
International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue XI, November 2019 | ISSN 2321–2705

www.rsisinternational.org Page 24

A Review on Scrubbing Techniques in Static Random

Access Memory Based Field Programmable Gate

Array

O.E. Haruna
1*

, I. Mafiana
2
, A.M. Ogunleye

3
, A.Y. Ihiabe

4
, S.Magaji

5

1,2,3,4
Centre for Satellite Technology Development (National Space Research and Development Agency), Abuja, Nigeria.

5
Computer Engineering Department, Ahmadu Bello University, Nigeria

Abstract: Static Random Access Memory (SRAM) based Field

Programmable Gate Array (FPGA) are semiconductor devices

with large logic resources, programmable interconnects, and

other resources making the device re-programmable thus,

having broad applicability. SRAM-based FPGAs are sensitive to

radiation induced Single Event Upset (SEU) within the

configuration memory, whereby a fault as a result of radiation

strike from high energetic particles causes the logic state of the

SRAM cell to flip. The configuration memory defines the

operation of the Configurable Logic Blocks (CLBs), routing

resources, Input-Output Blocks (IOBs), and other FPGA

resources and upset in the configuration memory can change the

operation of the circuit. Therefore configuration memory

scrubbing is a solution to mitigate against SEU. In this paper we

present a review of existing scrubbing techniques, the

parameters considered, results obtained and possible

modifications are suggested as well.

Keywords: SRAM, FPGA, Configuration memory, Scrubbing,

Single event upset.

I. INTRODUCTION

RAM-based FPGAs are Complementary Metal Oxide

Semiconductor (CMOS) devices having thousands to

millions system logic gates with hundreds of millions of

configuration bits dominating the SRAM cells and the cells

are composed of transistors linked with interconnect wires

[11]. Unlike Application Specific Integrated Circuits (ASICs),

whose functions cannot be altered after fabrication, SRAM-

based FPGAs have the advantage of being reprogrammed

providing high computational density and efficiency for many

computing applications by allowing circuits to be customized

to any application of interest [22].FPGAs are versatile devices

that allow a function to be implemented by mapping it into the

FPGA’s pre-existing logic resources. The mapping is referred

to as its Configuration [3], SRAM-based FPGAs are more

prone to soft errors in the form of SEU since radiation strike

in the configuration memory has a permanent effect on the

functionality of the mapped design [17].

The presence of high energy protons, heavy ions, and galactic

cosmic rays in space and other radiation environment cause a

number of problems for electronics including FPGAs. This

radiation can induce a number of negative effects including

upsets in the internal state of the device and can cause several

Problems in FPGA-based systems. As mentioned earlier,

SEUs can corrupt the configuration memory of the device

causing the design configured on the devices to operate

incorrectly. In SRAM FPGAs, SEUs can affect the

configuration and provoke errors that remain until the device

is reconfigured [23]. These errors which could be either SEU

or Multiple Bit Upset (MBU) within the configuration

memory are mitigated through the process called scrubbing

where the correct logic bit is written back into the SRAM

cell(s) [18].

II. BACKGROUND

A. The FPGA Architecture

FPGA can be divided generally into application layer and

configuration layer which is also referred to as the

configuration memory layer. The application layer includes

the logic and memory elements managed by user’s application

and configuration layer includes the logic bits and memory

elements that allows configuring the logic and routing

resources in the application layer. Figure 1 shows a

conceptual layers of a Field Programmable Gate Array.

Configuration

Layer

Application

Layer

Figure 1: Conceptual Layers of an FPGA

B. Application Layer

The application layer comprises the logic, memory and

S

International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue XI, November 2019 | ISSN 2321–2705

www.rsisinternational.org Page 25

input/output resources for user application. The layer

implements Configurable Logic Blocks (CLBs), which can be

configured to implement any user sequential or combinational

circuit and provides the basic logic and storage functionality

for a target application design. FPGAs are typically made up

of highly configurable logic blocks containing Look up Tables

(LUTs) that defines logic functions and registers used for

sequential logic. Each CLB in turn consists of several slices,

and each slicecontains LUTs, registers and carry logic [13].

