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Abstract: An effective method of deriving the cycle indices of 

cyclic and dihedral groups acting on 𝑿𝟐, where 𝑿 =  𝟏, 𝟐, … , 𝒏  is 

provided. This paper extents some results 

of 𝑯𝒂𝒓𝒂𝒓𝒚 𝒂𝒏𝒅 𝑷𝒂𝒍𝒎𝒆𝒓 𝟏𝟗𝟕𝟑 ; 𝑲𝒓𝒊𝒔𝒉𝒏𝒂𝒎𝒖𝒓𝒕𝒉𝒚  𝟏𝟗𝟖𝟓  and 

𝒕𝒉𝒐𝒌𝒂 𝒆𝒕. 𝒂𝒍. (𝟐𝟎𝟏𝟓). 

I. INTRODUCTION 

he concept of cycle index was first done by Howard 

Redfield in 1927, however, his paper was overlooked but 

came to attention of Mathematicians long after his death in 

1944. The concept was later rediscovered by Pölya in an 

independent study and applied his results to solve interesting 

combinatorial problems in chemistr as outlined by Donald 

Woods(1979). 

The cycle index of Cyclic and Dihedral groups acting on 𝑋 

can be found in various books (Krishnamurthy, 1985; Harary 

and Palmer, 1973) respectively.  

The cycle index of cyclic and dihedral groups acting on 

ordered pairs was computed by Muthoka et. al. in 2015. 

II. DEFINITIONS AND PRELIMINARY RESULTS 

This section outlines some definitions and established results 

that will be used throughout this paper. 

Definition 1.  A dihedral group is the group of symmetries of 

a regular 𝑛-gon. It has degree 𝑛 and order 2𝑛. 

Definition 2. A cyclic group is a group of order 𝑛that can be 

generated by a single element. 

Definition 3. Suppose 𝑔 ∈ 𝐺 has 𝛽11-cycles, 𝛽22-

cycles…𝛽𝑛n-cycles, we say that  𝛽 and hence 𝑔 ∈ 𝐺 has cycle 

type (𝛽1, 𝛽2 , … , 𝛽𝑛) 

Definition 4.Let 𝐺 be a finite group acting on a set 𝑋  with 

 𝑋 = 𝑛, and suppose 𝜎 ∈ 𝐺 has cycle type(𝛽1 , 𝛽2, … , 𝛽𝑛), we 

shall define the monomial of 𝜎 to be 

𝑚𝑜𝑛 𝜎 = 𝑠1
𝛽1 . 𝑠2

𝛽2 … . 𝑠𝑛
𝛽𝑛 =   𝑠

𝑗

𝛽𝑗𝑛
𝑗 =1 , where 𝑠1 , 𝑠2 , … 𝑠𝑛  are 

distinct commuting indeterminates. 

Definition 5. Let 𝐺 be a finite group acting on a finite set say 

𝑋, then we define the cycle index of the action of 𝐺 on 𝑋 as 

the polynomial 𝑍 𝐺, 𝑋 (say over a rational field ) in 

indeterminates 𝑠1 , 𝑠2 , … 𝑠𝑛  by 𝑍 𝐺, 𝑋 =
1

 𝐺 
 𝑚𝑜𝑛(𝑔)𝑔∈𝐺 . 

 

Theorem 1. (Krishnamurthy, 1985) The cycle index of 

Cyclic group(𝐶𝑛) acting on 𝑋 is given as; 

𝑍 𝐶𝑛 , 𝑋 =  
1

𝑛
 ∅(𝑡)𝑠𝑡

𝑛

𝑡
𝑡/𝑛 . 

