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Abstract: Static Random Access Memory (SRAM) based Field 

Programmable Gate Array (FPGA) are semiconductor devices 

with large logic resources, programmable interconnects, and 

other resources making the device re-programmable thus, 

having broad applicability. SRAM-based FPGAs are sensitive to 

radiation induced Single Event Upset (SEU) within the 

configuration memory, whereby a fault as a result of radiation 

strike from high energetic particles causes the logic state of the 

SRAM cell to flip. The configuration memory defines the 

operation of the Configurable Logic Blocks (CLBs), routing 

resources, Input-Output Blocks (IOBs), and other FPGA 

resources and upset in the configuration memory can change the 

operation of the circuit. Therefore configuration memory 

scrubbing is a solution to mitigate against SEU. In this paper we 

present a review of existing scrubbing techniques, the 

parameters considered, results obtained and possible 

modifications are suggested as well. 

Keywords: SRAM, FPGA, Configuration memory, Scrubbing, 

Single event upset. 

I. INTRODUCTION 

RAM-based FPGAs are Complementary Metal Oxide 

Semiconductor (CMOS) devices having thousands to 

millions system logic gates with hundreds of millions of 

configuration bits dominating the SRAM cells and the cells 

are composed of transistors linked with interconnect wires 

[11]. Unlike Application Specific Integrated Circuits (ASICs), 

whose functions cannot be altered after fabrication, SRAM-

based FPGAs have the advantage of being reprogrammed 

providing high computational density and efficiency for many 

computing applications by allowing circuits to be customized 

to any application of interest [22].FPGAs are versatile devices 

that allow a function to be implemented by mapping it into the 

FPGA’s pre-existing logic resources. The mapping is referred 

to as its Configuration [3], SRAM-based FPGAs are more 

prone to soft errors in the form of SEU since radiation strike 

in the configuration memory has a permanent effect on the 

functionality of the mapped design [17].  

The presence of high energy protons, heavy ions, and galactic 

cosmic rays in space and other radiation environment cause a 

number of problems for electronics including FPGAs. This 

radiation can induce a number of negative effects including 

upsets in the internal state of the device and can cause several  

Problems in FPGA-based systems. As mentioned earlier, 

SEUs can corrupt the configuration memory of the device 

causing the design configured on the devices to operate 

incorrectly. In SRAM FPGAs, SEUs can affect the 

configuration and provoke errors that remain until the device 

is reconfigured [23]. These errors which could be either SEU 

or Multiple Bit Upset (MBU) within the configuration 

memory are mitigated through the process called scrubbing 

where the correct logic bit is written back into the SRAM 

cell(s) [18].  

II. BACKGROUND 

A. The FPGA Architecture 

FPGA can be divided generally into application layer and 

configuration layer which is also referred to as the 

configuration memory layer. The application layer includes 

the logic and memory elements managed by user’s application 

and configuration layer includes the logic bits and memory 

elements that allows configuring the logic and routing 

resources in the application layer. Figure 1 shows a 

conceptual layers of a Field Programmable Gate Array. 

Configuration 

Layer

Application 

Layer

 

Figure 1: Conceptual Layers of an FPGA 

B. Application Layer 

The application layer comprises the logic, memory and 

S 
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input/output resources for user application. The layer 

implements Configurable Logic Blocks (CLBs), which can be 

configured to implement any user sequential or combinational 

circuit and provides the basic logic and storage functionality 

for a target application design. FPGAs are typically made up 

of highly configurable logic blocks containing Look up Tables 

(LUTs) that defines logic functions and registers used for 

sequential logic. Each CLB in turn consists of several slices, 

and each slicecontains LUTs, registers and carry logic [13]. 

C. Configuration Layer 

The configuration layer comprises the configuration memory 

otherwise known as bitstream and associated access ports and 

control logic. The layer consist of access ports for reading and 

writing from/to configuration memory The configuration port 

is internally connected to a built-in circuitry that decodes the 

configuration data providing read or write access to the 

configuration memory [8]. The functionality of an FPGA is 

dependent on the contents of its configuration memory [4]. 