C. Configuration Layer

The configuration layer comprises the configuration memory

otherwise known as bitstream and associated access ports and

control logic. The layer consist of access ports for reading and

writing from/to configuration memory The configuration port

is internally connected to a built-in circuitry that decodes the

configuration data providing read or write access to the

configuration memory [8]. The functionality of an FPGA is

dependent on the contents of its configuration memory [4].

D. The SRAM cell Technology

Fundamental technology of FPGA consists of arrays of logic

elements and registers, along with a configurable

interconnection matrix. The current shrinking of device size

helps FPGAs to be faster and denser, but at the same time also

make them less reliable due to shrinking transistor size, the

threshold voltage required to switch them, also shrinking

makes transistors more prone to radiation induced errors [19].

SRAM based FPGA will lose their configuration when power

is removed, therefore, SRAM devices require a non-volatile

configuration memory unit to store configuration data. This

data must be loaded into the SRAM device after the FPGA is

powered-on before use [7].

The SRAM Cell Architecture

The SRAM cell widely used is the full CMOS 6-Transistor

(6T) memory cell. The 6T SRAM is a type of semiconductor

memory that uses bi-stable latching circuitry to store each bit.

The SRAM cell consists of two inverters P1, N1 and P2, N2

alongside with two access Metal Oxide Semiconductor Field

Effect Transistor (MOSFET) N3 and N4 as shown in Figure 2.

P1 P2

N1 N2

N3

N4A

B

WL

GND

Bit
Bit-bar

VDD

P1,P2 – Load MOSFET

N1,N2 – Driver MOSFET

N3,N4 – Access MOSFET

A,B – Cell node

WL – Word line

Bit,Bit-bar – Bit line

Figure 2: Schematic of a 6T SRAM Cell

The 6T SRAM cell operates in three different modes. The first

mode is the standby mode (circuit is idle) the word line is not

triggered therefore the word line is 0V, so the pass transistors

N3 and N4 which connect 6T cell from bit lines are turned off.

It means that cell cannot be accessed. The two cross coupled

inverters formed by N1-N2 will continue to feedback each

other as long as they are connected to the supply, and data will

hold in the latch.

The second mode is the read mode (data has been requested).

In this mode, the word line is triggered therefore the word line

is “1”, so word line enables both the access transistors which

connects the cell from the bit lines. Now values stored in node

“A” or “B” are transferred to the bit lines to be accessed,

either the value in node “A” or “B” is accessed. Assuming

that “1” is stored at node A so bit line bar will discharge

through the driver transistor N1 and the bit line will be pull up

through the load transistor P1 toward VDD, hence a logic “1”

is confirmed. SRAM cell technology ensures read stability

therefore data are not disrupted during read operation.

The third mode is the write mode (updating the content). In

this mode, if “1” is initially stored in the cell and needs to be

written with a “0”, the bit line is lowered to 0V and bit bar is

raised to VDD, a cell is selected by raising the word line to

VDD, for SRAM to operate in write mode it must have write-

ability which is minimum bit line voltage required to flip the

state of the cell.

The power consumption of SRAM varies widely depending

on how frequently it is accessed, it can be high when used at

high frequencies. On the other hand, SRAM used at a

somewhat slower pace at lower frequency draws very little

power and can have a nearly negligible power consumption

when sitting idle [2].

III. SCRUBBING TECHNIQUES

Carmichael & Brinkley Jr., [6] proposed a technique which

involved the use of redundancy such as TMR were three

identical FPGAs and a voting circuit where implemented

inside or outside the FPGA and only sensitive logic resources

were triplicated. An error detection scheme whereby during

readback process a Cyclic Redundancy Check (CRC) code

was generated for a portion of the configuration data

containing sensitive resources and a second readback of the

same portion of the configuration data was performed to

recalculate the CRC code and a comparison between the first

and second checksum was performed for error detection.