Theorem 2. (𝐻𝑎𝑟𝑎𝑟𝑦 𝑎𝑛𝑑 𝑃𝑎𝑙𝑚𝑒𝑟, 1973) The cycle index 

of 𝐷𝑛 acting on 𝑋  is given as follows; 

𝑍 𝐷𝑛 , 𝑋 =
1

2𝑛
  ∅ 𝑡 𝑠𝑡

𝑛

𝑡 +
𝑛

2
𝑠1

2𝑠2

𝑛−2

2 +
𝑛

2
𝑠2

𝑛

2
𝑡/𝑛   , 

when 𝑛  is even, and 

𝑍 𝐷𝑛 , 𝑋 =  
1

2𝑛
  ∅ 𝑡 𝑠𝑡

𝑛

𝑡 +  𝑛𝑠1𝑠2

𝑛−1

2
𝑡/𝑛  , when 𝑛 

is odd. 

We shall next highlight some results obtained by 

(𝐻𝑎𝑟𝑎𝑟𝑦, 1955) when he was deriving the cycle index of 

symmetric group acting on the ordered pairs. These results 

were employed by Muthoka et. al when they were computing 

the cycle index of cyclic and dihedral group acting on the 

ordrerd2 element subsets. 

(𝑎)Pairs of points coming from a common cycle of 𝜎. In this 

case, we have the following contributions; 

𝑓𝑘
𝛽𝑘 → 𝑠𝑘

(𝑘−1)𝛽𝑘 , for 𝛽𝑘  cycles of  length𝑘. 

(𝑏) Pairs of points coming from distinct cycles of 𝜎. If there 

are 𝛽𝑣  and 𝛽𝑤cycles of lengths 𝑣 and 𝑤 respectively, then we 

have the following contributions; 

(𝑖) If 𝑣 ≠ 𝑤, then we have the following; 

𝑓𝑣
𝛽𝑣𝑓𝑤

𝛽𝑤 → 𝑠
𝑙𝑐𝑚  𝑜𝑓  (𝑣,𝑤)

2𝛽𝑣𝛽𝑤.gcd  𝑜𝑓  (𝑣,𝑤)
 

(𝑖𝑖) If  𝑣 = 𝑤 = 𝑘, then we have the following; 

𝑓𝑘
𝛽𝑘 → 𝑠𝑘

2𝑘 
𝛽𝑘
2

 
 

The cycle index of 𝑪𝒏 acting on 𝑿𝟐 

 We shall need the following lemma in this paper 

𝑳𝒆𝒎𝒎𝒂  𝟏. Let [𝑎, 𝑎, … , 𝑎] ∈ 𝑋𝑟   and  𝜎 ∈ 𝐺 be a 

permutation of the group 𝐺 of length 𝑘, Then 𝜎 , permutes one 

cycle of  length 1. 

T 
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𝑷𝒓𝒐𝒐𝒇. The proof of this lemma follows from the fact that 
𝑘!

𝑘!
= 1, since the 2-element subset under consideration 

contains the same repeated elements.Thus we have the 

following contribution; 𝑓𝑘
𝛽𝑘 → 𝑠𝑘

𝛽𝑘 , for any 𝛽𝑘cycles of length 

𝑘. Thus for any cycle of the type [𝑎, 𝑎, … , 𝑎] ∈ 𝑋𝑟  fixes itself 

when acting on a set, say 𝑋. ⊠ 

Now let 𝐶𝑛act on 𝑋 so that 𝐶𝑛
2 acts on 𝑋2 by the rule that if 

𝜎 , ∈ 𝐶𝑛
2is the permutation induced by 𝜎 ∈ 𝐶𝑛 , then for each 

[𝑎1 , 𝑎2] ∈ 𝑋2 we have 𝜎 𝑎1 , 𝑎2 = (𝜎𝑎1 , 𝜎𝑎2). If 𝑚𝑜𝑛 𝜎 =

  𝑓𝑘
𝛽𝑘

𝑘  in 𝐶𝑛 ,  we need to find the corresponding 𝑚𝑜𝑛(𝜎 ,) 

which we shall denote by   𝑠𝑘
𝛽𝑘

𝑘  
2

in 𝐶𝑛
2. To do this we 

consider the following contributions from 𝜎 to the induced 

permutation 𝜎 ,. We shall consider the following cases: 

Case 1. Contributions from pairs of the form [𝑎, 𝑎]. In this 

case, using  result 𝐿𝑒𝑚𝑚𝑎 1 above , we have the following 

contribution. 

