Alternative method for construction of Steiner Triple Systems of order $n ; n \equiv 1$ or $3(\bmod 6)$ and $n>12$

D.M.T.B. Dissanayake and A.A.I. Perera
Department of Mathematics, Faculty of Science, University of Peradeniya, Sri Lanka

Abstract

Construction of Steiner Triple System is well-known. In this work, an alternative construction is given for the construction of $\operatorname{STS}(\boldsymbol{n}) ; \boldsymbol{n} \equiv 1(\bmod 6)$ and $n>1$. Basic blocks have been used for this construction and these blocks have special properties. Starting with these blocks $\operatorname{STS}(13), \operatorname{STS}(19)$ and $S T S(25)$ have been constructed. Furthermore, generalizations of this work for $\operatorname{STS}(3 n)$ and $\operatorname{STS}\left(n^{2}\right)$ have been given by introducing Cartesian Products of two sets.

Keywords: Steiner system, Steiner triple system, Basic Blocks

I. INTRODUCTION

Cteiner Systems were introduced by the mathematician Steiner in 1853 and are widely used in constructing designs. A pair (X, \mathcal{B}) where X is a n-set and \mathcal{B} is a family of m-subsets that any l-set lies in exactly one number of \mathcal{B} is called a Steiner $\operatorname{System}(l, m, n)$. A Steiner System $S(2,3, n)$ is called a Steiner Triple System of order n and is denoted by $\operatorname{STS}(n)$. Construction of $\operatorname{STS}(n)$ for $n \equiv 1$ or $3(\bmod 6)$ are well known. One such construction method is using complete graphs K_{n}. This work gives a recursive construction method of $\operatorname{STS}(n)$ using basic blocks as an alternative method. Arecursive construction is given for the construction of $\operatorname{STS}(13), \operatorname{STS}(19), \operatorname{STS}(25) ; n \equiv 1(\bmod 6)$. Main focus of this research is to construct triples(blocks) of size three so that each pair of elements are in exactly one block. For this construction, basic blocks B_{1}, B_{2}, B_{3} etc were constructed by taking the set X of n elements as the additive group $\mathbb{Z}_{n}=\{0,1$, $2, \ldots, n-2, n-1\}$.

Definition 1

Let G be an additive group of order v and D is a subset of G of cardinality k. If the set of differences $d_{i}-d_{j}$ where d_{i}, $d_{j} \in D ; i \neq j$ contains every non-zero element of G exactly λ times, then D is called a (v, k, λ)-difference set.

Further, if D_{i} is a difference set then $D_{i}+g ; g \in \mathbb{Z}_{n}$ is also a difference set.

Definition 2

Number of blocks of a Steiner System (l, m, n) is $|B|=\frac{{ }^{n} C_{l}}{{ }^{m} C_{l}}$.

Number of blocks of a Steiner Triple System (2,3,n) is given
by $|B|=\frac{{ }^{n} C_{2}}{{ }^{3} C_{2}}=\frac{n(n-1)}{6}$.
Further, if B_{i} is a block, then $B_{i}+g ; g \in \mathbb{Z}_{n}$ is also a block,

II. METHODOLOGY

A recursive construction of $\operatorname{STS}(13), \operatorname{STS}(19)$ and $\operatorname{STS}(25)$ using basic blocks are given below.

First, basic blocks of relevant $\operatorname{STS}(n)$ were constructed such that their differences collectively give each non-zero element of \mathbb{Z}_{n} exactly once. Using the property that if B_{i} is a block, then $B_{i}+g ; g \in \mathbb{Z}_{n}$ is also a block, all blocks of $\operatorname{STS}(n)$ have been constructed.

For example inSTS(13),
Total number of blocks $=|B|=\frac{{ }^{13} C_{2}}{{ }^{3} C_{2}}=26$.
Consider $B_{1}=\{0,1,4\}$ and $B_{2}=\{0,2,8\}$ as basic blocks where $X=\mathbb{Z}_{13}=\{0,1,2, \ldots, 11,12\}$. For any non-zero $z \in X$ there is a unique way to write $z=u-v$ with u, v chosen from the same set $B_{i}(i=1,2)$.

We claim that (X, B) is a $\operatorname{STS}(13)$.
Clearly, X is a 13- set and B is a family of 3 -subsets of X. If $x, y \in B_{i}+z$ then,
$x-z, y-z \in B_{i}$ and $(x-z)-(y-z)=x-y$.
A unique choice is there fori, u, v such that $x-y=u-v$ where $u, v \in B_{i}$.

Thus, a unique triple containing x and y can be obtained.
Basic blocks are $B_{1}=\{0,1,4\}$ and $B_{2}=\{0,2,8\}$.
Differences of elements of the blocks give all the non-zero elements of \mathbb{Z}_{13} modulo 13 exactly once.
$B_{1}=\{0,1,4\}$ gives

$$
\begin{gathered}
0-1=12 \\
1-0=1 \\
4-0=4 \\
0-4=9 \\
1-4=10 \\
4-1=3
\end{gathered}
$$

$B_{2}=\{0,2,8\}$ gives

$$
\begin{gathered}
0-2=11 \\
2-0=2 \\
7-0=7 \\
0-7=6 \\
2-7=8 \\
7-2=5
\end{gathered}
$$

Let $B=\left\{B_{1}+z, B_{2}+z \mid z \in X\right\}$ where $B_{i}+z=\{t+z / t \in$ $\left.B_{i}, z \in X\right\} ; i=1,2$.