Another error detection technique involved a self readback

process of the configuration memory and a comparison is

performed on a duplicate copy. The first correction technique

involved reconfiguration of the frame only with the upset bit

rather than the entire design and the second technique

involved a blind scrubbing, where a total reconfiguration of

the configuration memory is performed periodically whether

an upset is detected or not. However, frequent reconfiguration

of the configuration memory from a duplicate copy

irrespective of error increased the energy consumption of the

International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue XI, November 2019 | ISSN 2321–2705

www.rsisinternational.org Page 26

scrubbing process.

Jonathan et al., [12] proposed an error detection technique for

FPGAs called Duplication with Compare (DWC). In the work

FPGA bitstream was duplicated together with the signal nets

for a full duplication operation to provide the greatest

coverage for error detection and the redundant copy was

stored in an external radiation memory, and comparator

insertion for external system was deployed since it was placed

at the final output of the two modules because it was less

complex to be implemented and also saved cost. In an event

of upset which was implemented in the work using a fault

injection simulator to create SEUs, the bitstream of the

original module was compared with the golden copy by the

comparator and discrepancy at the output of the two module,

the comparator signals the system with an error flag indicated

the presences of error. However, this mechanism was only

able to detect errors and there was a delay from the time an

upset occurs to the time when it was detected.

Heiner et al., [10] proposed a technique that allowed Partial

Reconfiguration (PR) to be used together with configuration

memory scrubbing from a golden memory that explores

external configuration interface. The scrubber utilizes portion

a of the FPGA, performs the necessary operations to

reconfigure a portion of the design while continuously

scrubbing the entire FPGA. The system isolated the design

into subsections by dividing it into static reconfigurable

region which contains all the design critical bitstream that do

not change during PR and dynamic reconfigurable region

which contained non-critical component for re-

configurability. The PR allowed portions of the design to be

modified or upgraded after deployment. Anytime PR is

performed, the golden configuration memory bitstream in the

external memory no longer matches the logic within the

FPGA therefore the external memory must also be updated to

reflect the changes in the FPGA else the scrubber will detect

many discrepancies between the expected bitstream and the

bitstream on the FPGA. However, PR and scrubbing cannot

have access to the configuration interface since PR will try to

write to the configuration memory while the scrubber tries to

read and write to it as well.

Lanuzza et al., [14] proposed a configuration memory

scrubbing core used for internal detection and correction of

radiation induced configuration single and multiple bit errors

without requiring external scrubbing. The proposed approach

makes FPGA devices able to self-repair SEU, whereby

detection and correction were performed inside the FPGA

chip by exploiting the internal readback port for an integrity

check of the configuration memory using an error detection

and correction (EDAC) Circuit. The work presented a

compression scheme to reduce the memory resources, needed

to store correction reference codes, thus making the technique

easily scalable. The EDAC codes are pre-computed and stored

in each sensitive frame capable of correcting up to quadruple

bit upset, and error detection and correction process is

performed by reading back sensitive frames. The sensitive

frames are scanned one by one through internal readback

operations and for each frame an EDAC code are internally

computed and compared to the corresponding golden

reference stored in the EDAC code memory. The check

operations are repeated cyclically by incrementing the frame

address till the last frame was checked and the process starts

all over. However, the EDAC code will be corrupted by SEU

since the circuit was embedded in the FPGA and those not

have any form of redundancy.