D. The SRAM cell Technology 

Fundamental technology of FPGA consists of arrays of logic 

elements and registers, along with a configurable 

interconnection matrix. The current shrinking of device size 

helps FPGAs to be faster and denser, but at the same time also 

make them less reliable due to shrinking transistor size, the 

threshold voltage required to switch them, also shrinking 

makes transistors more prone to radiation induced errors [19].  

SRAM based FPGA will lose their configuration when power 

is removed, therefore, SRAM devices require a non-volatile 

configuration memory unit to store configuration data. This 

data must be loaded into the SRAM device after the FPGA is 

powered-on before use [7]. 

The SRAM Cell Architecture 

The SRAM cell widely used is the full CMOS 6-Transistor 

(6T) memory cell. The 6T SRAM is a type of semiconductor 

memory that uses bi-stable latching circuitry to store each bit. 

The SRAM cell consists of two inverters P1, N1 and P2, N2 

alongside with two access Metal Oxide Semiconductor Field 

Effect Transistor (MOSFET) N3 and N4 as shown in Figure 2. 

P1 P2

N1 N2

N3

N4A

B

WL

GND

Bit
Bit-bar

VDD

P1,P2 – Load MOSFET

N1,N2 – Driver MOSFET

N3,N4 – Access MOSFET

A,B – Cell node

WL – Word line

Bit,Bit-bar – Bit line

 
Figure 2: Schematic of a 6T SRAM Cell 

The 6T SRAM cell operates in three different modes. The first 

mode is the standby mode (circuit is idle) the word line is not 

triggered therefore the word line is 0V, so the pass transistors 

N3 and N4 which connect 6T cell from bit lines are turned off. 

It means that cell cannot be accessed. The two cross coupled 

inverters formed by N1-N2 will continue to feedback each 

other as long as they are connected to the supply, and data will 

hold in the latch.  

The second mode is the read mode (data has been requested). 

In this mode, the word line is triggered therefore the word line 

is “1”, so word line enables both the access transistors which 

connects the cell from the bit lines. Now values stored in node 

“A” or “B” are transferred to the bit lines to be accessed, 

either the value in node “A” or “B” is accessed. Assuming 

that “1” is stored at node A so bit line bar will discharge 

through the driver transistor N1 and the bit line will be pull up 

through the load transistor P1 toward VDD, hence a logic “1” 

is confirmed. SRAM cell technology ensures read stability 

therefore data are not disrupted during read operation. 

The third mode is the write mode (updating the content). In 

this mode, if “1” is initially stored in the cell and needs to be 

written with a “0”, the bit line is lowered to 0V and bit bar is 

raised to VDD, a cell is selected by raising the word line to 

VDD, for SRAM to operate in write mode it must have write-

ability which is minimum bit line voltage required to flip the 

state of the cell. 

The power consumption of SRAM varies widely depending 

on how frequently it is accessed, it can be high when used at 

high frequencies. On the other hand, SRAM used at a 

somewhat slower pace at lower frequency draws very little 

power and can have a nearly negligible power consumption 

when sitting idle [2]. 

III. SCRUBBING TECHNIQUES 

Carmichael  & Brinkley Jr., [6] proposed a technique which 

involved the use of redundancy such as TMR were three 

identical FPGAs and a voting circuit where implemented 

inside or outside the FPGA and only sensitive logic resources 

were triplicated. An error detection scheme whereby during 

readback process a Cyclic Redundancy Check (CRC) code 

was generated for a portion of the configuration data 

containing sensitive resources and a second readback of the 

same portion of the configuration data was performed to 

recalculate the CRC code and a comparison between the first 

and second checksum was performed for error detection. 

Another error detection technique involved a self readback 

process of the configuration memory and a comparison is 

performed on a duplicate copy. The first correction technique 

involved reconfiguration of the frame only with the upset bit 

rather than the entire design and the second technique 

involved a blind scrubbing, where a total reconfiguration of 

the configuration memory is performed periodically whether 

an upset is detected or not. However, frequent reconfiguration 

of the configuration memory from a duplicate copy 

irrespective of error increased the energy consumption of the 
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scrubbing process.  

