01
5| 5760 3 %0 1401920 |yl q| _
wowo 273 9 0 01
1640 160 320 32 640 01
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M and |
respectively.

Substituting these entries A, B, U, V, M and I into the stability
matrix given as

M(z) =V +zB(M —zA)'U (22)

are identity matrix of dimension 7 and 3

and then into the stability function given as
p(1, 7) = det(nl —M (2)) (23)

to give stability polynomial using Maple software. This is
plotted in MATLAB (R2013a) environment to produce the
required region of absolute stability of the method to generate
the required region of absolute stability of the new hybrid
block method shown in figure 1.

11

L]

Figure 1: Region of Absolute Stability of 2-step 4-point hybrid method. The

n
Figure 1 shows the region cover the complex plane zeC hence the
method is A-Stable.

V. NUMERICAL EXPERIMENTS

Some numerical examples are presented to show the
accuracy of the developed Hybrid Block Method (HBM). In
the examples considered the absolute errors were obtained as

Err :|yi _y(xi)|, where Yi is the approximate solution

obtained using the new method BHM and Y(X) is the exact
solution of the problem considered at the grid points.

Problem 1. Cooling of a body

The temperature Y degrees of a body, t minutes after
being placed in a certain room, satisfies the differential
equation 3Y" +Y' =0 By using the substitutionZ=Y", or
otherwise, find Y in terms of t given that Y = 60 when
t=0 and Y =35 when t=6INn4_ Find after how many
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minutes the rate of cooling of the body will have fallen bellow
one degree per minute, giving your answer correct to the

nearest minute.

Problem formulation 1

!

y

80

Theoretical solution is

/r:__’ 0 260' "(0 =——, h=0.1
v =2 y(0) =60,y -~

1
v =

3

Table 1: Shows the numerical solution of our method compared with the method of [8].

t Yoract ycomputed Error in New Scheme, Error in [8]
p=5k=2. p=>5k=3.
0.10 59.125762679520165000 59.125762679520399000 2.344791e-13 3.55e-11
0.20 58.280186267509812000 58.280186267510032000 2.202682e-13 4.58e-11
0.30 57.462331147625591000 57.462331147625719000 3.935749e-12 7.00e-11
0.40 56.671288507811937000 56.671288507811006000 2.704951e-12 6.50e-12
0.50 55.906179330416379000 55.906179330416211000 7.599112e-12 3.33e-11
0.60 55.166153415412850000 55.166153415412338000 1.569518e-12 4.20e-11
0.70 54.450388435647511000 54.450388435644114000 2.756872e-12 4.38e-11
0.80 53.758089023057302000 53.758089023093056000 4.375392e-11 1.07e-10
0.90 53.088485884845809000 53.088485884802636000 6.474571e-11 6.58e-11
1.00 52.440834948634382000 52.440834948611451000 9.100178e-11 1.69e-10
Problem 2
n2
y”:(y) -2y, Yy z =1,y' z ﬁ,hz0.0l
2y 6) 476
Theoretical solution is
y(t) =sin’t.
Table 2: Shows the numerical solution of our method compared with the method of [9].
yexact ycomputed Error in New Scheme, Error in [9]
t p=5k=2. p=7,k=3.
0.5440 0.267515862977780850 0.267515862981737800 3.956946e-12 4.0400e-10
0.5540 0.276415041478145830 0.276415041451067880 2.702922e-11 1.1000e-09
0.5640 0.285403650980826370 0.285403650932723310 5.491897e-11 2.0200e-09
0.5740 0.294478096161868210 0.294478096155077210 1.088321e-11 3.1700e-09
0.5840 0.303634747364189770 0.303634747303433520 4.643924e-11 4.5500e-09
0.5940 0.312869942049397220 0.312869942850434640 2.450104e-10 6.1500e-09
0.6040 0.322179986262750740 0.322179986054477070 3.279173e-10 7.9700e-09
0.6140 0.331561156110697200 0.331561156599896380 4.348920e-10 9.9900e-09
0.6240 0.341009699250378160 0.341009699720449840 5.447007e-10 1.2200e-09

Problem 3: Stiff second order

y' =22y, A=2,y(0) =1, y'(0) =2, h =001
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Theoretical solution is

y(t) = cos 2t +sin 2t

Table 3: Shows the numerical solution of our method compared with the method of [8].