𝑓𝑡

𝑛

𝑡 → 𝑠𝑡

𝑛

𝑡                                                (𝟏) 

Case 2. Contributions from pairs of the form [𝑎, 𝑏] where 

𝑎 ≠ 𝑏 and  

(𝑖)𝑎 and 𝑏 come from common cycles of length 𝑡. In this case, 

from  𝑏 (𝑖), the results of 𝐻𝑎𝑟𝑎𝑟𝑦 (1955), we have the 

following overall contribution; 

𝑓𝑡

𝑛

𝑡 → 𝑠𝑡
(𝑡−1)

𝑛

𝑡 =  𝑠𝑡
𝑛−

𝑛

𝑡    (𝟐) 

 𝒊𝒊 𝑎 and 𝑏 come from distinct cycles of length 𝑡. In this case, 

from result  𝑏 (𝑖𝑖)we have the following contribution; 

𝑓𝑡

𝑛

𝑡 → 𝑠𝑡

2𝑡 
𝑛
𝑡
2

 

=  𝑠𝑡

𝑛2

𝑡
 −𝑛

                (𝟑) 

Collecting and multiplying the the contributions on the right 

hand side of  1 ,  2  and (3), we have the following overall 

contribution; 

𝑓𝑡

𝑛

𝑡 → 𝑠𝑡

𝑛2

𝑡                                                          (4)   (𝟒) 

Therefore, from𝑇𝑕𝑒𝑜𝑟𝑒𝑚 1 and  4 we have that; 

𝑍 𝐶𝑛 , 𝑋2 =  
1

𝑛
 ∅(𝑡)𝑠𝑡

𝑛2

𝑡
𝑡/𝑛 .  (𝟓) 

𝐸𝑥𝑎𝑚𝑝𝑙𝑒 1 

Let 𝑛 = 8, then 𝑡 = 1,2,4, 8 and𝑋 = {1,2,3,4,5,6,7,8} 

And so ∅ 1 = 1, ∅ 2 = 1, ∅ 4 = 2, ∅ 8 = 4 

Therefore 𝑍 𝐶𝑛 , 𝑋2 =
1

8
 𝑠1

64 + 𝑠2
32 + 2𝑠4

16 + 4𝑠8
8  

 

 

 

𝐸𝑥𝑎𝑚𝑝𝑙𝑒 2 

Let 𝑛 = 17, then  𝑡 = 1 and 17, 𝑋 = {1,2,3, … ,17} 

And so ∅ 1 = 1 𝑎𝑛𝑑 ∅ 17 = 16 

Therefore 𝑍 𝐶𝑛 , 𝑋2 =  
1

17
 𝑠1

289 + 16𝑠17
17  

The cycle index of 𝐷𝑛  acting on 𝑋2 

The dihedral group has two parts, the cyclic part and the 

reflections. We have already considered the cyclic part in the 

previous section, therefore in this section we need to consider 

the reflections. We shall consider for cases when 𝑛 is even 

and when 𝑛 is odd as indicated in 𝑡𝑕𝑒𝑜𝑟𝑒𝑚 2. 

Now let 𝐷𝑛act on 𝑋 so that 𝐷𝑛
2 acts on 𝑋2 by the rule that if 

𝜎 , ∈ 𝐷𝑛
2is the permutation induced by 𝜎 ∈ 𝐷𝑛 , then for each 

[𝑎1 , 𝑎2] ∈ 𝑋2 we have 𝜎 𝑎1 , 𝑎2 = (𝜎𝑎1 , 𝜎𝑎2). If 𝑚𝑜𝑛 𝜎 =

  𝑓𝑘
𝛽𝑘

𝑘  in 𝐷𝑛 ,  we need to find the corresponding 𝑚𝑜𝑛(𝜎 ,) 

which we shall denote by   𝑠𝑘
𝛽𝑘

𝑘  
2

in 𝐷𝑛
2 . To do this we 

consider the following contributions from 𝜎 to the induced 

permutation 𝜎 ,. We shall consider the following cases: 

(𝑨) When 𝑛 is even. 