Herrera-Alzu & Vallejo, [9] proposed a self-reference

scrubber for FPGA TMR system. An external selectable

microprocessor access port interfaces the bidirectional links

with the three FPGAs and a three-way external voter was

introduce for majority voting which was implemented in a

radiation-hardened device. The scrubber periodically detects

both single and multiple error and correction was performed

by peer frame comparison without needing to access a golden

configuration memory. Three identical configuration memory

frames are readback from the FPGA and the frame triplets are

compared on a byte basis if frames are found identical,

readback resumes and new frames are read back. If there was

discrepancy in one of the frame, the dirty frame was scrubbed

with a correct frame from one of the other two frames. The

work did not used a golden memory for correction purposes it

was mainly used for power-on configuration and single event

functional interrupt when a SEU causes a significant change

in the functional operation of the FPGA. However, the use of

golden memory in an event of a single event functional

interrupt incurs extra power consumption since an external

interface was used.

Akagic & Amano [1] presented a study of designing highly

adaptable coprocessors using CRC on an FPGA bus. The

work introduced an FPGA based architecture for accelerating

CRC with 32 and 64 bits Generator Polynomials (GPs) in

which a circuit was designed alongside a module for

generating content of LUT. In order to reduce the number of

logic resources used, the work explored possibility of using

partial reconfiguration to minimize the area overhead when

CRC standards are changed. The co-processor adapts to new

CRC standards through the designed circuit. In the table

generator module, in every clock cycle the counter generates

input data, these data passes through the input reflection unit

or the remainder generator, depending on the CRC standard

and the input reflection unit reflects data bits by swapping

them around its center and the data was shifted by the left

depending on a data-path width and the length of the slice.

The remainder generator unit performed long division

operation. Number of cycles required to generate one

remainder depends on the offset of a byte in an input data. At

the end, remainder is reflected or forwarded to output,

depending on a CRC standard. However the CRC adaptable

co-processor affects the area utilization despite the reduced

resources used this is because integrating the table generation

module with the CRC module requires additional area in the

FPGA floor plan.

International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue XI, November 2019 | ISSN 2321–2705

www.rsisinternational.org Page 27

Nazar et al., [15] proposed a shifted scrubbing technique

whenever an error occurred the scrubber starts scrubbing the

associated partition where the critical bit(s) are flipped. A

partitioned designed was use for the scrubbing technique and

each partition was a Dual Modular Redundancy (DMR) as an

error detection mechanism which indicated error, the scrubber

starts scrubbing the associated partition after an upset was

been detected. A fault injection platform was also

implemented. The concept explored in this work was that

scrubbing does not need to start at the first configuration

memory frame since different regions have different

concentrations of critical bits, one can find the optimum

starting frame that has more upset in the region with high

number of critical bits that also minimizes the time to repair,

since the work was partitioned based on the sensitivity of the

bits representing the mapped design. The Drawback of the

proposed technique was that the scrubber do not have

knowledge of the optimum starting frame for each partition in

an event of a single event upset thereby increasing error

detection time as the scrubber reads back the frames to get this

information which will consequently impact negatively to the

correction time.

Vera et al., [21] implemented an error detection and correction

code core for femto architecture and its implementation does

not required the use of a golden bitstream for scrubbing and

also the method those not required any modification at the

architectural level of the FPGA. The femto was a unit that

controlled the scrubber and fetched data or command from an

interface which supported a limited set of instructions focused

on moving data from and to the memory under scrubbing. The

work adopted a methodology of using Bose and ray-

ChaudHuri (BCH) codes for error correction which involved

addition of parity bits. Each frame is added a random

sequence of 1’s and 0’s prior to encoding with the BCH coder

to produced n check bits. The BCH encoder/decoder

generated 57 check bits per frame and a CRC bit was also

calculated and stored in a golden frame together with the BCH

code for an uncorrupted frame. During the device operation

where the frames were subjected to radiation, the scrubber

reads the frame and correct any error using the BCH code,

afterwards the CRC code was recalculated for the frame and if

there was a mismatch with the reference CRC code in the

frame, then this signifies an error in the frame and hence the

frame has to be updated from a programmable read only

memory which implied a penalty on latency and power

consumption. However, implementing BCH encoder/decoder

increase error correction latency since these added to the

complexity of the scrubber.

