
International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue XII, December 2019 | ISSN 2321–2705 

 

www.rsisinternational.org Page 71 
 

On the Misconception of R
2
 for (r)

2
 in a Regression 

Model 
Ijomah, Maxwell Azubuike 

Dept. of Maths/Statistics, University of Port Harcourt, Nigeria 

Abstract:-The coefficient of determination (R2) is perhaps the 

single most extensively used measure of goodness of fit for 

regression models, and measures the proportion of variation in 

the dependent variable explained by the predictors included in 

the model. It is however, widely misused as the square of 

correlation coefficient and this has led to poor interpretation of 

research reports in regression model. In this paper, we 

investigate the controversy regarding use of coefficient of 

determination as the square of correlation coefficient in 

statistical analysis. Difference between the two statistics are 

illustrated using examples from simple and multiple regression 

models. 
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I. INTRODUCTION 

he classical linear regression model is the standard 

procedure for extracting the statistical information from 

the data through the determination of relationship between the 

study and explanatory variables. In the course of model 

estimation, it is common practice to assess the appropriateness 

or adequacy of the fitted model in explaining the variations in 

the data set. A popular tool to determine the adequacy of the 

fitted model is the coefficient of determination. The 

coefficient of determination is a measure used in statistical 

analysis that assesses how well a model explains and predicts 

future outcomes. It is indicative of the level of explained 

variability in the data set and considers the variation in the 

dependent variable explained by the independent variable(s). 

It provides a summary measure for the goodness of fit of any 

linear regression model and is based on the proportion of 

variability of the study variable that can be explained through 

the knowledge of a given set of explanatory variables. These 

definitions are found by both econometrics and statistics 

handbooks and is widely accepted among quantitative 

scholars. The coefficient of determination R
2 

as stated above 

is generally used by researchers to assess the goodness of fit 

of the models. In econometrics, Kennedy (2008) argues that 

“R
2
 is measured either as the ratio of the “explained” variation 

to the “total” variation […] and represents the percentage of 

variation in the dependent variable “explained” by variation in 

the independent variables” (Kennedy, 2008). Wooldridge 

(2009) states that “R
2
 is the ratio of the explained variation 

compared to the total variation; thus, it is interpreted as the 

fraction of the sample variation in y that is explained by x” 

(Wooldridge, 2009). According to Moore and McCabe 

(2009), the square of the correlation, R
2
, is the fraction of the 

variation in one variable that is explained by least-squares 

regression on the other variable.  Kasuya (2018) also pointed 

out that use of r or R, not r
2
 or R

2
, for the coefficient of 

determination is confusing and inappropriate. The coefficient 

of determination is the square of the correlation coefficient or 

multiple correlation coefficients, which are usually denoted by 

r or R. The use of r or R for the coefficient of determination is 

likely to make the misleading impression that it is on the same 

scale as the correlation or multiple correlation coefficients 

despite being the square of them. Similarly, Schroeder et al. 

(1986) argue that “R
2
, the coefficient of multiple 

determination, measures the percentage of the variation in the 

dependent variable which is explained by variations in the 

independent variables taken together” (Schroeder et al., 

1996).Anderson-Sprecher (1994) pointed out that “the 

coefficient of multiple determination, R
2
, is a measure many 

statisticians love to hate. This animosity exists primarily 

because the widespread use of R
2
 inevitably leads to at least 

occasional misuse” (Anderson-Sprecher, 1994 p. 113). While 

the controversy over R
2 

has its origin in the statistics literature 

(Kavalseth, 1985; Helland, 1987; Willett and Singer, 1988; 

Lavergne, 1996; Korn and Simon, 1991; Scott and Wild, 

1991; McGuirk and Driscoll, 1995), the R
2 
debate is important 

to all fields of knowledge that employ linear regression 

models. McGregor (1993) argues that “there is little wonder 

that the regression model has achieved its preferred status in 

the social sciences” (McGregor, 1993). In fact, the 

attractiveness of the regression model can be partially 

explained by its capacity to summarize the relationship among 

different variables in a systematic and parsimonious approach. 