Here we shall consider the reflections with cycle types  

𝑓1
2𝑓2

𝑛−2

2 and 𝑓2

𝑛

2 . We start with 𝑓1
2𝑓2

𝑛−2

2  

𝑪𝒂𝒔𝒆 𝟏Contributions by elements of the form [𝑎, 𝑎]. From 

𝐿𝑒𝑚𝑚𝑎 1 we have the following; 

                𝑓1
2𝑓2

𝑛−2

2 → 𝑠1
2𝑠2

𝑛−2

2                       (𝟔) 

𝑪𝒂𝒔𝒆 𝟐Contribution by elements of the form [𝑎, 𝑏], where 

𝑎 ≠ 𝑏 and 

(𝑖)𝑎 and 𝑏 come from distinct cycles of distinct lengths. From 

result 𝑏(𝑖), we have the               following contribution; 

𝑓1
2𝑓2

𝑛−2

2 → 𝑠2

4(𝑛−2)

2 = 𝑠2
2𝑛−4                       (𝟕) 

(𝑖𝑖) each of 𝑎 and 𝑏come from distinct cycles of length one. 

From result 𝑏 𝑖𝑖 , we have that; 

  𝑓1
2 → 𝑠1

2                                          (𝟖) 

(𝑖𝑖𝑖)each of the points 𝑎 and 𝑏 come from distinct cycles of 

length two. From result 𝑏 (𝑖𝑖), we have the following  

contribution; 

 𝑓2

𝑛−2

2 → 𝑠2

4 
𝑛−2

2
2

 

= 𝑠2

𝑛2

2
 −3𝑛+4

        (𝟗) 

(𝑖𝑣) both of 𝑎 and 𝑏 come from common cycle of length two.. 

From result (𝑎), we have that; 

𝑓2

𝑛−2

2 → 𝑠2

𝑛−2

2                                                  (𝟏𝟎) 

Collecting and multiplying the coefficients on the right hand 

side of  6 ,  7 ,  8 ,  9 and 10 , 
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We have the following induced monomial; 

𝑚𝑜𝑛 𝜎 ′ = 𝑠1
4𝑠2

𝑛2−4

2     (𝟏𝟏) 

Next we shall consider the reflection with the monomial 𝑓2

𝑛

2 . 

In this case, we have the following cases. 

𝑪𝒂𝒔𝒆 𝟏. Contributions by elements of the form [𝑎, 𝑎]. From 

𝐿𝑒𝑚𝑚𝑎 1, we have the following contribution; 

                  𝑓2

𝑛

2 → 𝑠2

𝑛

2       (𝟏𝟐) 

𝑪𝒂𝒔𝒆 𝟐.Contributions by pairs of the form [𝑎, 𝑏] with 𝑎 ≠ 𝑏 

and  

(𝑖)𝑎 and 𝑏 come from common cycles of length two. From 

result 𝑎 we have the following; 

                             𝑓2

𝑛

2 → 𝑠2

𝑛

2        (𝟏𝟑) 

(𝑖𝑖)𝑎 and 𝑏 come from distinct cycles of length two. Using 

result 𝑏(𝑖𝑖) we have that; 

                       𝑓2

𝑛

2 → 𝑠2

4 
𝑛
2
2

 

= 𝑠2

𝑛2

2
−𝑛

                       (𝟏𝟒) 

Collecting and multiplying the contributions on the right hand 

side of  12 ,  13 and (14), we have the following induced 

monomial; 

𝑚𝑜𝑛 𝜎 ′ = 𝑠2

𝑛2

2 .                                 (𝟏𝟓) 