Rao et al., [17] proposed a scrubbing scheme which

reconstructs erroneous configuration memory frame based on

the concept of erasure codes for MBU in the configuration

frames of FPGAs. The erasure codes recovered the original

frame when some of the bits were flipped. The scrubbing

technique was implemented as a soft module alongside with

the user design and both were mapped into the FPGA. The

work employed a low-cost interleaved two-dimensional (I2D)

parity technique to detect MBUs in the configuration memory

frames of the FPGA. The interleaving distance was improved

based on the actual MBU patterns because each horizontal

parity bit is the exclusive-OR operation of the bits in the

multiple row, all rows that were separated by a constant

distance forms an interleaving group and all the bits within

that group are covered by only one horizontal parity bit. A

scrubber unit periodically checks the configuration frames to

detect possible erroneous frames. Once an error was detected

by assuming that the erroneous frame was erased, its contents

were reconstructed using an erasure code by computing an

exclusive-OR operation of all bits in the temporary block that

were initialized with zero bits by the recovery unit, thus, the

temporary block was written into the erroneous frame. The

encoding of the erasure code was done once offline in

advance during when the design was mapped into to the

FPGA device. However, the erasure codes are also be

subjected to SEU since they can also embedded inside the

FPGA.

Jing et al., [11] proposed a Duplication with Recovery (DWR)

technique to correct soft error in routing resources, which

contributed to the majority of soft errors in FPGAs and are

most vulnerable to SEU because they occupy most area and

seventy to ninety percent of the configuration bits were

attributed to the routing resources. DWR leveraged redundant

resources and enables fault recovery. The work required a the

fault controlling circuitry; which controlled the fault signal on

site in the routing Programmable Interconnect Points (PIPs),

fault recovery structure; which recovered the correct signal

with the duplication before the sink logic, and net duplication;

which offered the opportunity for signal recovery. The

duplicated nets were routed closely to its original net for

convergence purposes. The work showed that the protection

using limited resources can be sufficient for non-critical

mission application. However, the technique only focused on

mitigating SEUs in the routing resources indicting partial

mitigation technique.

Tonfat et al., [20] proposed a novel scrubbing technique using

internal frame redundancy called FLR-scrubbing. It was based

on having each redundant TMR domain with the same

configuration frame information to allow vote out the frames

copies to restore themselves. The scrubber reads the first

frame of each region then executes a bit level majority voting

on the three frames, the scrubbing technique enabled the self-

correction of faulty frames using the information of the other

two copies. In the methodology adopted in the work, the

readback and scrubbing process were complementary because

the readback process generated the correct frame that the

scrubbing process needed for a possible write operation.

Implementation results demonstrated minimum area and

energy consumption overhead when compared to blind

scrubbing technique, the scrubbing used the Internal

Configuration Access Port (ICAP). However, the voting

mechanism for correction was on a bit level basis which

International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue XI, November 2019 | ISSN 2321–2705

www.rsisinternational.org Page 28

incurred longer correction time which led to increase energy

consumption as the whole configuration memory frame has to

be readback on bit level attempting to performing voting

without any error detection mechanism.