yexact ycomputed Error in New Scheme, Error in [8]
t p=>5k=2. p=>5k=3.
0.010 1.019798673359910900 1.019798673359911100 2.220446e-16 3.409e-11
0.020 1.039189440847612100 1.039189440847612600 4.440892e-16 3.239%-11
0.030 1.058164546414648700 1.058164546414646600 2.014302e-15 3.465e-11
0.040 1.076716400271792200 1.076716400271791000 1.419108e-15 2.400e-13
0.050 1.094837581924853900 1.094837581924851400 2.006848e-15 1.780e-12
0.060 1.112520843142785500 1.112520843142773000 1.606479%-14 7.467e-11
0.070 1.129759110856873600 1.129759110856839000 4.544461e-14 3.904e-11
0.080 1.146545489989872800 1.146545489989899500 2.503516e-14 4.132e-11
0.090 1.162873266213945600 1.162873266213345900 6.782759%-13 1.197e-10
1.000 1.178735908636302700 1.178735908636520200 5.427678e-13 8.342e-11
Problem 4: Nonlinear second order
y =x(y) YO =1 (O ==, h=—
2 30
Theoretical solution is
ya)=1+11n(3i1j
2 (2-t
Table 4: Shows the numerical solution of our method compared with the method of [2].
t Yerect ycomputed Error in New Scheme, Error in [2]
p=5k=2. p=5k=1.
0.10 1.050041729278491400 1.050041729278497300 6.594725e-15 1.310063e-14
0.20 1.100335347731075800 1.100335347731074500 1.229683e-15 3.974598e-14
0.30 1.151140435936466800 1.151140435936466600 7.095879¢-15 1.021405e-14
0.40 1.202732554054081900 1.202732554054084600 3.544276e-15 3.304024e-13
1.00 1.549306144334053000 1.549306144334071300 2.290128e-14 1.292744e-12
Problem 5

y"=Yy', y(0)=0, y'(0)=-1,h=0.1

Theoretical solution is

y(t) =1-¢'
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Table 5: Shows the numerical solution of our method compared with the method of [8].

Error in New Scheme, Error in [8]
t Yexact ycomputed p= 5, k =2. p= 5, k =3.

0.10 -0.105170918075647710 -0.105170918070019560 5.628151e-12 7.56500e-11
0.20 -0.221402758160169850 -0.221402758133080300 2.708955e-11 1.60170e-10
0.30 -0.349858807576003180 -0.349858807508350580 6.765261e-11 1.76000e-10
0.40 -0.491824697641270350 -0.491824697510172710 1.310976e-10 6.07843e-10
0.50 -0.648721270700128190 -0.648721270478339050 2.217891e-10 1.47289e-09
0.60 -0.822118800390509330 -0.822118800045752550 3.447568e-10 2.53363e-09
0.70 -1.013752707470477100 -1.013752706964691400 3.447568e-10 4.78762e-09
0.80 -1.225540928492468300 -1.225540927780946100 7.115222e-10 7.27701e-09
0.90 -1.459603111156950700 -1.459603110187362100 9.695886e-10 1.01696e-08
1.00 -1.718281828459046400 -1.718281827170330000 1.288716e-09 1.48265e-08

Problem 6: (Two body Problem)

y/=—y, +cost, y,(0)=-1, y/(0)=-1,
ys =y+sint, y,(0)=1, y;(0)=0

Theoretical solution is Y, (t) =—cost—sint; y,(t) =cost

The maximum errors |Y, ... — yComputed

obtained with the method for Problem 6, the execution time in microseconds t, and

the total steps taken are compared with that of [9] two step two point method.

Table 6: Shows the numerical solution of our method compared with the method of [9].

Results of [9]

Results in New Scheme

TOL
MTD TS  MAXE TIME NMTD TS MAXE  TIME
10 2PHM 33 2.768463E-10 119  2PHBM 33 2.1345E-12 85
10" pHMm 55 1.275646E-13 213  2PHBM 55 3.7642E-15 102
10°  2PHM 74  3510407E-14 262  2PHBM 74 15218E-16 222
10°  2pHM 130  7.510650E-13 447 2PHBM 130 47135E-16 350
10 2pHM 278  3088640E-13 922 2PHBM 278 65937E-17 689

VI. CONCLUSION

This paper has produced a new hybrid block method for
direct solution of general second order initial value problems.
The method is developed in such a way that the hybrid points
are at Y~ function which enhanced the reduction of
function evaluation. The derived method was implemented in
block mode with the merits of being self-starting and uniform
order of accuracy. It should be noted that this particular block

method is problem independent and as such there is freedom
of choice of numbers of interpolation points. Furthermore, the
new derived method is preferable for solving most of the
problems used in this paper. Finally, the region of absolute
stability of the block method is presented in Figure 1. All
codes are designed using Maple and Matlab software package
to generate the schemes and results.
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VII. ABBREVIATIONS

TOL - Tolerance, MTD — Method Employed, TS — Total
Steps taken, MAXE — Magnitude error of the computed
solution, TIME — The execution time taken in microseconds,
NMTD — New method employed, 2PHBM — 2-Point Hybrid
Block Method
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