Jonathan et al., [12] proposed an error detection technique for 

FPGAs called Duplication with Compare (DWC). In the work 

FPGA bitstream was duplicated together with the signal nets 

for a full duplication operation to provide the greatest 

coverage for error detection and the redundant copy was 

stored in an external radiation memory, and comparator 

insertion for external system was deployed since it was placed 

at the final output of the two modules because it was less 

complex to be implemented and also saved cost. In an event 

of upset which was implemented in the work using a fault 

injection simulator to create SEUs, the bitstream of the 

original module was compared with the golden copy by the 

comparator and discrepancy at the output of the two module, 

the comparator signals the system with an error flag indicated 

the presences of error. However, this mechanism was only 

able to detect errors and there was a delay from the time an 

upset occurs to the time when it was detected.  

Heiner et al., [10] proposed a technique that allowed Partial 

Reconfiguration (PR) to be used together with configuration 

memory scrubbing from a golden memory that explores 

external configuration interface. The scrubber utilizes portion 

a of the FPGA, performs the necessary operations to 

reconfigure a portion of the design while continuously 

scrubbing the entire FPGA. The system isolated the design 

into subsections by dividing it into static reconfigurable 

region which contains all the design critical bitstream that do 

not change during PR and dynamic reconfigurable region 

which contained non-critical component for re-

configurability. The PR allowed portions of the design to be 

modified or upgraded after deployment. Anytime PR is 

performed, the golden configuration memory bitstream in the 

external memory no longer matches the logic within the 

FPGA therefore the external memory must also be updated to 

reflect the changes in the FPGA else the scrubber will detect 

many discrepancies between the expected bitstream and the 

bitstream on the FPGA. However, PR and scrubbing cannot 

have access to the configuration interface since PR will try to 

write to the configuration memory while the scrubber tries to 

read and write to it as well.  

Lanuzza et al., [14] proposed a configuration memory 

scrubbing core used for internal detection and correction of 

radiation induced configuration single and multiple bit errors 

without requiring external scrubbing. The proposed approach 

makes FPGA devices able to self-repair SEU, whereby 

detection and correction were performed inside the FPGA 

chip by exploiting the internal readback port for an integrity 

check of the configuration memory using an error detection 

and correction (EDAC) Circuit. The work presented a 

compression scheme to reduce the memory resources, needed 

to store correction reference codes, thus making the technique 

easily scalable. The EDAC codes are pre-computed and stored 

in each sensitive frame capable of correcting up to quadruple 

bit upset, and error detection and correction process is 

performed by reading back sensitive frames. The sensitive 

frames are scanned one by one through internal readback 

operations and for each frame an EDAC code are internally 

computed and compared to the corresponding golden 

reference stored in the EDAC code memory. The check 

operations are repeated cyclically by incrementing the frame 

address till the last frame was checked and the process starts 

all over.   However, the EDAC code will be corrupted by SEU 

since the circuit was embedded in the FPGA and those not 

have any form of redundancy.  

Herrera-Alzu & Vallejo, [9] proposed a self-reference 

scrubber for FPGA TMR system. An external selectable 

microprocessor access port interfaces the bidirectional links 

with the three FPGAs and a three-way external voter was 

introduce for majority voting which was implemented in a 

radiation-hardened device. The scrubber periodically detects 

both single and multiple error and correction was performed 

by peer frame comparison without needing to access a golden 

configuration memory. Three identical configuration memory 

frames are readback from the FPGA and the frame triplets are 

compared on a byte basis if frames are found identical, 

readback resumes and new frames are read back. If there was 

discrepancy in one of the frame, the dirty frame was scrubbed 

with a correct frame from one of the other two frames. The 

work did not used a golden memory for correction purposes it 

was mainly used for power-on configuration and single event 

functional interrupt when a SEU causes a significant change 

in the functional operation of the FPGA. However, the use of 

golden memory in an event of a single event functional 

interrupt incurs extra power consumption since an external 

interface was used.  