Therefore, since the use of regression models have been 

increasing in social sciences in general and political science in 

particular, it is important to understand the controversial role 

of R
2
 and the substantive meaning scholars can draw from it. 

Some authors largely reject the usage of the coefficient of 

determination, e.g. Achen (1982): Gary King (1986) argues 

that R
2
 is highly misused as a measure of the influence of X 

on Y. He states that the more accurate interpretation is that 

“R
2
 is a measure of the spread of points around a regression 

line, and it is a poor measure of even that” (King, 1986). The 

most misuse of coefficient of determination which occupies 

over 80 percent of literature in regression is the misconception 

of the coefficient of determination (R
2
) for the square of 

correlation coefficient (r)
2
 in regression analysis by most 

researchers. Similarly, Achen (1977) states that one of the 

main limitations of the correlation coefficient is its inability to 

T 
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be compared among samples. He argues that “correlations 

cannot be compared across samples: two correlations can 

differ because the variances in the samples differ, not because 

the underlying relationship has changed” (Achen, 1977 p. 

807). To strengthen the case for model fit, consideration must 

be given to the intercept of the regression. Linear regression 

finds the best line that predicts dependent variable from 

independent variable(s). The decision of which variable calls 

dependent and which calls independent is an important matter 

in regression, as it'll get a different best-fit line if you swap 

the two. The line that best predicts independent variable from 

dependent variable is not the same as the line that predicts 

dependent variable from independent variable in spite of both 

those lines have the same value for R
2
. A large share of 

quantitative literature devotes little attention to addressing this 

misconception, giving to much attention to the “proportion of 

dependent variable explained by the model”. The purpose is to 

provide an intuitive understanding regarding the coefficient of 

determination and point out some not so obvious mistakes that 

are frequently made when interpreting the coefficient of 

determination R
2
 as the square of correlation coefficient in a 

linear model. The plan of the paper is as follows: The 

statistical model for coefficient of determination and its 

relationship with correlation coefficient are described in 

Section 2. In Section 3, we demonstrate the inconsistency of 

the correlation coefficient as the root of coefficient of 

determination under various scenarios and with simulated data 

and data from Anscombe`s (1973).The findings of the 

simulation study are presented in Section4 followed by some 

concluding remarks in Section 5 

II. STATISTICAL MODEL 

Given paired variables  ii yx , , a linear model that explains 

the relationship between the variables is given by 

iii xy   10                                                  (1) 

where e is a mean zero error. The parameters of the linear 

model can be estimated using the least squares method and 

denoted by 0̂  and 
1̂ , respectively. The parameters are 

estimated by minimizing the sum of squared residuals 

between variable iy  and the model 

,10 x  that is,    21010 minarg, ii xy      

(2) 

It can be shown that the least square estimates are  
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From the above, the sum of squared errors (SSE), or the sum 

of squared residuals, is given by 

 
2

1

ˆ



n

i

ii yySSE  

The total sum of squares (SST) is the measure of total 

variation in the Y variable and is defined as 

 
2

1

ˆ



n

i

i yySST  

Since SSE is the minimum of the sum of squared residuals of 

any linear model, SSE is always smaller than SST. Then the 

amount of variability explained by the model is SST − SSE, 

which is denoted as the regression sum of squares (SSR), that 

is, 

SSESSTSSR   

The ratio SSR/SST = (SST − SSE)/SST measures the 

proportion of variability explained by the model with variance 

estimators given as ,)(ˆ
n

SSTyV 

 ,)ˆ(ˆ
n

SSRyV 
n

SSEV )(ˆ   

The coefficient of determination (R
2
) is defined as the ratio 
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R
2
therefore measure the explanatory power of the model 

which in turn reflects the goodness of fit of the model.  It 

reflects the model adequacy in the sense that how much is the 

explanatory power of explanatory variable.  