So, the following26 blocks can be obtained.
$\{0,1,4\},\{1,2,5\}, \quad\{2,3,6\}, \quad\{3,4,7\}, \quad\{4,5,8\}, \quad\{5,6,9\}$, $\{6,7,10\}, \quad\{7,8,11\}, \quad\{8,9,12\}, \quad\{9,10,0\}, \quad\{10,11,1\}$, $\{11,12,2\},\{12,0,3\},\{0,2,8\},\{1,3,9\},\{2,4,10\},\{3,5,11\}$, $\{4,6,12\},\{5,7,0\},\{6,8,1\},\{7,9,2\},\{8,10,3\},\{9,11,4\}$, $\{10,12,5\},\{11,0,6\},\{12,1,7\}$

Using a similar recursive construction, STS(19) and STS(25) can be obtained.

For STS(19), basic blocks are $B_{1}=\{0,1,6\}, B_{2}=\{0,2,10\}$ and $B_{3}=\{1,5,17\}$.

For $\operatorname{STS}(25)$, basic blocks are $B_{1}=\{0,1,7\}, B_{2}=$ $\{1,4,12\}, B_{3}=\{2,6,11\}$ and $B_{4}=\{3,5,15\}$.

III. RESULTS AND DISCUSSION

The above constructions can be generalized as follows.
(a) Construction of $\operatorname{STS}(3 n)$:

Number of triples or blocks $=\frac{{ }^{3 n} C_{2}}{{ }^{3} C_{2}}=\frac{n(3 n-1)}{2}$
$3 n$ points can be divided into three sets with n points each and then three $\operatorname{STS}(n)$ can be constructed. Denote the three $\operatorname{STS}(n)$ as X, Y and Z, where $X=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$,
$Y=\left\{y_{0}, y, \ldots, y_{n-1}\right\}$ and $=\left\{z_{0}, z_{1}, \ldots, z_{n-1}\right\}$.
Total number of triples constructed is $3 \times \frac{n(n-1)}{6}=\frac{n(n-1)}{2}$.

Then remaining number of triples are given by $\frac{n(3 n-1)}{2}-\frac{n(n-1)}{2}=n^{2}$.

The Cartesian product of two sets has been used to construct those remaining triples as follows:

Let $\quad Y \times Z=\left\{\left(y_{j}, z_{k}\right) \mid y_{j} \in Y, Z_{k} \in Z ; j, k=0,1, \ldots, n-1\right\}$. These n^{2} pairs $\left(y_{j}, z_{k}\right)$ can be converted to triples with $x_{i} \in$ X, such that $j+k \equiv 2 i(\bmod n)$. So, n^{2} triples can be constructed.

Similarly, using $\operatorname{STS}(3 n), \operatorname{STS}(9 n), S T S(27 n)$ and all higher multiples of $3 n$ can be obtained.
(b) Construction of $\operatorname{STS}\left(n^{2}\right)$ using $\operatorname{STS}(n)$:

Number of blocks $=\frac{{ }^{n^{2}} C_{2}}{{ }^{3} C_{2}}=\frac{n^{2}\left(n^{2}-1\right)}{6}$.
First, n^{2} points will be divided into n sets with n pointseach and then constructSTS (n) using each set with n points.

Denote each $\operatorname{STS}(n)$ as a point and newSTS can be construct denoting each $\operatorname{STS}(n)$ as points $A_{0}, A_{1}, \ldots, A_{n-2}, A_{n-1}$. This gives, $\frac{n(n-1)}{6} \times n=\frac{n^{2}(n-1)}{6}$ number of triples.

Then the remaining number of triples $\frac{n^{2}\left(n^{2}-1\right)}{6}-\frac{n^{2}(n-1)}{6}=\frac{n^{3}(n-1)}{6}$ can be constructed as follows.

For each new triple $A_{i} A_{j} A_{k}$ where $i, j, k=0,1, \ldots, n-1$, using Cartesian product construction as above n^{2} triples can be constructed.

Since $\frac{n(n-1)}{6}$ triples are there, $\frac{n(n-1)}{6} \times n^{2}=\frac{n^{3}(n-1)}{6}$ triples can be constructed.

IV. CONCLUSION

In this work, an alternative constructions are given for $\operatorname{STS}(13), \operatorname{STS}(19)$ and $\operatorname{STS}(25)$. Generalization of this work for $\operatorname{STS}(3 n)$ is given when $n \equiv 3(\bmod 6)$ and further generalization for $\operatorname{STS}\left(n^{2}\right)$ also given when $n \equiv 1(\bmod 6)$.

These generalizations could be repeatedly apply to construct $\operatorname{STS}(n)$ when n takes higher values.

REFERENCES

[1] Anderson I. (1998), Combinatorial designs and tournaments, Clarendon Press, First Edition.
[2] Cameron P.J., Combinatorics; Topics, Techniques, Algorithms, Cambridge University Press, pp. 107-122.
[3] Colbourn C.J., Dinitz J.H. (Eds.) (1996), The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, pp. 66-75.
[4] Ryser, H. J. (1963), Combinatorial Mathematics, Buffalo, NY: Math. Assoc. Amer., pp. 99-102.
[5] Wilson R. M. (1974), Some partitions of all triples into Steiner triple systems. Springer Lecture Notes in Mathematics 411, pp. 267-277.