Wirthlin & Harding, [23] presented a novel hybrid

configuration scrubbing for the Xilinx 7-Series FPGAs by

exploiting the on-chip frame Error Correction Code (ECC). A

dedicated non-configurable logic was built into the FPGA to

compute a check word for each frame during configuration

readback. The scrubber continuously reads configuration

frames and computes a syndrome for the readback frame. The

syndrome was compared with the internal ECC word of the

frame determined whether the frame was error free, contains a

single error or multi-bit error. This process continues through

all frames of the configuration bitstream. After scanning the

all block of frames, the process was repeated with the first

frame in the configuration. If a single-bit error was found, the

internal ECC circuitry computes the location of the error and

corrects the upset. The internal scan unit then writes the

corrected frame back into the configuration memory. Some

multi-bit errors (three bits or more) within a frame may not be

detected by the ECC. To detect this condition, a global CRC

was provided for the entire set of frames. This CRC was

recomputed during each full scan of the configuration

memory and compared against an internal global CRC. If a

multi-bit error occurred that was not detected by the

individual frame ECC, the recomputed CRC will differ from

the global CRC signifying that an undetected error exists

somewhere in the configuration memory, therefore, the

scrubbing system does not know the location of upset frame

and the scrubber scrubs every frame. However, when multi-bit

error was continuously detected this resulted to increase

energy consumption because continuous device configuration

will be required.

Cannon et al., [5] presented strategies to mitigate against the

effect of Single Effect Upsets (SEUs), three strategies was

presented: increased routing, incremental placement and

striping. The presence of single CRAM (Configuration

Memory) bits in the mitigation designs limits the effectiveness

of TMR by causing TMR failures. This place a limit in the

maximum achievable improvement TMR with repair can

provide. The paper identified the underlying architectural

causes for these bits that causes Common Mode Failures

(CMF) as well as introduced mitigation techniques to address

their problems. An incremental routing strategy provides fine-

grain control over the process and is implemented after the

routing stage. However it is difficult to create a router that

would have the same quality as the one provided by the

vendor, which is a draw back for the incremental routing

strategy. The incremental placement strategy is performed in

between the placement step and routing step, incremental

placement is capable preserving most of the optimization from

placement and routing is also performed using vendors tools

unlike incremental routing. Striping is different from the

incremental techniques discuss, the technique requires no

vendors tool and separate flow. The strategies where tested

using both fault-injection and a wide spectrum neutron beam

with the best technique offering a 400x reduction to the

designs sensitive neutron cross-section. Results showed that

no single bits caused failure and multi-cell upsets were the

main cause of failure for these strategies.

Zhang et al., [25] proposed a scrubbing method based on

Triple Modular Redundancy (TMR) for Static Random

Access Memory (SRAM) based Field Programmable Gate

Arrays (FPBGA). The method improves the reliability of

TMR design by reducing the possibility of Single Effect Upset

(SUE) accumulation. A fault tolerant technique was

developed to improve the reliability of SRAM-Based FPGA

in space applications, the technique implemented a method

other than the conventional TMR and scrubbing method, but a

hybrid technique that combine this two method to ensure

effective and fast repairs of the SEU in TMR design. The

method combined detecting scrubbing and Error Correction

Code (ECC), the syndrome value in one frame including the

ECC bits is calculated. This gives a confirmation whether an

SEU has occurred by reading the frame in the configuration

memory. As a result additional space is not required because

the original correct frames need not to be stored. The

majority voter which is a TMR method and scrubber which is

also a scrubbing method are put together to form the hybrid

scheme. The voter is optimized that not only can filter the

output of error module but also it can identify which module

is wrong. The proposed method was validated through fault

injection, and experimental results showed that the proposed

scrubbing method can improve the reliability of TMR in

SRAM FPGA. However the authors has not put into

consideration the processing time and speed of SEUs repairs,

additional process in the hybrid scheme cam increase the

computational time of repair.

Zheng et al., [26] proposed a rapid scrubbing technique that

ensures early scrubbing when SEU occurs, the technique

applies position-aware Duplication with Compare (DWC) on

the critical circuit that reduces the redundancy cost, and links

the application circuit with configuration frames that enables

the error locating in a greatly reduced number of

configurations frames. The rapid scrubbing technique was

achieved by first identifying the modules unit with high

sensitivity in the implemented circuit. Secondly, sensitive

modules are duplicated and positions of the modules are

obtained based on their configuration frames, creating a link

between the application circuit and configuration frames. The

information of this link is kept in the block RAM for

scrubbing use. Thirdly, frame generator hardware is added to

translate the output to a configuration memory address. Fault

injection based evaluation on a Xilinx Kintex-7 FPGA was

used to evaluate the performance of the technique, results

showed that the technique can deliver an average of 45%

Mean Time To Detect (MTTD) and 16% Mean Time To

Failure (MTTF) improvement with little cost when compared

to conventional scrubbing techniques

International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue XI, November 2019 | ISSN 2321–2705