The interpretation and use of R
2
 has been extensively 

discussed in the literature (some examples are in Crocker, 

1972; Barrett, 1974; Draper and Smith, 1981; Ranney and 

Thigpen, 1981; Healy, 1984; Kvalseth, 1985; Helland, 1987; 

Willett and Singer, 1988; Nagelkerke, 1991; Scott and Wild, 

1991). with increasing n, R
2
 tends to 

2
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where S. is the sample covariance matrix for the independent 

variables (Helland, 1987). Thus, the value of R' depends on 

the variation among independent variables. 

Relation to Correlation Coefficient 

With the previous Equations 1 and 2, R
2
 can also be written as 

a function of the sample cross covariance 
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This shows that the coefficient of determination of a simple 

linear regression is the square of the sample correlation 

coefficient of  ii yx , . Equation 4 perhaps formed the basis 

for the above misconception. Note however that this 

definition does not refer to one variable as dependent and the 

other as independent. Rather, it simply refers to two random 

variables. 

Again, consider the case of one of the regressors is constant, 

the empirical correlation between y and ŷ is non negative 

and equals 
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The above equation clearly shows that the root of the 

coefficient of determination is always positive. This again 

disagrees with correlation coefficient which ranges from -1 to 

1. Squaring this renders all negative values of the correlation 

coefficient meaningless. 

III. NUMERICAL APPLICATION 

Both simulated data and data extracted from Anscombe`s 

(1973) were used for the analysis.  Two models were 

considered for the illustration, the first was a simple 

regression model (i.e. Y was a function of X and vice versa). 

Then, we ran another model in this case a multiple regression 

by including the new independent variable (X2) with each of 

the variable as a dependent variable. The result summary is as 

show below: 

Table 1: Simple and Multiple Regression with varying standard errors 

Statistics Model 1 Model 2 

  xfy    yfx    21, xxfy    21 , xyfx    12 , xyfx   

 
8405.90   

8355.01   

2925.80   

6959.01   

2919.10   

8586.01   

0930.12   

3686.00   

1722.01   

3984.02   

3511.00   

4097.01   

1391.02   

r  -0.7625 -0.7625 - - - 

2)(r  0.5814 0.5814 - - - 

R  0.7625 0.7625 0.9661 0.9392 0.9492 

2R  0.5814 0.5814 0.9333 0.8821 0.9011 

2

adjR  0.5727 0.5727 0.9305 0.8771 0.8969 

RMSE  2.2598 2.0623 0.9116 0.6209 0.5581 

CV  17.4479 21.4262 13.1032 21.3920 24.2261 
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For model 1, we considered when y is a function of x and vice 

versa since in both cases we should have the same correlation 

coefficient as shown in the above table 1. It was observed that 

the correlation between the two variables is negative (i.e. x is 

inversely related with y when y is depending on x and when x 

depends on y).Now the question is how do we reconcile these 

two interpretations of negative relationship and a coefficient 

of determination of 0.5814? Again, we noticed that there is 

clear difference in both root mean squared error and 

coefficient of variation (i.e. when y depends on x, RMSE of 

2.2598 with CV 17.4479 was obtained as against RMSE of 

2.0623 and CV 21.4262 for x depending on y) even though 

the square of correlation coefficient (r)
2
is equal to coefficient 

of determination (R
2
).In order to prove our point, since the 

correlation between x and y cannot change irrespective of 

which variable comes first, it is expected that all the available 

statistics should be the same. But the result shows that the 

standard deviation of the residual in case 2 of model 1 is 

higher than that in case 1 as can be seen in the above table. To 

make our case clearer, in model 2 we considered a multiple 

regression were each of the variables are dependent on others. 

Though in each case of model 2, the coefficient of 

determination was equal to the square of multiple correlation 

(R), but there was variation in the spread of points about the 

fitted regression lines. (i.e. there is variation in noise of the 

system). Recall by definition, the coefficient of determination, 

measures the percentage of the variation in the dependent 

variable which is explained by variations in the independent 

variables taken together” (Schroeder et al., 1996). This goes to 

prove that for three different scenarios, the coefficient of 

determination varied with each dependent variable, also their 

standard error (RMSE) and coefficient of variation were not 

the same. The principal problem here is that the variance in 

the population of the explanatory variables studied can 

strongly influence R
2
 magnitude unlike that of correlation 

coefficient which is influence by not only explanatory 

variable(s) but also dependent of other variable. Therefore, 

there is no guarantee that a small R
2
 indicates a weak 

relationship, given that the statistic is largely influenced by 

variation in the independent variable Filho et. al (2011).It is 

worth noting that the coefficient of multiple correlation R 

which is the square root of coefficient of determination, is 

only positively skewed and as such could not account for the 

inverse correlation coefficient. 