Akagic & Amano [1] presented a study of designing highly 

adaptable coprocessors using CRC on an FPGA bus. The 

work introduced an FPGA based architecture for accelerating 

CRC with 32 and 64 bits Generator Polynomials (GPs) in 

which a circuit was designed alongside a module for 

generating content of LUT. In order to reduce the number of 

logic resources used, the work explored possibility of using 

partial reconfiguration to minimize the area overhead when 

CRC standards are changed. The co-processor adapts to new 

CRC standards through the designed circuit. In the table 

generator module, in every clock cycle the counter generates 

input data, these data passes through the input reflection unit 

or the remainder generator, depending on the CRC standard 

and the input reflection unit reflects data bits by swapping 

them around its center and the data was shifted by the left 

depending on a data-path width and the length of the slice. 

The remainder generator unit performed long division 

operation. Number of cycles required to generate one 

remainder depends on the offset of a byte in an input data. At 

the end, remainder is reflected or forwarded to output, 

depending on a CRC standard. However the CRC adaptable 

co-processor affects the area utilization despite the reduced 

resources used this is because integrating the table generation 

module with the CRC module requires additional area in the 

FPGA floor plan.  
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Nazar et al., [15] proposed a shifted scrubbing technique 

whenever an error occurred the scrubber starts scrubbing the 

associated partition where the critical bit(s) are flipped. A 

partitioned designed was use for the scrubbing technique and 

each partition was a Dual Modular Redundancy (DMR) as an 

error detection mechanism which indicated error, the scrubber 

starts scrubbing the associated partition after an upset was 

been detected. A fault injection platform was also 

implemented. The concept explored in this work was that 

scrubbing does not need to start at the first configuration 

memory frame since different regions have different 

concentrations of critical bits, one can find the optimum 

starting frame that has more upset in the region with high 

number of critical bits that also minimizes the time to repair, 

since the work was partitioned based on the sensitivity of the 

bits representing the mapped design. The Drawback of the 

proposed technique was that the scrubber do not have 

knowledge of the optimum starting frame for each partition in 

an event of a single event upset thereby increasing error 

detection time as the scrubber reads back the frames to get this 

information which will consequently impact negatively to the 

correction time.  

Vera et al., [21] implemented an error detection and correction 

code core for femto architecture and its implementation does 

not required the use of a golden bitstream for scrubbing and 

also the method those not required any modification at the 

architectural level of the FPGA. The femto was a unit that 

controlled the scrubber and fetched data or command from an 

interface which supported a limited set of instructions focused 

on moving data from and to the memory under scrubbing. The 

work adopted a methodology of using Bose and ray-

ChaudHuri (BCH) codes for error correction which involved 

addition of parity bits. Each frame is added a random 

sequence of 1’s and 0’s prior to encoding with the BCH coder 

to produced n check bits. The BCH encoder/decoder 

generated 57 check bits per frame and a CRC bit was also 

calculated and stored in a golden frame together with the BCH 

code for an uncorrupted frame. During the device operation 

where the frames were subjected to radiation, the scrubber 

reads the frame and correct any error using the BCH code, 

afterwards the CRC code was recalculated for the frame and if 

there was a mismatch with the reference CRC code in the 

frame, then this signifies an error in the frame and hence the 

frame has to be updated from a programmable read only 

memory which implied a penalty on latency and power 

consumption. However, implementing BCH encoder/decoder 

increase error correction latency since these added to the 

complexity of the scrubber.  

Rao et al., [17] proposed a scrubbing scheme which 

reconstructs erroneous configuration memory frame based on 

the concept of erasure codes for MBU in the configuration 

frames of FPGAs. The erasure codes recovered the original 

frame when some of the bits were flipped. The scrubbing 

technique was implemented as a soft module alongside with 

the user design and both were mapped into the FPGA. The 

work employed a low-cost interleaved two-dimensional (I2D) 

parity technique to detect MBUs in the configuration memory 

frames of the FPGA. The interleaving distance was improved 

based on the actual MBU patterns because each horizontal 

parity bit is the exclusive-OR operation of the bits in the 

multiple row, all rows that were separated by a constant 

distance forms an interleaving group and all the bits within 

that group are covered by only one horizontal parity bit. A 

scrubber unit periodically checks the configuration frames to 

detect possible erroneous frames. Once an error was detected 

by assuming that the erroneous frame was erased, its contents 

were reconstructed using an erasure code by computing an 

exclusive-OR operation of all bits in the temporary block that 

were initialized with zero bits by the recovery unit, thus, the 

temporary block was written into the erroneous frame. The 

encoding of the erasure code was done once offline in 

advance during when the design was mapped into to the 

FPGA device. However, the erasure codes are also be 

subjected to SEU since they can also embedded inside the 

FPGA. 