www.rsisinternational.org Page 29

IV. CONCLUSION

The previous section has described a couple of scrubbing

techniques in SRAM-based FPGA. The parameters and

methodology considered were highlighted and the results

obtained. From the foregoing, improvements can be made by

combining different scrubbing methodologies and scrubbing

architecture by location. Different scrubbing techniques

imposes an overhead either in terms of large area space,

power consumption, scrubbing time, complexity, reliability

and cost. In other to obtain an optimized result, choosing the

right methodology for an application typically implies a trade

off in terms of these parameters mentioned.

REFERENCES

[1]. Akagic, A., & Amano, H. (2012). A study of adaptable co-

processors for cyclic redundancy check on an FPGA. Paper

presented at the 2012 International Conference on Field-

Programmable Technology (FPT), 119-124.

[2]. Aishwarya, S., & Mahendran, G. (2016). Multiple Bit Upset
correction in SRAM based FPGA using self repairable Erasure

codes. Paper presented at the International Conference on

Emerging Engineering Trends and science (ICEETS-2016), 356-
362.

[3]. Berg, M., Poivey, C., Petrick, D., Espinosa, D., Lesea, A., LaBel,

K., .Phan, A. (2008). Effectiveness of internal vs. external SEU
scrubbing mitigation strategies in a Xilinx FPGA: Design, test,

and analysis. 1-8.

[4]. Bolchini, C., Miele, A., & Sandionigi, C. (2011). A novel design
methodology for implementing reliability-aware systems on

SRAM-based FPGAs. IEEE Transactions on Computers, 60(12),

1744-1758.
[5]. Cannon, M. J., Keller, A. M., Rowberry, H. C., Thurlow, C. A.,

Pérez-Celis, A., & Wirthlin, M. J. (2018). Strategies for removing

common mode failures from TMR designs deployed on SRAM

FPGAs. IEEE Transactions on Nuclear Science, 66(1), 207-215.

[6]. Carmichael, C. H., & Brinkley Jr, P. E. (2006). Techniques for

mitigating, detecting and correcting single event upset effects in
systems using SRAM-based field programmable gate arrays (pp.

1-26): Google Patents.

[7]. Codinachs, D. M., & Weigand, R. (2009). Overview of FPGA
activities in the European Space Agency. III National School, 23rd

April, 1-55.

[8]. Herrera-Alzu, I., & Lopez, V. M. (2013). Design techniques for
Xilinx Virtex FPGA configuration memory scrubbers. IEEE

Transactions on Nuclear Science, 60(1), 376-385.
[9]. Herrera-Alzu, I., & Vallejo, M. L. (2011). Self-reference scrubber

for TMR systems based on xilinx virtex FPGAs. Integrated

Circuit and System Design. Power and Timing Modeling,
Optimization, and Simulation, 133-142.

[10]. Heiner, J., Sellers, B., Wirthlin, M., & Kalb, J. (2009). FPGA

partial reconfiguration via configuration scrubbing. Paper
presented at the International Conference on Field Programmable

Logic and Applications, FPL2009. , 99-104.

[11]. Jing, N., Zhou, J., Jiang, J., Chen, X., He, W., & Mao, Z. (2015).
Redundancy based Interconnect Duplication to Mitigate Soft

Errors in SRAM-based FPGAs. Paper presented at the Proceedings

of the IEEE/ACM International Conference on Computer-Aided

Design, 764-769.