 

Fig. 1a:Regressing Y vs X 

 

Fig.1b: Regressing X vs Y 

 

Fig. 2a: Regressing Y vs (X1,X2) 

 

Fig.2b: Regressing X1 vs (Y,X2) 

 

Fig.2c: Regressing X2 vs (Y,X1) 
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The above graph clearly shows that fig.1a and fig.1b are not 

the same even though the have the same R
2
 value. This goes 

to prove that even though the coefficient of determination and 

the square of multiple correlation are mathematically the 

same, their interpretation is not the same from the graph. 

Similarly, Fig.2a in the above graph appears more linear than 

fig. 2b. The point we are trying to make here is that for 

coefficient of determination, it is the explanatory variable(s) 

explaining variation in the dependent variable while for 

correlation, we are interested in the strength of relationship. 

Therefore, interpreting R
2
as the square of r can be misleading. 

Empirical example 2: replicating Anscombe`s (1973) data 

Consider again the result extracted from Filho et.al (2011) 

below, in model 2 surprisingly the square of multiple 

correlation (R) is not equal to coefficient of determination. 

Model 2 shows both a higher correlation coefficient (0.889) 

and a higher coefficient of determination (0.809) when 

compared with model 1 (0.816 and 0.667, respectively). The 

standard error of the estimate of the model 2 is smaller (0.993) 

than the error of model 1 (1.237). Finally, model 2 reached a 

significance level (0.001) more reliable than model 1 (0.002).  

Table 2: Result Extracted from Figueredo et.al (2011) 

Statistics Model     1 Model 2 

R  0.816 0.889 

2R  0.667 0.809 

2

adjR  0.629 0.761 

ErrorStd  1.237 0.993 

F  17.990 16.916 

.sig  0.002 0.001 

df  10 8 

Note: Result was extracted from: FIGUEIREDO FILHO Dalson. B.; SILVA, 

José. A. and; ROCHA, Enivaldo (2011). What is R² all about? 

IV. DISCUSSION 

It is often said that multiple correlation can be used to identify 

good predictors.  This is not the case. Multiple correlation 

does not identify predictors of a criterion as shown in the 

table1 above.  It identifies variables that add to prediction. 

The correlation coefficient is the regression coefficient in 

standard score form while the regression coefficient in 

multiple regression is a measure of the extent to which a 

variable adds to the prediction of a criterion, given the other 

variables in the equation.  It is not a correlation coefficient. If 

strength and direction of a linear relationship should be 

presented, then r is the correct statistic. If the proportion of 

explained variance should be presented, then R² is the correct 

statistic. These are just different things. The coefficient of 

determination just like the regression line provides no 

information about how strongly the variables are related. In 

contrast, a correlation does not fit such a line and does not 

allow such estimations, but it describes the strength of the 

relationship. A low R
2
 does not necessary mean that there is 

no relationship but that the explanatory variable alone cannot 

capture enough variation in the dependent variable. If R
2
 

should tell something about the virtues of a model for some 

given population, the variation among the values of the 

independent variables should be representative of that 

population. Another misconception that should be taken note 

of is that multiple correlation (R) considers only positive 

correlation coefficient (r). R
2
 also does not deal with signs (- 

or +) in expressing the explanatory power of the independent 

variable but the degree. It should therefore be noted that the 

value of R
2
 does not depend only on the distances between 

predicted and observed values but also on the variation of the 

outcome variable. So anything that influences this variation 

also influences the value of R
2
.In fact, the attractiveness of the 

regression model can be partially explained by its capacity to 

summarize the relationship among different variables in a 

systematic and parsimonious approach. Little wonder while 

some researchers have criticized use of (r)
2
 as a measure of 

goodness of fit. Again, we often denote coefficient of 

determination by R
2
 while correlation coefficient is denoted 

by r. Statistically speaking r is always classified as a subset of 

R and so R
2
 cannot be equal to (r)

2
.  