Jing et al., [11] proposed a Duplication with Recovery (DWR) 

technique to correct soft error in routing resources, which 

contributed to the majority of soft errors in FPGAs and are 

most vulnerable to SEU because they occupy most area and 

seventy to ninety percent of the configuration bits were 

attributed to the routing resources. DWR leveraged redundant 

resources and enables fault recovery. The work required a the 

fault controlling circuitry; which controlled the fault signal on 

site in the routing Programmable Interconnect Points (PIPs), 

fault recovery structure; which recovered the correct signal 

with the duplication before the sink logic, and net duplication; 

which offered the opportunity for signal recovery. The 

duplicated nets were routed closely to its original net for 

convergence purposes. The work showed that the protection 

using limited resources can be sufficient for non-critical 

mission application. However, the technique only focused on 

mitigating SEUs in the routing resources indicting partial 

mitigation technique.  

Tonfat et al., [20] proposed a novel scrubbing technique using 

internal frame redundancy called FLR-scrubbing. It was based 

on having each redundant TMR domain with the same 

configuration frame information to allow vote out the frames 

copies to restore themselves. The scrubber reads the first 

frame of each region then executes a bit level majority voting 

on the three frames, the scrubbing technique enabled the self-

correction of faulty frames using the information of the other 

two copies. In the methodology adopted in the work, the 

readback and scrubbing process were complementary because 

the readback process generated the correct frame that the 

scrubbing process needed for a possible write operation. 

Implementation results demonstrated minimum area and 

energy consumption overhead when compared to blind 

scrubbing technique, the scrubbing used the Internal 

Configuration Access Port (ICAP). However, the voting 

mechanism for correction was on a bit level basis which 
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incurred longer correction time which led to increase energy 

consumption as the whole configuration memory frame has to 

be readback on bit level attempting to performing voting 

without any error detection mechanism.  

Wirthlin & Harding, [23] presented a novel hybrid 

configuration scrubbing for the Xilinx 7-Series FPGAs by 

exploiting the on-chip frame Error Correction Code (ECC). A 

dedicated non-configurable logic was built into the FPGA to 

compute a check word for each frame during configuration 

readback. The scrubber continuously reads configuration 

frames and computes a syndrome for the readback frame. The 

syndrome was compared with the internal ECC word of the 

frame determined whether the frame was error free, contains a 

single error or multi-bit error. This process continues through 

all frames of the configuration bitstream. After scanning the 

all block of frames, the process was repeated with the first 

frame in the configuration. If a single-bit error was found, the 

internal ECC circuitry computes the location of the error and 

corrects the upset. The internal scan unit then writes the 

corrected frame back into the configuration memory. Some 

multi-bit errors (three bits or more) within a frame may not be 

detected by the ECC. To detect this condition, a global CRC 

was provided for the entire set of frames. This CRC was 

recomputed during each full scan of the configuration 

memory and compared against an internal global CRC. If a 

multi-bit error occurred that was not detected by the 

individual frame ECC, the recomputed CRC will differ from 

the global CRC signifying that an undetected error exists 

somewhere in the configuration memory, therefore, the 

scrubbing system does not know the location of upset frame 

and the scrubber scrubs every frame. However, when multi-bit 

error was continuously detected this resulted to increase 

energy consumption because continuous device configuration 

will be required. 