[12]. Jonathan, J., Howes, W., Wirthlin, M., McMurtrey, D. L., Caffrey,
M., Graham, P., & Morgan, K. (2008). Using duplication with

compare for on-line error detection in FPGA-based designs. Paper

presented at the Aerospace Conference, 2008 IEEE, 1-11.
[13]. Johnson, J., & Wirthlin, M. (2009). Voter Insertion Techniques for

Fault Tolerant FPGA Design. I/UCRC Program of the National

Science Foundation under Grant No. 0801876, 1-8.
[14]. Lanuzza, M., Zicari, P., Frustaci, F., Perri, S., & Corsonello, P.

(2010). Exploiting self-reconfiguration capability to improve

SRAM-based FPGA robustness in space and avionics applications.
ACM Transactions on Reconfigurable Technology and Systems

(TRETS), 4(1), 1-22.

[15]. Nazar, G. L., Santos, L. P., & Carro, L. (2013). Accelerated FPGA
repair through shifted scrubbing. Paper presented at the 2013 23rd

International Conference on Field Programmable Logic and

Applications (FPL), 1-6.
[16]. Nigam, A. K., Singh, S., & Tiwari, A. (2015). 6T SRAM Cell:

Design And Analysis. Intl J Engg Sci Adv Research, 1(3), 125-

127.

[17]. Rao, P., Ebrahimi, M., Seyyedi, R., & Tahoori, M. B. (2014).

Protecting SRAM-based FPGAs against multiple bit upsets using
erasure codes. Paper presented at the IEEE Design Automation

Conference (DAC), 2014 51st ACM/EDAC, 1-6.

[18]. Sanchez, C. A., Entrena, L., & Garcia-Valderas, M. (2015).
Partial TMR in FPGAs Using Approximate Logic Circuits. Paper

presented at the 2015 15th European Conference on Radiation and

Its Effects on Components and Systems (RADECS), Spain, 1-4.
[19]. Tiwari, A., & Tomko, K. A. (2005). Enhanced Reliability of

Finite-State Machines in FPGA Through Efficient Fault Detection

and Correction. IEEE Transactions on Reliability, 54(3), 1-9.
[20]. Tonfat, J., Fenanda, L. K., Paolo, R., & Ricardo, R. (2015).

Energy efficient frame-level redundancy scrubbing technique for

SRAM-based FPGAs. IEEE Transactions on Nuclear Science,
62(6), 3080-3087.

[21]. Vera, G. A., Ardalan, S., Yao, X., & Avery, K. (2013). Fast Local

Scrubbing for FPGA’s Configuration Memory. Aerospace
Research Central, 1-21.

[22]. Wirthlin, M. (2015). High-Reliability FPGA-Based Systems:

Space, High-Energy Physics, and Beyond. Proceedings of the
IEEE, 103(3), 379-389.

[23]. Wirthlin, M., & Harding, A. (2016). Hybrid Configuration

Scrubbing for Xilinx 7-Series FPGAs. FPGAs and Parallel
Architectures for Aerospace Applications (pp. 91-101): Springer.

[24]. Wirthlin, M. J., Keller, A. M., McCloskey, C., Ridd, P., Lee, D., &

Draper, J. (2016). SEU Mitigation and Validation of the LEON3
Soft Processor Using Triple Modular Redundancy for Space

Processing. Paper presented at the Proceedings of the 2016

ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 205-214.

[25]. Zhang, R. S., Xiao, L. Y., Cao, X. B., Li, J., Li, J. Q., & Li, L. Z.

A Fast Scrubbing Method Based on Triple Modular Redundancy
for SRAM-Based FPGAs. In 2018 14th IEEE International

Conference on Solid-State and Integrated Circuit Technology

(ICSICT) (pp. 1-3). IEEE.

[26]. Zheng, S., You, H., He, G., Wang, Q., Si, T., Jiang, J., ... & Jing,

N. (2019, May). A Rapid Scrubbing Technique for SEU

Mitigation on SRAM-Based FPGAs. In 2019 IEEE International
Symposium on Circuits and Systems (ISCAS)(pp. 1-5). IEEE.