V. CONCLUSION 

Due tothe fact that coefficient of determination (R
2
) depends 

on the correlation coefficient (r), researchers often assume 

coefficient of determination as the square of correlation 

coefficient. Such an issue has continued to reoccur in the 

literature, to the best of our knowledge. Both techniques have 

a close mathematical relationship, but distinct purposes and 

assumptions. With the above discussion, it is evident, that 

there is a big difference between these two mathematical 

concepts, although these two are studied together. Correlation 

is used when the researcher wants to know that whether the 

variables under study are correlated or not, if yes then what is 

the strength of their association. Correlation is a very useful 

research statistic but do not address the predictive power of 

variables. This task is left to coefficient of determination. 

Coefficient of determination is based on the idea that the 

researcher must first have some valid reasons for believing 

that there is a causal relationship between two or more 

variables. 

REFERENCES 

[1]. Achen, C. H. (1977). Measuring Representation: Perils of the 
Correlation Coefficient. American Journal of Political Science 21: 

805-815.  

[2]. Anderson-Sprecher, R. (1994). Model Comparisons and R2. The 
American Statistician 48: 113-117.  

[3]. Anscombe, F. (1973). Graphs in Statistical Analysis. American 

Statistician 27: 17-21.  
[4]. Filho DBF, Silva JA, Rocha E.(2011). What is R2 all about? 

Leviathan – Cadernos de Pesquisa Política;3:60–68. 

[5]. Helland, I. S. (1987). On the Interpretation and Use of R2 in 
Regression. Biometrics 43(1): 61-69.  

[6]. Kasuya E. (2019). On the use of r and r squared in correlation and 

regression. Ecol. Res. 34:235–236. 



International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue XII, December 2019 | ISSN 2321–2705 

 

www.rsisinternational.org Page 76 
 

[7]. Kennedy, P. (2008). A Guide to Econometrics. San Francisco, 

CA: Wiley-Blackwell.  

[8]. King, G. (1986). How Not to Lie with Statistics: Avoiding 
Common Mistakes in Quantitative Political Science. American 

Journal of Political Science 30:666-687.  

[9]. Korn, E. L., and  Simon. R. (1991). Explained Residual Variation, 
Explained Risk, and Goodness of Fit. The American Statistician 

45(3): 201-206.  

[10]. Kvalseth,T. 0. (1985). Cautionary Note About R2. The American 
Statistician 39: 279-285. Lavergne, P. (1996). The Hot Air in R2: 

Comment. American Journal of Agricultural Economics 78(3): 

712-714.  
[11]. McGregor, J. P. (1993). Procrustus and the regression model: On 

the misuse of the regression model. PS: Political Science & 

Politics 26: 801-804.  

[12]. McGuirk, A. and Driscoll P. (1995). The Hot Air in R2 and 

Consistent Measures of Explained Variation. American Journal of 

Agricultural Economics 77: 319-328.  
[13]. Moore, D. S., and  McCabe, G.P(2009). Introduction to the 

Practice of Statistics. West Lafayette, IN: W.H. Freeman Press.  

[14]. Schroeder, L. D., David L. S., and Paula E. S. (1986). 
Understanding Regression Analysis: An Introductory Guide. 

Beverly Hills, CA: Sage Publications.  

[15]. Scott, A. and Wild. C.(1991). Transformations and R2. The 
American Statistician 45(2): 127-129.  

[16]. Willett, J. B., and SingerJ.D.(1988). Another Cautionary Note 

about R2: Its Use in Weighted Least-Squares Regression Analysis. 
The American Statistician 42(3): 236-238.  

[17]. Wooldridge, J. M. (2009). Introductory Econometrics: A Modern 

Approach. Boston, MA: South-Western College Publishing.

  