Cannon et al., [5] presented strategies to mitigate against the 

effect of Single Effect Upsets (SEUs), three strategies was 

presented: increased routing, incremental placement and 

striping. The presence of single CRAM (Configuration 

Memory) bits in the mitigation designs limits the effectiveness 

of TMR by causing TMR failures. This place a limit in the 

maximum achievable improvement TMR with repair can 

provide. The paper identified the underlying architectural 

causes for these bits that causes Common Mode Failures 

(CMF) as well as introduced mitigation techniques to address 

their problems. An incremental routing strategy provides fine-

grain control over the process and is implemented after the 

routing stage. However it is difficult to create a router that 

would have the same quality as the one provided by the 

vendor, which is a draw back for the incremental routing 

strategy. The incremental placement strategy is performed in 

between the placement step and routing step, incremental 

placement is capable preserving most of the optimization from 

placement and routing is also performed using vendors tools 

unlike incremental routing. Striping is different from the 

incremental techniques discuss, the technique requires no 

vendors tool and separate flow. The strategies where tested 

using both fault-injection and a wide spectrum neutron beam 

with the best technique offering a 400x reduction to the 

designs sensitive neutron cross-section. Results showed that 

no single bits caused failure and multi-cell upsets were the 

main cause of failure for these strategies. 

Zhang et al., [25] proposed a scrubbing method based on 

Triple Modular Redundancy (TMR) for Static Random 

Access Memory (SRAM) based Field Programmable Gate 

Arrays (FPBGA). The method improves the reliability of 

TMR design by reducing the possibility of Single Effect Upset 

(SUE) accumulation. A fault tolerant technique was 

developed to improve the reliability of SRAM-Based FPGA 

in space applications, the technique implemented a method 

other than the conventional TMR and scrubbing method, but a 

hybrid technique that combine this two method to ensure 

effective and fast repairs of the SEU in TMR design. The 

method combined detecting scrubbing and Error Correction 

Code (ECC), the syndrome value in one frame including the 

ECC bits is calculated. This gives a confirmation whether an 

SEU has occurred by reading the frame in the configuration 

memory. As a result additional space is not required because 

the original correct frames need not to be stored.  The 

majority voter which is a TMR method and scrubber which is 

also a scrubbing method are put together to form the hybrid 

scheme. The voter is optimized that not only can filter the 

output of error module but also it can identify which module 

is wrong. The proposed method was validated through fault 

injection, and experimental results showed that the proposed 

scrubbing method can improve the reliability of TMR in 

SRAM FPGA. However the authors has not put into 

consideration the processing time and speed of SEUs repairs, 

additional process in the hybrid scheme cam increase the 

computational time of repair. 

Zheng et al., [26] proposed a rapid scrubbing technique that 

ensures early scrubbing when SEU occurs, the technique 

applies position-aware Duplication with Compare (DWC) on 

the critical circuit that reduces the redundancy cost, and links 

the application circuit with configuration frames that enables 

the error locating in a greatly reduced number of 

configurations frames. The rapid scrubbing technique was 

achieved by first identifying the modules unit with high 

sensitivity in the implemented circuit. Secondly, sensitive 

modules are duplicated and positions of the modules are 

obtained based on their configuration frames, creating a link 

between the application circuit and configuration frames. The 

information of this link is kept in the block RAM for 

scrubbing use. Thirdly, frame generator hardware is added to 

translate the output to a configuration memory address.  Fault 

injection based evaluation on a Xilinx Kintex-7 FPGA was 

used to evaluate the performance of the technique, results 

showed that the technique can deliver an average of 45% 

Mean Time To Detect (MTTD) and 16% Mean Time To 

Failure (MTTF) improvement with little cost when compared 

to conventional scrubbing techniques 
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IV. CONCLUSION 

The previous section has described a couple of scrubbing 

techniques in SRAM-based FPGA. The parameters and 

methodology considered were highlighted and the results 

obtained. From the foregoing, improvements can be made by 

combining different scrubbing methodologies and scrubbing 

architecture by location. Different scrubbing techniques 

imposes an overhead either in terms of large area space, 

power consumption, scrubbing time, complexity, reliability 

and cost. In other to obtain an optimized result, choosing the 

right methodology for an application typically implies a trade 

off in terms of these parameters mentioned. 
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