Therefore from 5 ,  11  and (15), we have the following; 

𝑍 𝐷𝑛 , 𝑋2 =
1

2𝑛
  ∅ 𝑡 𝑠𝑡

𝑛2

𝑡 +
𝑛

2
𝑠1

4𝑠2

𝑛2−4

2 +
𝑛

2
𝑠2

𝑛2

2
𝑡/𝑛   

 (𝟏𝟔) 

(𝑩)When 𝑛 is odd. From 𝑇𝑕𝑒𝑜𝑟𝑒𝑚 1, we shall consider the 

reflection with the monomial  𝑓1𝑓2

𝑛−1

2 . We have the following 

cases. 

𝐶𝑎𝑠𝑒 1. Contribution by pairs of the form [𝑎, 𝑎, ]. From 

𝐿𝑒𝑚𝑚𝑎 1, we have the following; 

𝑓1𝑓2

𝑛

2 → 𝑠1𝑠2

𝑛−1

2    (𝟏𝟕) 

𝐶𝑎𝑠𝑒 2. Contribution elements of the form[𝑎, 𝑏] where 𝑎 ≠ 𝑏, 

and;come from common c 

(𝑖)𝑎 and 𝑏 come from common cycle of length two. From 

result  (𝑎), we have the following; 

𝑓2

𝑛−1

2 → 𝑠2

𝑛−1

2                            (𝟏𝟖) 

(𝑖𝑖) both 𝑎 and 𝑏 come from distinct cycles of length two. 

From result (𝑏)(𝑖𝑖), we have the following contribution; 

𝑓2

𝑛−1

2 → 𝑠2

4 
𝑛−1

2
2

 

= 𝑠2

𝑛2

2
−2𝑛+

3

2                  (𝟏𝟗) 

(𝑖𝑖𝑖)each 𝑜𝑓 𝑎 and 𝑏 come from distinct cycles with one 

coming from a cycle of length one while the other comes from 

a cycle of length two. Using the result in (𝑏)(𝑖), we have that; 

𝑓2

𝑛−1

2 → 𝑠2
𝑛−1                       (𝟐𝟎) 

CollectIng and multiplying the coefficients on the right hand 

side of  17 ,  18 ,  19 and (20), we have the following 

induced monomial;  

𝑚𝑜𝑛 𝜎 ′ = 𝑠1𝑠2

𝑛2−1

2                  (𝟐𝟏) 

Therefore using 𝑇𝑕𝑒𝑜𝑟𝑒𝑚 2, (5) and (21), we have that; 

𝑍 𝐷𝑛 , 𝑋2 =
1

2𝑛
  ∅ 𝑡 𝑠𝑡

𝑛

𝑡

2

+ 𝑛𝑠1𝑠2

𝑛2−1

2
𝑡/𝑛  , when 𝑛 is odd. 

  (𝟐𝟐) 

𝐸𝑥𝑎𝑚𝑝𝑙𝑒 3 

Let 𝑛 = 6, then 𝑡 = 1,2,3,6 and  𝑋 =  1,2,3,4,5,6 , 

Then ∅ 1 = 1, ∅ 2 = 1, ∅ 3 = 2, ∅ 6 = 2, 

Therefore from (16), 𝑍 𝐷6 , 𝑋2 =
1

16
 𝑠1

36 + 4𝑠2
18 + 2𝑠3

12 +

2𝑠66+3𝑠14𝑠216. 

𝐸𝑥𝑎𝑚𝑝𝑙𝑒 4 

Let 𝑛 = 11, 𝑡𝑕𝑒𝑛 𝑡 = 1,11, and 𝑋 =  1,2, … ,11 , 

Then ∅ 1 = 1, ∅ 11 = 10, 

Therefore from  22 , we have𝑍 𝐷11 , 𝑋2 =
1

22
 𝑠1

121 +

10𝑠1111+11𝑠1𝑠260. 
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